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Abstract Effective Homology is an algebraic-topological method based on the com-
putational concept of chain homotopy equivalence on a cell complex. Using this
algebraic data structure, Effective Homology gives answers to some important com-
putability problems in Algebraic Topology. In a discrete context, Effective Homology
can be seen as a combinatorial layer given by a forest graph structure spanning every
cell of the complex. In this paper, by taking as input a pixel-based 2D binary object, we
present a logarithmic-time uniform solution for describing a chain homotopy operator
¢ for its adjacency graph. This solution is based on Membrane Computing tech-
niques applied to the spanning forest problem and it can be easily extended to higher
dimensions.
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1 Introduction

Homology theory is a branch of Algebraic Topology that attempts to distinguish
between spaces by constructing algebraic invariants that reflect the connectivity prop-
erties of the space. The field has its origins in the work of the French mathematician
Henri Poincaré. Homology groups (related to the different n-dimensional holes, con-
nected components, tunnels, cavities, etc.) are invariants from Algebraic Topology
which are frequently used in Digital Image Analysis and Structural Pattern Recogni-
tion. In some sense, they reflect the topological nature of the object in terms of the
number and features of their holes.

Effective Homology [23,26], is a algebraic-topological theory mainly based on the
computational notion of chain homotopy equivalence, a concept which algebraically
connects a cell complex or subdivided object with its homology groups. Roughly
speaking, a chain homotopy equivalence can be specified by an operator, called chain
homotopy operator, working at level of linear combinations of cells which represents
an efficient and non-redundant way of connecting cells. For instance, a chain homo-
topy operator at level of cells of dimension 0 of a cell complex K can be completely
described by a directed spanning forest (as many trees as connected components the
object has) of the graph subcomplex formed by all the cells of K of dimension 0 and 1.
Effective Homology uses chain homotopy operators for capturing homology informa-
tion and for representing the object in an algebraic-topological way. In fact, this idea is
underlying the Eilenberg-MacLane work [9, 10] for computing the homology of prime
spaces in homotopy theory, and it has been recently used in discrete image context. In
[13], a method for computing homology aspects (with coefficients in the finite field
7./27 = {0, 1}) of a three dimensional digital binary-valued volume V' considered
over a body-centered-cubic grid is described. The representation used in that paper for
a digital image is an algebraic-topological model (AT-model) consisting in two parts:
(a) (geometric modeling level) A cell complex K (V) topologically equivalent to the
original volume is constructed. A 3D-cell complex consists of vertices (0-cells), edges
(1-cells), faces (2-cells) and polyhedra (3-cells). In particular, each edge connects two
vertices, each face is enclosed by a loop of edges, and each 3-cell is enclosed by an
envelope of faces; (b) (homology analysis level) Homology information about K (V)
is exclusively codified in terms of a chain homotopy operator [11,12].

This method has recently evolved to a technique for generating a Z/27Z-coefficients.
It takes an AT-model for a 26-adjacency voxel-based digital binary volume V using
a polyhedral cell complex at geometric modeling level [14,15,17] and a chain homo-
topy operator described by a combinatorial vector field (a set of semidirected forests
or a discrete differential form) at homology analysis level [24,25]. For instance, a
chain homotopy operator at level of cells of dimension O (vertices) of a cell complex
K (V) can be completely described by a semidirected spanning forest of the graph
subcomplex formed by all the cells of K (V') of dimension 0 and 1.

In Fig. 1, a pixel-based digital object O (first picture from the left) is analyzed
as a cell complex in which the square pixels are the O-cells. The 1-cells are edges
joining 8-neighbor pixels and these 2-cells are triangles or squares formed by three or
four mutually (and in a maximal way) 8-adjacent pixels. Figure 1b describes this cell
complex (in dark grey) in which the barycenters of the different cells are drawn (solid
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a b

