43,615 research outputs found

    Toric algebra of hypergraphs

    Full text link
    The edges of any hypergraph parametrize a monomial algebra called the edge subring of the hypergraph. We study presentation ideals of these edge subrings, and describe their generators in terms of balanced walks on hypergraphs. Our results generalize those for the defining ideals of edge subrings of graphs, which are well-known in the commutative algebra community, and popular in the algebraic statistics community. One of the motivations for studying toric ideals of hypergraphs comes from algebraic statistics, where generators of the toric ideal give a basis for random walks on fibers of the statistical model specified by the hypergraph. Further, understanding the structure of the generators gives insight into the model geometry.Comment: Section 3 is new: it explains connections to log-linear models in algebraic statistics and to combinatorial discrepancy. Section 6 (open problems) has been moderately revise

    Using membrane computing for effective homology

    Get PDF
    Effective Homology is an algebraic-topological method based on the computational concept of chain homotopy equivalence on a cell complex. Using this algebraic data structure, Effective Homology gives answers to some important computability problems in Algebraic Topology. In a discrete context, Effective Homology can be seen as a combinatorial layer given by a forest graph structure spanning every cell of the complex. In this paper, by taking as input a pixel-based 2D binary object, we present a logarithmic-time uniform solution for describing a chain homotopy operator ϕ for its adjacency graph. This solution is based on Membrane Computing techniques applied to the spanning forest problem and it can be easily extended to higher dimensions

    Shadows and intersections: stability and new proofs

    Get PDF
    We give a short new proof of a version of the Kruskal-Katona theorem due to Lov\'asz. Our method can be extended to a stability result, describing the approximate structure of configurations that are close to being extremal, which answers a question of Mubayi. This in turn leads to another combinatorial proof of a stability theorem for intersecting families, which was originally obtained by Friedgut using spectral techniques and then sharpened by Keevash and Mubayi by means of a purely combinatorial result of Frankl. We also give an algebraic perspective on these problems, giving yet another proof of intersection stability that relies on expansion of a certain Cayley graph of the symmetric group, and an algebraic generalisation of Lov\'asz's theorem that answers a question of Frankl and Tokushige.Comment: 18 page

    Equivalence among optimization problems on matrix sets

    Get PDF
    AbstractTreatment of optimization problems on matrix sets is a general framework for the study of some large classes of discrete programming problems, for the investigation of connections between different classes of such problems. An appropriate formalism is introduced. It gives a possibility to include in this study bottle-neck problems and other combinatorial optimization problems over totally ordered commutative semigroups. Concepts of equivalency and of weak equivalency are defined and some general equivalency theorems are proved. The main problem under discussion is for which problems an equivalent problem over a finite ordered algebraic structure can be constructed

    Identifiability of Points and Rigidity of Hypergraphs under Algebraic Constraints

    Full text link
    Identifiability of data is one of the fundamental problems in data science. Mathematically it is often formulated as the identifiability of points satisfying a given set of algebraic relations. A key question then is to identify sufficient conditions for observations to guarantee the identifiability of the points. This paper proposes a new general framework for capturing the identifiability problem when a set of algebraic relations has a combinatorial structure and develops tools to analyze the impact of the underlying combinatorics on the local or global identifiability of points. Our framework is built on the language of graph rigidity, where the measurements are Euclidean distances between two points, but applicable in the generality of hypergraphs with arbitrary algebraic measurements. We establish necessary and sufficient (hyper)graph theoretical conditions for identifiability by exploiting techniques from graph rigidity theory and algebraic geometry of secant varieties

    Random Sampling in Computational Algebra: Helly Numbers and Violator Spaces

    Get PDF
    This paper transfers a randomized algorithm, originally used in geometric optimization, to computational problems in commutative algebra. We show that Clarkson's sampling algorithm can be applied to two problems in computational algebra: solving large-scale polynomial systems and finding small generating sets of graded ideals. The cornerstone of our work is showing that the theory of violator spaces of G\"artner et al.\ applies to polynomial ideal problems. To show this, one utilizes a Helly-type result for algebraic varieties. The resulting algorithms have expected runtime linear in the number of input polynomials, making the ideas interesting for handling systems with very large numbers of polynomials, but whose rank in the vector space of polynomials is small (e.g., when the number of variables and degree is constant).Comment: Minor edits, added two references; results unchange

    Computation with Polynomial Equations and Inequalities arising in Combinatorial Optimization

    Full text link
    The purpose of this note is to survey a methodology to solve systems of polynomial equations and inequalities. The techniques we discuss use the algebra of multivariate polynomials with coefficients over a field to create large-scale linear algebra or semidefinite programming relaxations of many kinds of feasibility or optimization questions. We are particularly interested in problems arising in combinatorial optimization.Comment: 28 pages, survey pape

    Combinatorial complexity in o-minimal geometry

    Full text link
    In this paper we prove tight bounds on the combinatorial and topological complexity of sets defined in terms of nn definable sets belonging to some fixed definable family of sets in an o-minimal structure. This generalizes the combinatorial parts of similar bounds known in the case of semi-algebraic and semi-Pfaffian sets, and as a result vastly increases the applicability of results on combinatorial and topological complexity of arrangements studied in discrete and computational geometry. As a sample application, we extend a Ramsey-type theorem due to Alon et al., originally proved for semi-algebraic sets of fixed description complexity to this more general setting.Comment: 25 pages. Revised version. To appear in the Proc. London Math. So
    corecore