5,289 research outputs found

    Critical analysis of the Carmo-Jones system of Contrary-to-Duty obligations

    Full text link
    We offer a technical analysis of the contrary to duty system proposed in Carmo-Jones. We offer analysis/simplification/repair of their system and compare it with our own related system

    Deriving Bisimulation Congruences: A 2-Categorical Approach

    Get PDF
    We introduce G-relative-pushouts (GRPO) which are a 2-categorical generalisation of relative-pushouts (RPO). They are suitable for deriving labelled transition systems (LTS) for process calculi where terms are viewed modulo structural congruence. We develop their basic properties and show that bisimulation on the LTS derived via GRPOs is a congruence, provided that sufficiently many GRPOs exist. The theory is applied to a simple subset of CCS and the resulting LTS is compared to one derived using a procedure proposed by Sewell

    Deriving Bisimulation Congruences using 2-Categories

    No full text
    We introduce G-relative-pushouts (GRPO) which are a 2-categorical generalisation of relative-pushouts (RPO). They are suitable for deriving labelled transition systems (LTS) for process calculi where terms are viewed modulo structural congruence. We develop their basic properties and show that bisimulation on the LTS derived via GRPOs is a congruence, provided that sufficiently many GRPOs exist. The theory is applied to a simple subset of CCS and the resulting LTS is compared to one derived using a procedure proposed by Sewell

    Towards a bigraphical encoding of actors

    Get PDF
    Actors are self-contained, concurrently interacting entities of a computing system. They can perform local computations, communicate via asynchronous message passing with other actors and can be dynamically created. Bigraphs are a fully graphical process algebraic formalism, capable of representing both the position in space of agents and their inter-connections. Their behaviour is specified by a set of reaction rules. In this paper, we present a bigraphical encoding of a simplified actor language with static topology. We express actor configurations in terms of sorted bigraphs while the rules of the actor operational semantics are encoded by bigraphical reactive rules

    Robust Linear Temporal Logic

    Get PDF
    Although it is widely accepted that every system should be robust, in the sense that "small" violations of environment assumptions should lead to "small" violations of system guarantees, it is less clear how to make this intuitive notion of robustness mathematically precise. In this paper, we address this problem by developing a robust version of Linear Temporal Logic (LTL), which we call robust LTL and denote by rLTL. Formulas in rLTL are syntactically identical to LTL formulas but are endowed with a many-valued semantics that encodes robustness. In particular, the semantics of the rLTL formula φψ\varphi \Rightarrow \psi is such that a "small" violation of the environment assumption φ\varphi is guaranteed to only produce a "small" violation of the system guarantee ψ\psi. In addition to introducing rLTL, we study the verification and synthesis problems for this logic: similarly to LTL, we show that both problems are decidable, that the verification problem can be solved in time exponential in the number of subformulas of the rLTL formula at hand, and that the synthesis problem can be solved in doubly exponential time

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Deriving real-time action systems with multiple time bands using algebraic reasoning

    Get PDF
    The verify-while-develop paradigm allows one to incrementally develop programs from their specifications using a series of calculations against the remaining proof obligations. This paper presents a derivation method for real-time systems with realistic constraints on their behaviour. We develop a high-level interval-based logic that provides flexibility in an implementation, yet allows algebraic reasoning over multiple granularities and sampling multiple sensors with delay. The semantics of an action system is given in terms of interval predicates and algebraic operators to unify the logics for an action system and its properties, which in turn simplifies the calculations and derivations
    corecore