Fig. 1 Example. a Left up, b right up, ¢ left down and d right down

circles for the O-cells, crosses for the 1-cells and solid squares for the 2-cells). The
subcomplex formed by the 0 and 1-cells can be seen as a subgraph of the 8-adjacency
graph of O. In Fig. 1c, a spanning tree covering all the vertices of the cell complex is
specified (in blue). In fact, we consider a subdivision of this tree, having as 0-cells the
vertices of the cell complex and the barycenters of the 1-cells belonging to the tree.
An arrow in the tree determines the pairing of the source (0-cell) and sink (1-cell)
cells and, consequently, indicating in this way that both are killed in homology group
computation. Let us emphasize that only the top left O-cell of the complex is not paired.
It is a representative cycle (critical O-cell of the homological process determined by
the tree) of the unique connected component that the object has. Finally, in Fig. 1d we
also draw the trees (in yellow) covering the rest of cells. They are semidirected, with
arrows from the barycenters of 1-cells to the barycenter of the 2-cells. In terms of a
process for computing homology groups, an arrow also means here that its source and
sink cells are both killed. There is a edge marked in yellow which is not paired with
an arrow. This 1-cell is a representative critical cell of the one-dimensional homology
generator that the object has.
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236 D. Diaz-Pernil et al.

In this paper, the well-known spanning tree problem is studied here in the frame-
work of Membrane Computing. This computational paradigm was introduced by Paun
in [19,20] and it is based on the assumption that the processes taking place within the
compartmental structure of a living cell can be interpreted as computations. The com-
putational devices in Membrane Computing are called P systems. Roughly speaking,
a P system consists of a membrane structure, in whose compartments one places mul-
tisets of objects which evolve according to given rules. These multisets encode the
information and the rules deal with them performing the computation. Following a
biological inspiration, the multisets of objects represent the chemicals placed in a vesi-
cle of a living cell. Such chemicals are sent to other vesicles or transformed according
to biochemical reactions, represented here by computational rules. These rules are
usually applied in a synchronous non-deterministic maximally parallel manner, but
some other semantics are being explored. !

In this paper, we use one of the tools defined in Membrane Computing for the flow
of information: the antiport transport of chemicals across biological membranes. In
biology, some molecules use the energy stored in the electrochemical gradient of Na™
or H* ions to power the movement of another substance through a membrane in a
process called cotransport. When the protein and the ion move in the same direction,
the process is called symport; when they move in opposite directions, the process
is called antiport. Symport/antiport rules were introduced in Membrane Computing
in [18] and nowadays are widely used in the flow of information in the tissue-like
paradigm. In this paper, we encode the information stored in an image as a set of
chemicals placed in a virtual compartment (in a cell) and we use symport/antiport
rules to deal with this information. We use Membrane Computing data structures for
representing partial chain homotopy equivalences under a combinatorial graph layer
and also Membrane Computing techniqgues to calculate them. In the setting of pixel-
based digital 2D binary images, the black connected components can be codified by
a spanning forest (one for each component) of the (four or eight) adjacency graph of
the set of black pixels.

This is not the first time where life-based methods are applied to Algebraic Topol-
ogy. In 1996, Chao and Nakayama [2] connected Natural Computing and Algebraic
Topology using Neural Networks (extended Kohonen mapping). Some years after,
Subramanian et al. presented in [1] two works where Digital Image and Membrane
Computing were linked. In 2009, Christinal et al. started a new way where algebraic-
topologic process have been parallelized (see [3-5,8]).

The approach presented in this paper can be seen as a new step towards the solution
of the problem of obtaining representatives of the 3D homology groups.

The paper is organized as follows: Firstly, we recall the formal framework used
in the paper. Next section shows the P systems family that solves the problem of the
spanning trees. The paper ends with some conclusions showed in the fourth section.

