113 research outputs found

    Revenue Loss in Shrinking Markets

    Full text link
    We analyze the revenue loss due to market shrinkage. Specifically, consider a simple market with one item for sale and nn bidders whose values are drawn from some joint distribution. Suppose that the market shrinks as a single bidder retires from the market. Suppose furthermore that the value of this retiring bidder is fixed and always strictly smaller than the values of the other players. We show that even this slight decrease in competition might cause a significant fall of a multiplicative factor of 1e+1≈0.268\frac{1}{e+1}\approx0.268 in the revenue that can be obtained by a dominant strategy ex-post individually rational mechanism. In particular, our results imply a solution to an open question that was posed by Dobzinski, Fu, and Kleinberg [STOC'11]

    Optimal Auctions for Correlated Buyers with Sampling

    Full text link
    Cr\'emer and McLean [1985] showed that, when buyers' valuations are drawn from a correlated distribution, an auction with full knowledge on the distribution can extract the full social surplus. We study whether this phenomenon persists when the auctioneer has only incomplete knowledge of the distribution, represented by a finite family of candidate distributions, and has sample access to the real distribution. We show that the naive approach which uses samples to distinguish candidate distributions may fail, whereas an extended version of the Cr\'emer-McLean auction simultaneously extracts full social surplus under each candidate distribution. With an algebraic argument, we give a tight bound on the number of samples needed by this auction, which is the difference between the number of candidate distributions and the dimension of the linear space they span

    Near-Optimal and Robust Mechanism Design for Covering Problems with Correlated Players

    Full text link
    We consider the problem of designing incentive-compatible, ex-post individually rational (IR) mechanisms for covering problems in the Bayesian setting, where players' types are drawn from an underlying distribution and may be correlated, and the goal is to minimize the expected total payment made by the mechanism. We formulate a notion of incentive compatibility (IC) that we call {\em support-based IC} that is substantially more robust than Bayesian IC, and develop black-box reductions from support-based-IC mechanism design to algorithm design. For single-dimensional settings, this black-box reduction applies even when we only have an LP-relative {\em approximation algorithm} for the algorithmic problem. Thus, we obtain near-optimal mechanisms for various covering settings including single-dimensional covering problems, multi-item procurement auctions, and multidimensional facility location.Comment: Major changes compared to the previous version. Please consult this versio

    Rigidity in Mechanism Design and Its Applications

    Get PDF

    Sequential Posted Price Mechanisms with Correlated Valuations

    Full text link
    We study the revenue performance of sequential posted price mechanisms and some natural extensions, for a general setting where the valuations of the buyers are drawn from a correlated distribution. Sequential posted price mechanisms are conceptually simple mechanisms that work by proposing a take-it-or-leave-it offer to each buyer. We apply sequential posted price mechanisms to single-parameter multi-unit settings in which each buyer demands only one item and the mechanism can assign the service to at most k of the buyers. For standard sequential posted price mechanisms, we prove that with the valuation distribution having finite support, no sequential posted price mechanism can extract a constant fraction of the optimal expected revenue, even with unlimited supply. We extend this result to the the case of a continuous valuation distribution when various standard assumptions hold simultaneously. In fact, it turns out that the best fraction of the optimal revenue that is extractable by a sequential posted price mechanism is proportional to ratio of the highest and lowest possible valuation. We prove that for two simple generalizations of these mechanisms, a better revenue performance can be achieved: if the sequential posted price mechanism has for each buyer the option of either proposing an offer or asking the buyer for its valuation, then a Omega(1/max{1,d}) fraction of the optimal revenue can be extracted, where d denotes the degree of dependence of the valuations, ranging from complete independence (d=0) to arbitrary dependence (d=n-1). Moreover, when we generalize the sequential posted price mechanisms further, such that the mechanism has the ability to make a take-it-or-leave-it offer to the i-th buyer that depends on the valuations of all buyers except i's, we prove that a constant fraction (2-sqrt{e})/4~0.088 of the optimal revenue can be always be extracted.Comment: 29 pages, To appear in WINE 201

    A Theoretical Examination of Practical Game Playing: Lookahead Search

    Full text link
    Abstract. Lookahead search is perhaps the most natural and widely used game playing strategy. Given the practical importance of the method, the aim of this paper is to provide a theoretical performance examination of lookahead search in a wide variety of applications. To determine a strategy play using lookahead search, each agent predicts multiple levels of possible re-actions to her move (via the use of a search tree), and then chooses the play that optimizes her future payoff accounting for these re-actions. There are several choices of optimization function the agents can choose, where the most appropriate choice of function will depend on the specifics of the actual game- we illustrate this in our examples. Furthermore, the type of search tree chosen by computationally-constrained agent can vary. We focus on the case where agents can evaluate only a bounded number, k, of moves into the future. That is, we use depth k search trees and call this approach k-lookahead search. We apply our method in five well-known settings: industrial organization (Cournot’s model); AdWord auctions; congestion games; valid-utility games and basic-utility games; cost-sharing network design games. We consider two questions. First, what i
    • …
    corecore