10,849 research outputs found

    On the Coherence Properties of Random Euclidean Distance Matrices

    Full text link
    In the present paper we focus on the coherence properties of general random Euclidean distance matrices, which are very closely related to the respective matrix completion problem. This problem is of great interest in several applications such as node localization in sensor networks with limited connectivity. Our results can directly provide the sufficient conditions under which an EDM can be successfully recovered with high probability from a limited number of measurements.Comment: 5 pages, SPAWC 201

    Ad Hoc Microphone Array Calibration: Euclidean Distance Matrix Completion Algorithm and Theoretical Guarantees

    Get PDF
    This paper addresses the problem of ad hoc microphone array calibration where only partial information about the distances between microphones is available. We construct a matrix consisting of the pairwise distances and propose to estimate the missing entries based on a novel Euclidean distance matrix completion algorithm by alternative low-rank matrix completion and projection onto the Euclidean distance space. This approach confines the recovered matrix to the EDM cone at each iteration of the matrix completion algorithm. The theoretical guarantees of the calibration performance are obtained considering the random and locally structured missing entries as well as the measurement noise on the known distances. This study elucidates the links between the calibration error and the number of microphones along with the noise level and the ratio of missing distances. Thorough experiments on real data recordings and simulated setups are conducted to demonstrate these theoretical insights. A significant improvement is achieved by the proposed Euclidean distance matrix completion algorithm over the state-of-the-art techniques for ad hoc microphone array calibration.Comment: In Press, available online, August 1, 2014. http://www.sciencedirect.com/science/article/pii/S0165168414003508, Signal Processing, 201

    Adaptive Mantel Test for AssociationTesting in Imaging Genetics Data

    Full text link
    Mantel's test (MT) for association is conducted by testing the linear relationship of similarity of all pairs of subjects between two observational domains. Motivated by applications to neuroimaging and genetics data, and following the succes of shrinkage and kernel methods for prediction with high-dimensional data, we here introduce the adaptive Mantel test as an extension of the MT. By utilizing kernels and penalized similarity measures, the adaptive Mantel test is able to achieve higher statistical power relative to the classical MT in many settings. Furthermore, the adaptive Mantel test is designed to simultaneously test over multiple similarity measures such that the correct type I error rate under the null hypothesis is maintained without the need to directly adjust the significance threshold for multiple testing. The performance of the adaptive Mantel test is evaluated on simulated data, and is used to investigate associations between genetics markers related to Alzheimer's Disease and heatlhy brain physiology with data from a working memory study of 350 college students from Beijing Normal University

    Distinguishability of generic quantum states

    Full text link
    Properties of random mixed states of order NN distributed uniformly with respect to the Hilbert-Schmidt measure are investigated. We show that for large NN, due to the concentration of measure, the trace distance between two random states tends to a fixed number D~=1/4+1/π{\tilde D}=1/4+1/\pi, which yields the Helstrom bound on their distinguishability. To arrive at this result we apply free random calculus and derive the symmetrized Marchenko--Pastur distribution, which is shown to describe numerical data for the model of two coupled quantum kicked tops. Asymptotic values for the fidelity, Bures and transmission distances between two random states are obtained. Analogous results for quantum relative entropy and Chernoff quantity provide other bounds on the distinguishablity of both states in a multiple measurement setup due to the quantum Sanov theorem.Comment: 13 pages including supplementary information, 6 figure

    Subnormalized states and trace-nonincreasing maps

    Get PDF
    We investigate the set of completely positive, trace-nonincreasing linear maps acting on the set M_N of mixed quantum states of size N. Extremal point of this set of maps are characterized and its volume with respect to the Hilbert-Schmidt (Euclidean) measure is computed explicitly for an arbitrary N. The spectra of partially reduced rescaled dynamical matrices associated with trace-nonincreasing completely positive maps belong to the N-cube inscribed in the set of subnormalized states of size N. As a by-product we derive the measure in M_N induced by partial trace of mixed quantum states distributed uniformly with respect to HS-measure in MN2M_{N^2}.Comment: LaTeX, 21 pages, 4 Encapsuled PostScript figures, 1 tabl
    corecore