1 We refer to [21] for basic information in this area, to [22] for a comprehensive presentation and the web
site http://ppage.psystems.eu for the up-to-date information.
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2 Formal framework

In the basic definition of cell-like P systems [20], membranes are hierarchically
arranged in a tree-like structure. The biological inspiration comes from the morphol-
ogy of cells, where small vesicles are surrounded by larger ones. In tissue-like P
systems, the tree-like membrane structure is replaced by a general graph. This model
has two biological inspirations (see [ 16]): intercellular communication and cooperation
between neurons. The common mathematical model of these two mechanisms is a net
of processors dealing with symbols and communicating these symbols along channels
specified in advance. The communication among cells is based on symport/antiport
rules. Tissue-like P systems have been used to solve computational problems in other
areas (see e.g. [6,7]). In this paper we use tissue-like P systems (cells are nodes in
a general graph) and the application of the rules are regulated by promoters. These
promoters have a clear biological inspiration. The rule is applied if the reactants are
present, but it is also necessary the presence of the promoter in the corresponding cell.
The promoter is not consumed nor produced by the application of the rule, but if it is
not in the cell, the rule cannot be applied. In one step, each object in a membrane can
only be used for one rule. In the general case, if there are several possibilities, the rule
is non-deterministically chosen, but sometimes we will consider a priority relation
between rules, so we need the concept of priority in our systems. Next, we recall the
formal definition of these P systems.

Definition 1 A tissue-like P system with promoters and priorities of degree ¢ > 1 is
a tuple of the form

H=(Fa2757w17-"7wq7R7Pri’iin?i0uf)

where

1. I is a finite alphabet, whose symbols will be called objects;

2. X C T is the input alphabet;

3. £ C I' is a finite alphabet representing the set of the objects in the environment
available in an arbitrary large amount of copies;

4. wy, ..., wy are strings over I representing the multisets of objects associated
with the cells in the initial configuration.

5. R is a finite set of rules of the following form (where O is the label for the envi-
ronment):

(proli,u/v,j), for 0<i#j<gq, proju,vel™

The length of arule (pro|i, u/v, j) is given by the sum of the number of objects
in pro, u and v.

6. Pri is a partial order relation over R. If R; > R; and R; and R; can be applied,
then the application of R; has priority on R;.

7. iin € {1,2,..., q} denotes the input region;

8. iour €{0,1,2,...,q} denotes the output region.

The rule (pro|i,u/v, j) can be applied over two cells (or a cell and the environ-
ment) i and j such that u (contained in cell i) is traded against v (contained in cell j).
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238 D. Diaz-Pernil et al.

The rule is applied if in i the objects of the promoter pro are present. The promoter
is not modified by the application of the rule. If the promoter is empty, we will write
(i,u/v, j) instead of (B |i, u/v, j).

Rules are used as usual in the framework of Membrane Computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object in
a membrane can only be used for one rule (non-deterministically chosen when there
are several possibilities), but any object which can participate in a rule of any form
must do it, i.e. in each step we apply a maximal multiset of rules. A configuration is
an instantaneous description of the contents of the cells and it is represented as a tuple
(wi, ..., wy). Givena configuration,? we can perform a computation step and obtain
a new configuration by applying the rules in a parallel manner as it is shown above.
A sequence of computation steps is called a computation. A configuration is halting
when no rules can be applied to it.

3 Obtaining a forest of spanning trees

In this section, we present a family of tissue-like P systems with promoters which
solves the Spanning Tree problem. It can be stated as follows.

Spanning Tree (STree) Problem: Given a binary 2D digital image I, generate a
spanning tree of each black connected component of 1.

Given a binary image /, firstly, we must identify the number of black connected
components of it. One pixel of each component will be root of the future spanning
tree of the component.

In order to provide a logarithmic-time uniform solution to the STree problem, we
design a family of tissue-like P systems with promoters, {I1(n)},cN. Given a binary
image I of size n> we codify each pixel by an object a; j»wherea = b Awandi, jare
odd numbers. As usual, b and w stands for black and white. Images of size n? will be
dealt with the P system /7 (n) from the family. Next, we construct, in a parallel way,
one spanning tree by considering each connected component as a connected graph.

If a = b, we say there is a vertex of a black connected component. If two pixels
aij, a,/d are adjacent, then there is an edge (b,) connecting them, where one of r or s
is an odd number and the other is an even one. Moreover, (r =i + 1, k =i + 2, and
j=Dor(s=j+1,1=j+2andi = k). If the considered two neighbor vertices
are not adjacent, then we write w,;. The input data (image I) is codified by a set of
objects A;; with A = BV W, 1 <i,j <2n—1andi, j are odd. We can see an
example in Fig. 2.

