4 research outputs found

    On the Separation of Topology-Free Rank Inequalities for the Max Stable Set Problem

    Get PDF
    In the context of finding the largest stable set of a graph, rank inequalities prescribe that a stable set can contain, from any induced subgraph of the original graph, at most as many vertices as the stability number of the former. Although these inequalities subsume many of the valid inequalities known for the problem, their exact separation has only been investigated in few special cases obtained by restricting the induced subgraph to a specific topology. In this work, we propose a different approach in which, rather than imposing topological restrictions on the induced subgraph, we assume the right-hand side of the inequality to be fixed to a given (but arbitrary) constant. We then study the arising separation problem, which corresponds to the problem of finding a maximum weight subgraph with a bounded stability number. After proving its hardness and giving some insights on its polyhedral structure, we propose an exact branch-and-cut method for its solution. Computational results show that the separation of topology-free rank inequalities with a fixed right-hand side yields a substantial improvement over the bound provided by the fractional clique polytope (which is obtained with rank inequalities where the induced subgraph is restricted to a clique), often better than that obtained with Lovasz's Theta function via semidefmite programming

    Propriétés géométriques du nombre chromatique : polyèdres, structures et algorithmes

    Get PDF
    Computing the chromatic number and finding an optimal coloring of a perfect graph can be done efficiently, whereas it is an NP-hard problem in general. Furthermore, testing perfection can be carried- out in polynomial-time. Perfect graphs are characterized by a minimal structure of their sta- ble set polytope: the non-trivial facets are defined by clique-inequalities only. Conversely, does a similar facet-structure for the stable set polytope imply nice combinatorial and algorithmic properties of the graph ? A graph is h-perfect if its stable set polytope is completely de- scribed by non-negativity, clique and odd-circuit inequalities. Statements analogous to the results on perfection are far from being understood for h-perfection, and negative results are missing. For ex- ample, testing h-perfection and determining the chromatic number of an h-perfect graph are unsolved. Besides, no upper bound is known on the gap between the chromatic and clique numbers of an h-perfect graph. Our first main result states that the operations of t-minors keep h- perfection (this is a non-trivial extension of a result of Gerards and Shepherd on t-perfect graphs). We show that it also keeps the Integer Decomposition Property of the stable set polytope, and use this to answer a question of Shepherd on 3-colorable h-perfect graphs in the negative. The study of minimally h-imperfect graphs with respect to t-minors may yield a combinatorial co-NP characterization of h-perfection. We review the currently known examples of such graphs, study their stable set polytope and state several conjectures on their structure. On the other hand, we show that the (weighted) chromatic number of certain h-perfect graphs can be obtained efficiently by rounding-up its fractional relaxation. This is related to conjectures of Goldberg and Seymour on edge-colorings. Finally, we introduce a new parameter on the complexity of the matching polytope and use it to give an efficient and elementary al- gorithm for testing h-perfection in line-graphs.Le calcul du nombre chromatique et la détermination d'une colo- ration optimale des sommets d'un graphe sont des problèmes NP- difficiles en général. Ils peuvent cependant être résolus en temps po- lynomial dans les graphes parfaits. Par ailleurs, la perfection d'un graphe peut être décidée efficacement. Les graphes parfaits sont caractérisés par la structure de leur poly- tope des stables : les facettes non-triviales sont définies exclusivement par des inégalités de cliques. Réciproquement, une structure similaire des facettes du polytope des stables détermine-t-elle des propriétés combinatoires et algorithmiques intéressantes? Un graphe est h-parfait si les facettes non-triviales de son polytope des stables sont définies par des inégalités de cliques et de circuits impairs. On ne connaît que peu de résultats analogues au cas des graphes parfaits pour la h-perfection, et on ne sait pas si les problèmes sont NP-difficiles. Par exemple, les complexités algorithmiques de la re- connaissance des graphes h-parfaits et du calcul de leur nombre chro- matique sont toujours ouvertes. Par ailleurs, on ne dispose pas de borne sur la différence entre le nombre chromatique et la taille maxi- mum d'une clique d'un graphe h-parfait. Dans cette thèse, nous montrons tout d'abord que les opérations de t-mineurs conservent la h-perfection (ce qui fournit une extension non triviale d'un résultat de Gerards et Shepherd pour la t-perfection). De plus, nous prouvons qu'elles préservent la propriété de décompo- sition entière du polytope des stables. Nous utilisons ce résultat pour répondre négativement à une question de Shepherd sur les graphes h-parfaits 3-colorables. L'étude des graphes minimalement h-imparfaits (relativement aux t-mineurs) est liée à la recherche d'une caractérisation co-NP com- binatoire de la h-perfection. Nous faisons l'inventaire des exemples connus de tels graphes, donnons une description de leur polytope des stables et énonçons plusieurs conjectures à leur propos. D'autre part, nous montrons que le nombre chromatique (pondéré) de certains graphes h-parfaits peut être obtenu efficacement en ar- rondissant sa relaxation fractionnaire à l'entier supérieur. Ce résultat implique notamment un nouveau cas d'une conjecture de Goldberg et Seymour sur la coloration d'arêtes. Enfin, nous présentons un nouveau paramètre de graphe associé aux facettes du polytope des couplages et l'utilisons pour donner un algorithme simple et efficace de reconnaissance des graphes h- parfaits dans la classe des graphes adjoints

    Clique-circulants and the stable set polytope of fuzzy circular interval graphs

    Get PDF
    In this paper, we give a complete and explicit description of the rank facets of the stable set polytope for a class of claw-free graphs, recently introduced by Chudnovsky and Seymour (Proceedings of the Bristish Combinatorial Conference, 2005), called fuzzy circular interval graphs. The result builds upon the characterization of minimal rank facets for claw-free graphs by Galluccio and Sassano (J. Combinatorial Theory 69:1-38, 2005) and upon the introduction of a superclass of circulant graphs that are called clique-circulants. The new class of graphs is invetigated in depth. We characterize which clique-circulants C are facet producing, i.e. are such that Sigma upsilon epsilon V(C) chi(upsilon) <= alpha(C) is a facet of STAB(C), thus extending a result of Trotter (Discrete Math. 12:373-388, 1975) for circulants. We show that a simple clique family inequality (Oriolo, Discrete Appl. Math. 132(2):185-201, 2004) may be associated with each clique-circulant C subset of G, when G is fuzzy circular interval. We show that these inequalities provide all the rank facets of STAB(G), if G is a fuzzy circular interval graph. Moreover we conjecture that, in this case, they also provide all the non-rank facets of STAB(G) and offer evidences for this conjecture
    corecore