9,854 research outputs found

    Scalable data abstractions for distributed parallel computations

    Get PDF
    The ability to express a program as a hierarchical composition of parts is an essential tool in managing the complexity of software and a key abstraction this provides is to separate the representation of data from the computation. Many current parallel programming models use a shared memory model to provide data abstraction but this doesn't scale well with large numbers of cores due to non-determinism and access latency. This paper proposes a simple programming model that allows scalable parallel programs to be expressed with distributed representations of data and it provides the programmer with the flexibility to employ shared or distributed styles of data-parallelism where applicable. It is capable of an efficient implementation, and with the provision of a small set of primitive capabilities in the hardware, it can be compiled to operate directly on the hardware, in the same way stack-based allocation operates for subroutines in sequential machines

    Virtual Machine Support for Many-Core Architectures: Decoupling Abstract from Concrete Concurrency Models

    Get PDF
    The upcoming many-core architectures require software developers to exploit concurrency to utilize available computational power. Today's high-level language virtual machines (VMs), which are a cornerstone of software development, do not provide sufficient abstraction for concurrency concepts. We analyze concrete and abstract concurrency models and identify the challenges they impose for VMs. To provide sufficient concurrency support in VMs, we propose to integrate concurrency operations into VM instruction sets. Since there will always be VMs optimized for special purposes, our goal is to develop a methodology to design instruction sets with concurrency support. Therefore, we also propose a list of trade-offs that have to be investigated to advise the design of such instruction sets. As a first experiment, we implemented one instruction set extension for shared memory and one for non-shared memory concurrency. From our experimental results, we derived a list of requirements for a full-grown experimental environment for further research

    SL: a "quick and dirty" but working intermediate language for SVP systems

    Get PDF
    The CSA group at the University of Amsterdam has developed SVP, a framework to manage and program many-core and hardware multithreaded processors. In this article, we introduce the intermediate language SL, a common vehicle to program SVP platforms. SL is designed as an extension to the standard C language (ISO C99/C11). It includes primitive constructs to bulk create threads, bulk synchronize on termination of threads, and communicate using word-sized dataflow channels between threads. It is intended for use as target language for higher-level parallelizing compilers. SL is a research vehicle; as of this writing, it is the only interface language to program a main SVP platform, the new Microgrid chip architecture. This article provides an overview of the language, to complement a detailed specification available separately.Comment: 22 pages, 3 figures, 18 listings, 1 tabl
    corecore