The family of P systems is defined as follows:

nn)=UT, 2, & 01,w, w3, R1U---URay, Pri, i, iou)

where:
L. I'={z:1<i<2n+5}U
{Bij. bij. bj;, bij, Wij, wij, wi;, (bij, (k. 1), (wij, (k, 1) :

2 The objects from I — £ placed in the environment along the computation are not explicitely showed in
the configuration since they are not relevant in this approach.
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Fig. 2 Example: input graph (image) and codified input for membrane system

AN

1<i,jk1=<2n-1}U
{Aijr = (1, D) =G, j) < (k,[) = (2n—1,2n - D},

Y={Ajj:A=BAW, 1=<i,j<2n-1},

E=T-2X%,

wr =0, w) =71, w3 =09,

The sets of rules are R U - - - U Rp;. It will be described below.

The set Pri has the following relations:

— Rg > {Re¢, R7}, which denote that any rule from the set Rg has priority on any
rule from Rg U R7.

- Ri2, Ri3 > {Ry4, ..., Rig}

ijn = 11s the input cell.

iour = 3 is the output cell.

The rules are the following:

— Rules associated to the input:

o Ry =q(1, A,-j/a,-jalfj,O) forl <i,j<2n-—1.

Initially, the image is encoded as a set of pixels A;; placed on cell 1. The P system
uses this set of rules to generate two copies of our pixels in the cell 1.

oRy=(1,aij/r,2)for1 <i,j<2n-—1.
) R3s(l,alfj/)»,3)f0r1 <i,j<2n-—1.

The sets of rules 2 and 3 send one copy of the input image to the cell 2 and another
to the cell 3.

Rules associated to the process of computing homology groups (Hyp process):
oRys=(2,zi/2i+1,0) for 1 <i <n+ 1.

The set of objects z; can be considered as a counter. The object z; is placed in cell

2 in the initial configuration. This set of rules deals with this counter. The object z; is
traded against z;41 in each computation step.

o Rs = (2,b;;/(bij. (i j)),0) for 1 <i,j <2n—1.

The set of rules Rs deals with black pixels b;;. These objects are substituted by
more complex ones. These new objects have two parts: the first one keeps the
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information b;;. The second one can be considered as a label associated to the
object. This label has initially the value (i, j).

o Re = (2, (bij, (k,D))birjr, (K, 1))/ (bij, (k, D) by jr, (k, D) Agigerr, 0) for (1, 1)
<k,D<E,IN<@n—-1,2n—-1),1<4i,j,i',j <2n—1and (@, j), ({,Jj)
adjacent vertices.

o Ry = (2, (bij, (k, ) (birjr, (K', 1))/ (bij, (K, 1)) (birjr, (K, 1)) A, )

for (1, 1) < (kK',I") < (k,) < 2n—1,2n—1),1 <4i,j,i’,j <2n—1and
(i, j), (i, j') adjacent vertices.

The sets of rules Rg and R7 interchange two objects from cell 2 with 3 objects
from the environment. If the objects b;; and b;/j» represent adjacent pixels in the
image, then, the objects (b;;, (k, 1)) and (b; j, (k’, 1)) from the cell 2 are replaced
by (bij, (k, 1)) and (b, (k, 1)) together with Agrpr.

o Ry = (Aiju|2, (birjr, (k, D)/ (birj, (0, j)),0) for I < i, j.k,1,i', j" <2n—1.

This is the first set of rules where promoters are used. In a close analogy with
biological enzymes, promoters make the process faster. The promoter is created
when the pixel labeled by (k, [) changes its label for (7, j). So, (i, j) and (k, ) are
labels of adjacent pixels and other pixels with these labels can change their label.
Let us recall that Rg > {R¢, R7}, so the P system applies rules from Rg before
than from Re¢ U R7. So, the P system firstly uses the rules with promoter and after
the rules without them.

o Ry = (zn12[2, (bij, (i, j))/0ijznt3.0) for 1 < i, j < n.

