449 research outputs found

    Multi-Antenna Cooperative Wireless Systems: A Diversity-Multiplexing Tradeoff Perspective

    Full text link
    We consider a general multiple antenna network with multiple sources, multiple destinations and multiple relays in terms of the diversity-multiplexing tradeoff (DMT). We examine several subcases of this most general problem taking into account the processing capability of the relays (half-duplex or full-duplex), and the network geometry (clustered or non-clustered). We first study the multiple antenna relay channel with a full-duplex relay to understand the effect of increased degrees of freedom in the direct link. We find DMT upper bounds and investigate the achievable performance of decode-and-forward (DF), and compress-and-forward (CF) protocols. Our results suggest that while DF is DMT optimal when all terminals have one antenna each, it may not maintain its good performance when the degrees of freedom in the direct link is increased, whereas CF continues to perform optimally. We also study the multiple antenna relay channel with a half-duplex relay. We show that the half-duplex DMT behavior can significantly be different from the full-duplex case. We find that CF is DMT optimal for half-duplex relaying as well, and is the first protocol known to achieve the half-duplex relay DMT. We next study the multiple-access relay channel (MARC) DMT. Finally, we investigate a system with a single source-destination pair and multiple relays, each node with a single antenna, and show that even under the idealistic assumption of full-duplex relays and a clustered network, this virtual multi-input multi-output (MIMO) system can never fully mimic a real MIMO DMT. For cooperative systems with multiple sources and multiple destinations the same limitation remains to be in effect.Comment: version 1: 58 pages, 15 figures, Submitted to IEEE Transactions on Information Theory, version 2: Final version, to appear IEEE IT, title changed, extra figures adde

    Towards the Optimal Amplify-and-Forward Cooperative Diversity Scheme

    Full text link
    In a slow fading channel, how to find a cooperative diversity scheme that achieves the transmit diversity bound is still an open problem. In fact, all previously proposed amplify-and-forward (AF) and decode-and-forward (DF) schemes do not improve with the number of relays in terms of the diversity multiplexing tradeoff (DMT) for multiplexing gains r higher than 0.5. In this work, we study the class of slotted amplify-and-forward (SAF) schemes. We first establish an upper bound on the DMT for any SAF scheme with an arbitrary number of relays N and number of slots M. Then, we propose a sequential SAF scheme that can exploit the potential diversity gain in the high multiplexing gain regime. More precisely, in certain conditions, the sequential SAF scheme achieves the proposed DMT upper bound which tends to the transmit diversity bound when M goes to infinity. In particular, for the two-relay case, the three-slot sequential SAF scheme achieves the proposed upper bound and outperforms the two-relay non-orthorgonal amplify-and-forward (NAF) scheme of Azarian et al. for multiplexing gains r < 2/3. Numerical results reveal a significant gain of our scheme over the previously proposed AF schemes, especially in high spectral efficiency and large network size regime.Comment: 30 pages, 11 figures, submitted to IEEE trans. IT, revised versio

    Enhancing diversity and multiplexing gains in multi-user wireless relay systems

    Get PDF
    The demand for higher transmission rates and better quality of service in modern wireless communications is endless. The use of multiple transmit or /and receive antennas has been considered as one of the most powerful approaches to facilitate high -speed and high -quality communications. However, in practical cellular systems, mobile terminals may not be able to support a multiple- antenna setup. Thus an emerging technique called cooperative diversity is under consideration to utilize the multi -hop relay concept to realize the advantages of multiple - antenna systems in multi -user single- antenna networks. Cooperative diversity has attracted much interest in recent years as a very promising direction for future wireless communication evolution.Due to the fact that in practice terminals cannot transmit and receive simultaneously (i.e. the half -duplex limitation), the diversity improvement brought by the standard cooperative diversity transmission protocols is in general accompanied by a multiplexing loss (equivalent to a reduction in transmission data rate in high signal -to -nose ratio (SNR)). The purpose of this thesis is to use advanced transmission protocols to provide both good diversity and multiplexing performance when using the practical repetition -coded decode - and -forward (DF) relaying strategy in uplink mobile -to -base station transmission of cellular systems.The task is fulfilled by relaxing the orthogonal channel allocation requirement of the standard protocols and by using two relays to take turns forwarding source information to destination. We start our analysis from an M- source two -relay one -destination network. Through diversity -multiplexing tradeoff (DMT) analysis, we prove that for an isolated -relay scenario and a strong -interference scenario, the considered approach effectively recovers the multiplexing loss induced by the standard protocols while still obtaining diversity improvement over direct source -destination transmission without considering relaying.In addition, since the optimal multiplexing gain of the considered system can be achieved by the above approach, we study further improving diversity performance for a two -source network. We analyze taking full advantage of the multiple- source structure, multiple -relay structure, and the capability of affording complex signal processing at the destination (base station). For all three cases, we prove that the diversity performance of the above approach can be enhanced without a significant loss of multiplexing performance or using complex coding strategies at relays. Since the good DMT performance is not affected by source -relay channel conditions, the protocols discussed in this thesis make relaying more beneficial

    Wireless transmission protocols using relays for broadcast and information exchange channels

    No full text
    Relays have been used to overcome existing network performance bottlenecks in meeting the growing demand for large bandwidth and high quality of service (QoS) in wireless networks. This thesis proposes several wireless transmission protocols using relays in practical multi-user broadcast and information exchange channels. The main theme is to demonstrate that efficient use of relays provides an additional dimension to improve reliability, throughput, power efficiency and secrecy. First, a spectrally efficient cooperative transmission protocol is proposed for the multiple-input and singleoutput (MISO) broadcast channel to improve the reliability of wireless transmission. The proposed protocol mitigates co-channel interference and provides another dimension to improve the diversity gain. Analytical and simulation results show that outage probability and the diversity and multiplexing tradeoff of the proposed cooperative protocol outperforms the non-cooperative scheme. Second, a two-way relaying protocol is proposed for the multi-pair, two-way relaying channel to improve the throughput and reliability. The proposed protocol enables both the users and the relay to participate in interference cancellation. Several beamforming schemes are proposed for the multi-antenna relay. Analytical and simulation results reveal that the proposed protocol delivers significant improvements in ergodic capacity, outage probability and the diversity and multiplexing tradeoff if compared to existing schemes. Third, a joint beamforming and power management scheme is proposed for multiple-input and multiple-output (MIMO) two-way relaying channel to improve the sum-rate. Network power allocation and power control optimisation problems are formulated and solved using convex optimisation techniques. Simulation results verify that the proposed scheme delivers better sum-rate or consumes lower power when compared to existing schemes. Fourth, two-way secrecy schemes which combine one-time pad and wiretap coding are proposed for the scalar broadcast channel to improve secrecy rate. The proposed schemes utilise the channel reciprocity and employ relays to forward secret messages. Analytical and simulation results reveal that the proposed schemes are able to achieve positive secrecy rates even when the number of users is large. All of these new wireless transmission protocols help to realise better throughput, reliability, power efficiency and secrecy for wireless broadcast and information exchange channels through the efficient use of relays
    • …
    corecore