35,052 research outputs found

    Metric structures in L_1: Dimension, snowflakes, and average distortion

    Get PDF
    We study the metric properties of finite subsets of L_1. The analysis of such metrics is central to a number of important algorithmic problems involving the cut structure of weighted graphs, including the Sparsest Cut Problem, one of the most compelling open problems in the field of approximation algorithms. Additionally, many open questions in geometric non-linear functional analysis involve the properties of finite subsets of L_1.Comment: 9 pages, 1 figure. To appear in European Journal of Combinatorics. Preliminary version appeared in LATIN '0

    Metric-measure boundary and geodesic flow on Alexandrov spaces

    Full text link
    We relate the existence of many infinite geodesics on Alexandrov spaces to a statement about the average growth of volumes of balls. We deduce that the geodesic flow exists and preserves the Liouville measure in several important cases. The developed analytic tool has close ties to integral geometry

    Periodicity and Circle Packing in the Hyperbolic Plane

    Full text link
    We prove that given a fixed radius rr, the set of isometry-invariant probability measures supported on ``periodic'' radius rr-circle packings of the hyperbolic plane is dense in the space of all isometry-invariant probability measures on the space of radius rr-circle packings. By a periodic packing, we mean one with cofinite symmetry group. As a corollary, we prove the maximum density achieved by isometry-invariant probability measures on a space of radius rr-packings of the hyperbolic plane is the supremum of densities of periodic packings. We also show that the maximum density function varies continuously with radius.Comment: 25 page

    Euclidean versus hyperbolic congestion in idealized versus experimental networks

    Full text link
    This paper proposes a mathematical justification of the phenomenon of extreme congestion at a very limited number of nodes in very large networks. It is argued that this phenomenon occurs as a combination of the negative curvature property of the network together with minimum length routing. More specifically, it is shown that, in a large n-dimensional hyperbolic ball B of radius R viewed as a roughly similar model of a Gromov hyperbolic network, the proportion of traffic paths transiting through a small ball near the center is independent of the radius R whereas, in a Euclidean ball, the same proportion scales as 1/R^{n-1}. This discrepancy persists for the traffic load, which at the center of the hyperbolic ball scales as the square of the volume, whereas the same traffic load scales as the volume to the power (n+1)/n in the Euclidean ball. This provides a theoretical justification of the experimental exponent discrepancy observed by Narayan and Saniee between traffic loads in Gromov-hyperbolic networks from the Rocketfuel data base and synthetic Euclidean lattice networks. It is further conjectured that for networks that do not enjoy the obvious symmetry of hyperbolic and Euclidean balls, the point of maximum traffic is near the center of mass of the network.Comment: 23 pages, 4 figure
    corecore