The P system uses this rules to bring the objects 0;;, codifying the roots of the
spanning trees, and the objects z,,43 to the cell 2.
Notice that 7,47 is used as a promoter.

© RlO = (29 OijZI1+3/bl/'js 3) forl S l9.] S n.

One pixel from each connected component is sent to the cell 3. In this way one
pixel is marked as the root for each spanning tree which will be constructed in the
next steps.

— Rules associated to the construction stage:
o Ry =@3,zi/zi+1,0) forn+3 <i <2n+09.

The set of rules R;o sends the counter z; to cell 3. This new set of rules controls
the counter in this new cell.

Note I In the description of the next sets of rules we will consider a pictorial notation
(see [1]). These rules can be technically described by adjacency terms, but we adopt
this representation for a clearer exposition. We denote objects codifying black pixels
(blfj) as objects b, objects codifying white pixels (w; j) as objects w and objects k;;
(for example 011 or 357) as object k (0 or 3).

Note 2 We denote by b the objects codifying vertices, by b the objects codifying edges,
by k (k € N) the objects codifying edges of a spanning tree (i.e., the P system uses
natural numbers to mark edges belonging to a spanning tree), and by b the edges not
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belonging to spanning trees, i.e., edges eliminate as candidate to be part of a spanning
tree.

bbb bbb bbb bbb
NN v b /b b

° Rz = 3’bbb/b1§b’0 - K= 3’bbb/b1§b’0 :
b b b b b b b b

There are 4 rules of each one of the last two sets of rules, depending on where objects
b appear. Defining these rules, we eliminate the minimal rules and our algorithm is
more efficient. We will also consider the priorities Ri>, Ri3 > {Ry4, ..., Ri9}, i.e.,
the P system eliminates a lot of edges that cannot belong to the spanning tree, before it
begins to add edges to the spanning trees and mark edges like b. In fact, the P system
eliminates all the minimal cycles before the objects 0;; arrive to cell 3.

Obb Ob1 Obb Obl
0R14E(3, b / 1 ,0), R155(3, ; / ; ,0),

where 1 = w or b. There are two sets of rules depending on the position of 7. These two
types of rules identify the first edges of our spanning trees. The P system uses rules
of types from R to Rj9 to look for specific patterns in the image. So, it is possible
to add new edges to the spanning trees.

b k+1)
o Rig = 3,tkbb/bk b *k+1,0],
b k+1

where t = b or 0. There are 4 sets of rules of this type. These types of rules are used
to add new edges to our spanning trees. Given an edge codified by b;;, the P system
changes b by a natural number, k£ + 1, obtaining (k + 1);;.

t t
oRy7 = 3,bkbb/bk b (k+1),0],
b k+1)

where ¢ = w or b or empty. There are 12 sets of rules of this type. These types of rules
are used to add new edges to our spanning trees. Given an edge codified by b;;, the P
system changes b by a natural number, k + 1, obtaining (k + 1);;.

t t
o Rig= 3,bkbt/bk b 1,0},
b (k+1)
where # = w or b or empty. There are 14 sets of rules of this type. These types of rules

are also used to add new edges to our spanning trees. Given an edge codified by b;;,
system changes b by a natural number, k + 1, obtaining (k + 1);;.

k] k1
t bt t bt
oRw=|3 b / b ,0],
ky bt k) bt
t t
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where ¢ = b or b or w or a natural number or it does not exist. It is not important
distinguish one of these cases. We use b for edges than they cannot belong to any
spanning tree. There are 9 rules of this type, depending the position of the numbers
k1 and k>, and k; and k> cannot codify adjacent edges. These types of rules are used
to avoid cycles when we are finding spanning trees. Rj9 > {Rj¢, R17, R13}, i.e., the
P system firstly applies the rules to eliminate cycles and after apply the rules to add
new edges to the spanning trees.

