5 research outputs found

    An elementary algorithm for digital arc segmentation

    Get PDF
    International audienceThis paper concerns the digital circle recognition problem, especially in the form of the circular separation problem. General fundamentals, based on classical tools, as well as algorithmic details are given (the latter by providing pseudo-code for major steps of the algorithm). After recalling the geometrical meaning of the separating circle problem, we present an incremental algorithm to segment a discrete curve into digital arcs

    Gauss Digitization of Simple Polygons

    Get PDF
    Digitization is a process of discretizing a continuous object X⊂R2X ⊂ R 2 to obtain a digital object X⊂Z2X ⊂ Z 2. This document addresses the Gauss digitization of continuous objects. In particular, we are interested in computing the digitized object of simple polygons. The Gauss digitization of X , denoted by X, is defined as the set of integer points being inside X. More specifically, X=X∩Z2X = X ∩ Z 2. This problem of digitization is related to the point-in-polygon (PIP) problem in computational geometry. Indeed, computing the digitized object X of a given polygonal object X is equivalent to finding all integer points laying inside or on the boundary of X. In this document, we present an implementation of computing the Gauss digitization of polygons using a ray casting based approach

    Computing convexity properties of images on a pyramid computer

    Full text link
    We present efficient parallel algorithms for using a pyramid computer to determine convexity properties of digitized black/white pictures and labeled figures. Algorithms are presented for deciding convexity, identifying extreme points of convex hulls, and using extreme points in a variety of fashions. For a pyramid computer with a base of n simple processing elements arranged in an n 1/2 × n 1/2 square, the running times of the algorithms range from Θ(log n ) to find the extreme points of a convex figure in a digitized picture, to Θ( n 1/6 ) to find the diameter of a labeled figure, Θ( n 1/4 log n ) to find the extreme points of every figure in a digitized picture, to Θ( n 1/2 ) to find the extreme points of every labeled set of processing elements. Our results show that the pyramid computer can be used to obtain efficient solutions to nontrivial problems in image analysis. We also show the sensitivity of efficient pyramid-computer algorithms to the rate at which essential data can be compressed. Finally, we show that a wide variety of techniques are needed to make full and efficient use of the pyramid architecture.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41351/1/453_2005_Article_BF01759066.pd

    Combinatoire des mots, géométrie discrète et pavages

    Get PDF
    L'objet de cette thèse est d'étudier les liens entre la géométrie discrète et la combinatoire des mots. Le fait que les figures discrètes soient codées par des mots sur l'alphabet à quatre lettres Σ = {0.1.0,1}, codage introduit par Freeman en 1961, justifie l'utilisation de la combinatoire des mots dans leur étude. Les droites discrètes sont des objets bien connus des combinatoriciens, car étant identifiés par les mots Sturmiens. dont on trouve déjà une description assez complète dans les travaux de Christoffel à la fin du XIXe siècle à la suite de travaux précurseurs de Bernouilli et Markov. Alors que l'on comprend bien la structure des droites discrètes, on connait beaucoup moins bien les courbes en général. Cet ouvrage porte sur l'étude de propriétés géométriques de courbes fermées, codées sur l'alphabet Σ . On s'intéresse tout d'abord à la représentation des chemins dans le plan discret Z² et de ceux qui codent les polyominos. Dans un premier temps, l'emploi d'une structure arborescente quaternaire permet d'élaborer un algorithme optimal afin de tester si un mot quelconque sur Σ code un polyomino ou non. Ce résultat est fondamental d'abord parce qu'il est nouveau, élégant et qu'il se généralise en dimension supérieure. En outre, la linéarité de ce test rend les algorithmes subséquents vraiment\ud efficaces. À la suite de résultats précurseurs de Lyndon. Spitzer et Viennot sur la factorisation des mots, il existe une interprétation combinatoire de la convexité discrète. En géométrie algorithmique,\ud des algorithmes linéaires furent établis par McCallum et Avis en 1979, puis par Melkman\ud en 1987, pour calculer l'enveloppe convexe d'un polygone. Debled-Rennesson et al. ont obtenu en 2003, un algorithme linéaire pour décider de la convexité discrète d'un polyomino par des méthodes arithmétiques. Nous avons obtenu grâce aux propriétés spécifiques des mots de Lyndon et de Christoffel un algorithme linéaire pour tester si un polyomino est digitalement convexe. L'algorithme obtenu est extrêmement simple et s'avère dix fois plus rapide que celui de Debled-Rennesson et al. Finalement, le calcul de la plus longue extension commune à deux mots en temps constant -obtenu par Gusfield à l'aide des arbres suffixes -et le théorème de Fine et Wilf permettent d'élaborer de nouveaux algorithmes qui, grâce à la caractérisation de Beauquier-Nivat, testent si un polyomino pave le plan par translation. En particulier, on obtient un algorithme optimal en O(n) pour détecter les pseudo-carrés. Dans le cas des pseudo-hexagones ayant des facteurs carrés pas trop longs on obtient également un algorithme linéaire optimal, tandis que pour les pseudo-hexagones quelconques nous avons obtenu un algorithme en O(n(log n)³) que nous croyons ne pas être optimal. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Combinatoire des mots, Géométrie discrète, Droites digitales, Pavages du plan, Algorithmique

    Contributions à l'analyse de figures discrètes en dimension quelconque

    Get PDF
    Les polyominos sont souvent représentés par des mots de quatre lettres ou des mots de changements de direction décrivant leur contour. La combinatoire des mots classique y joue donc un rôle descriptif important, particulièrement dans le choix d'un représentant canonique. Les mots de Lyndon fournissent, de façon naturelle, un tel représentant. Une approche systématique pour le calcul de propriétés des polyominos, basée sur une version originale d'une discrétisation du théorème de Green classique en calcul bivarié, est élaborée. Ceci nous a naturellement amené à analyser les propriétés géométriques d'ensembles du réseau discret de rondeur maximale. Pour une taille donnée, ces ensembles minimisent le moment d'inertie par rapport à un axe passant par leur centre de gravité. Nous introduisons la notion de quasi-disque et montrons entre autres que ces ensembles minimaux sont des poIyominos\ud fortement-convexes. Nous développons également un algorithme permettant de les engendrer systématiquement. Un autre aspect concerne des propriétés sur les contours d'ensembles discrets donnant lieu à une nouvelle démonstration d'un résultat de Daurat et Nivat sur les points dits saillants et rentrants d'un polyomino. Nous présentons également une généralisation de ce résultat aux réseaux hexagonaux et montrons que le résultat est faux pour les autres réseaux semi-réguliers. Nous poursuivons par l'introduction d'opérations de mélange spéciaux sur des mots décrivant des chemins discrets selon la suite de leurs changements de direction. Ces opérations de mélange permettent d'engendrer des courbes fractales du type courbe de dragon et d'analyser\ud certains de leurs invariants. Finalement, une généralisation aux dimensions supérieures des algorithmes précédents basés sur le théorème de Green discret, est présentée. Plus particulièrement, nous développons une version discrète du théorème de Stokes basée sur des familles de poids sur les hypercubes de dimension k dans l'espace discret Zn, k ≤ n. Quelques applications sont également décrites. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Géométrie discrète, Combinatoire des mots, Ensembles discrets, Polyominos, Quasi-disques, Chemins polygonaux, Courbes de dragon, Théorème de Green discret, Théorème de Stokes discret, Algorithmes
    corecore