— Rules associated to the output:

o Rao = (22041013, wij /2, 0), Ra1 = (22041013, bij /A, 0)

for 1 <i, j <2n — 1. The P system sends to the environment white pixels and edges
which have not been taken to construct the spanning forest.
The STree problem will be solved by I (n) according with the following stages:

1. Input Stage: When the objects A;; (with A = B v W) arrive to cell 1 the first
type of rules are applied. These objects are changed by objects a;; and a; j (with
a = b v w). In the next step, objects a;; are sent to cell 2 and objects a; o cell
3. The process occurs in cell 2, and it is dedicated to obtain the number of black
connected components (Hp).
2. Hy Process: It begins when objects g;; arrive to cell 2.
(a) Label Allocation Stage: Cell 2 trades objects b;; against others with the form
(bij, (i, j)) from the environment. White objects are not transformed.
(b) Label Conversion Stage: We can compare the black adjacent pixels by using
promoter, and we trade the label of the greatest pixel against the label of the
other pixel, as we can see in the following rules:

(i, Bij, G, j) b, K1) [ Bij, (@ J) Bras @ 7D A jrwers )

where (i, j) and (k, ]) are adjacent pixels. Moreover, we can see a new object
(A; jip in this case) arriving to cell i. It is a promoter and it is used to codify
two labels have been compared and, they are connected. So, one of them is
changed by the other one.

(c) Identifying Roots (of connected component) Stage: In the step n + 2, the object
Zn+2 arrives to the cell 1 due to the counter. It is used by the system as a pro-
moter, and the objects with the form (b;;, (i, j)) are marked as 0;; representing
the root of a black connected component. The P system has used n + 2 steps
to obtain the roots of black connected components of an n” image.

3. Construction (of Spanning tree) Stage: In this step, for each root (which the P
system identified in the previous stage), new edges are added to each spanning
tree. The cycles inside of the black connected components are eliminated and
order the nodes of the generated trees. To identify the edges b;; of our spanning
trees we change the object b by a natural number. So, we will obtain an order in
our trees.

4. Answer Stage: Using a counter, the P system can bring a promoter to the work
cell to send to the output cell the objects codifying the nodes of the spanning trees
generated.
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3.1 Example

In this section we illustrate with a simple example our technique to obtain homology
groups Hy, and a spanning tree from Hy of a2 D image by using Membrane Computing.
Let us consider the right image that appear in Fig. 2 which has 9 x 9 pixels.

Initially, we have three cells whose multisets are empty excepting wy = z; and,
we introduce the input of the system in the cell with label 2. So, two types of rules are
applied in the first step of computation. The rules R; generate two copies of the pixels
(aij, alf j) and the rules R4 activate a counter to generate the object zj¢ in the eleventh
step.

When the objects a;;, alf j arrive to cell 1 rules R, and Rz are applied, and the first
type of objects are sent to the cell 2 and the second type are sent to the cell 3 in the
second step of the computation.

In this point, the stage to calculate the homology groups of type Hy begins. We
need to know how many black connected components appear in our image and label
one representative object of each component.

In the third step, the P system permutes objects b;; by objects (b;;, (i, j)) using
rules of type Rs (see third configuration in Fig. 3). So, we associate to each object
a new label. Initially, this label is the pixel (i, j) associated to the element and
later, system will can change this label to each object. In fact, in the next step
rule of type Rg and R7 are applied. System change the labels associated to a lot
of objects as we can see in the Fig. 3. Moreover, we generate the following objects:
A1113, A1s17, A1939, A3133, A3537, As1s3, Assst, Asgr9, A7173, A7577, A9193, Ag799
that the P system can use as promoters in following steps of computation. For example,
we can see how the following rule works:

2, (b11, (1, 1))(b13, (1, 3))/(b11, (1, D) (b13, (1,1))A1113, 0)

the P system trades the object (b3, (1, 3)) against to the objects (b3, (1, 1))A1113, 0)
as we can see in Fig. 3.

From the moment when the promoters appear in the cell 2, the P system can use
three types of rules Rg, R7 and Rg. The last type of rules needs specific promoters
to become active. We must remember the last type has priority with respect to the
first two types. So, when the P system changes the label of an object, it must use a
promoter. But, if we examine to the Fig. 3, we can see that no rule of type Rg can be
applied in this step, because we have an only object associate to each label. We have
to wait to the following steps to see how the promoters are used. We can see how the
following rule of type Rjg is applied in the fifth step of computation:

(A151912, (bij, (1,9))/(bij, (1,5)),0), para 1 <i,j <9

In cell 2, we have objects (b37, (1,9)), (b3, (1,9)), (bs9, (1,9)) and others (as we
can see in first image of Fig. 4). Then, when system applies this rule, our objects are

changed by (b37, (1, 5)), (39, (1, 5)), (bso, (1, 5)).
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by (1,1)
by (3,1)
b5 (5,1)
by (7.,1)
bs:(9,1)
b.(1,1)
by (3,1)
bs(5,1)
bx(7,1)

b1 (9,1)

b13(113)

bx(3,3)

bs3(5,3)

b?!(7)3)

blS(lfS]
bs(3,5)
bss(5,5)

by<(7.,5)

b17(117)
b!)(317)

o)

bTI(7J7)

bs3(9,3)

by(9,7)

billlil)AHl!
bllt3:1)AH|l

bs3(S,1)Asss3

b7:(7,1)As:7

bs(1,5)
b“[3,5}
bSSlstsl

bys(7.5)

b17(1,5)Ass17
by:(3,5)Assyy
bs7(5,5)Asssy

b?'-'[ 775]A?S n

b‘?lfg:l)A'il.‘!

Fig. 3 Image in configurations 3 and 4

bu(1,1)
b3:(1,1)Ass
bs,(5,1)
b7:(5,1)Asyns
bs:(3,1)
bys(1,1)
Das(1,1)As03
bey(1,1)Ass
B71(5,1)Assns

bss (5,1)Asss:

bl]{lJllAlﬂ.!
b13(3,1)As1:
bea(S5,1)Asss

b73(5,1)Ass

b:stli’l]All 15
bys(3,1)As3¢
bSS[sralAf‘}SS

bys5(7,3)Az37s

byr(1,5)Ass1

b37(1,9)As3¢

bs3(5.3)Asass

b72(7.3)Azs

bs3(9,1)As1s3 PN

Lol bsr(9,7)

bl][]‘il]Alll]

b13(1,1)As13

bea(5,1)Ass53

by(5,1)Ass7

bys(1,1)Ay4ss
b3s(1,1)Ass3s
bes(5,1)Acsss

brs(5,1)As; 7

b:7(1,1)Asssr

br(1,5)A0as

ber(5,1)Asscs

b72(7.3)A72s

bss(9,1)Assss KIPH

bs7(5,9)

Fig. 4 Image in configurations 5 and 6
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b1s(1,9)
bas(3,9)
bss(S,9)
)
bss(9,9)
bas(1,9)
bas(1,9)Asss

bsa-[ 519]

Bys(5,9)Assrs

Ds(9,7)Asres

b1s(1,5)A 16
Bs(1,9)Ass3
Bes(1,9)A 059
bs(5,9)Assr
bes(S5,9)Asssy
Bis(1,1)As51s
b1s(1,5)Ass
bes(1,5)Ass6s
brs(1,9)Acsrs

bss(1,9)Asss
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Fig. 5 Worst case

bll(lill bi!{ltl)AUlS blsllfl)Allls b17[1,1]A1517 b‘.S{iri}AISXQ
b!lll:llAIUl bla{ltl}Allii bisu;l)Aaus bar[l;]-]Amas bn{ltl}Alsn
bSltlJllAl'lSl bs_\u,l]'Aslsz bsstl,l)Asass bsru:l]Asass bSS{ltl}Alﬂ?

b?l(lJllAS'l?l b’?!{ltl}A5l}'1 bntlil)ASl?l b?}'[ 1J1]A?!?5 b’?{ltl}ASSn

bo1(1,1)As101 bsa(1,1)Assea 5 bsr(1,1)Ar301 bos(1,1)Asssr

b1s(1,1)As115 bis(1,1)A115 byy(1,1)Asss, bis(1,1)Ass19
b11(1,1)A434 bs3(1,1)As133 bss(1,1)As135 b33(1,1)Ass3s bss(1,1)Ass29

bsi(1,1)As16s bsa(1,1)Assss bys(1,1)Aszss byr(1,1)Assss bss(1,1)As05

b1(1,1)As17 bra(1,1)Assy | bys(1,1)Ass7 by2(1,1)As37 brs(1,1)Assre

b‘)l(lJllASlSl bﬂl{ltl}A'Sl‘il 5 b‘)?llJl]AHSl bﬁ{ltl}AE%?

Fig. 6 Image in configurations 9 and 11

In fact, until ninth step of computation only these three types of rules are applied.
We can see in Fig. 6 how only one label appear in objects of the cell 2 codifying black
vertices in configuration 9.

In the next step, the P system only applies the last rule of type R4, bringing the
object z11 from the environment to cell 2. The P system executes this step because it
can be necessary in the worst case, which we can see in Fig. 5.

When the object z;; appears in cell 2, rule (z11]2, (b11, (1, 1))/011z12,0) is
applied. Then, we can find objects 011, z12 in cell 2, and the P system applies rule
(2,011212/b}, 3). On this way, the root of the unique spanning tree of our image
arrives to cell 3 in configuration 12, and the construction (of spanning tree) stage
begins.
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Fig. 8 Image in configurations 19 (left up), 20 (right up), 21 (left down) and 27 (right down)

From here, the P system divides the processes in two threads. In the first one, it
uses the counter z; to generate the object z2g, that we use to generate the output of the
P system. In the other, the P system constructs a spanning tree of our binary image.

To the second thread, the P system applies rules of type R|2, as we can see in Fig. 7.
In the next step, the system uses rules of type R;3, so we arrive to the configuration
14 (see Fig. 7).

In the step 15, the P system takes a rule of type R4 to add first two edges to our
spanning tree. In the following steps, the P system applies rules of types Ri¢, R17, Ri3.
For example, when system arrives to the configuration 19, the following rules of type
R13 can be applied between others (see Fig. 8):

b, b >0
3, 4 / 4 ,0]),13, b/ b,O
bb b5 b 4

So, we can obtain configuration 20 (see Fig. 8). Here, a new type of rules can be
used, rules R19. These rules are defined to avoid cycles. In fact the following rule
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Fig. 9 Output of the system

b4 b4
b b
B, 7.0
5b  5b

is applied to arrive configuration 21. Then, the P system, using four types of rules,
generates a spanning tree in step 27 (see right down image in Fig. 8).

The output cell is cell with label 3, so with help of the rules of type Ryg, R2; system
sends the objects not necessary to the environment, i.e. the P system sends the objects
w;j, bij to the environment. To this aim, the P system uses promoter z2g. The the
output of the system is given in Fig. 9.

3.2 Complexity and necessary resources

Bearing in mind the size of the input data is O(n?), the amount of necessary resources
for defining the P systems of our family and the complexity of our problems can be
observed in the following table

Number of steps of a computation 2n + 11

Necessary resources

Size of the alphabet o
Initial number of cells 3
Initial number of objects O(nz)
Number of rules O(n(’)
Upper bound for the length of rules of the P systems 20

4 Conclusions

Using Effective Homology Theory as main tool for designing algorithms for com-
puting complexes topological invariants (cohomology ring, (co)homology operations,
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homotopy groups,...), the problem of decomposing the objects into combinatorial
graph-like pieces appears in a natural way. A possible solution to solve the high com-
plexity costs of these processes is provided here by Membrane Computing. Within
the Digital Imagery setting, we determine here an Membrane Computing strategy for
partially specifying a chain homotopy operator at level of pixels for a pixel-based
digital 2D binary object O. This fundamental data structure in Effective Homology is
obtained in terms of a forest spanning every vertex of its associated adjacency graph.
Every tree of this forest determine and localize the corresponding connected compo-
nent of O. The possibility to extend this results and others to higher dimensions and
to more general cell complexes is a goal of our research in a near future.
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