We consider a general multiple antenna network with multiple sources,
multiple destinations and multiple relays in terms of the
diversity-multiplexing tradeoff (DMT). We examine several subcases of this most
general problem taking into account the processing capability of the relays
(half-duplex or full-duplex), and the network geometry (clustered or
non-clustered). We first study the multiple antenna relay channel with a
full-duplex relay to understand the effect of increased degrees of freedom in
the direct link. We find DMT upper bounds and investigate the achievable
performance of decode-and-forward (DF), and compress-and-forward (CF)
protocols. Our results suggest that while DF is DMT optimal when all terminals
have one antenna each, it may not maintain its good performance when the
degrees of freedom in the direct link is increased, whereas CF continues to
perform optimally. We also study the multiple antenna relay channel with a
half-duplex relay. We show that the half-duplex DMT behavior can significantly
be different from the full-duplex case. We find that CF is DMT optimal for
half-duplex relaying as well, and is the first protocol known to achieve the
half-duplex relay DMT. We next study the multiple-access relay channel (MARC)
DMT. Finally, we investigate a system with a single source-destination pair and
multiple relays, each node with a single antenna, and show that even under the
idealistic assumption of full-duplex relays and a clustered network, this
virtual multi-input multi-output (MIMO) system can never fully mimic a real
MIMO DMT. For cooperative systems with multiple sources and multiple
destinations the same limitation remains to be in effect.Comment: version 1: 58 pages, 15 figures, Submitted to IEEE Transactions on
Information Theory, version 2: Final version, to appear IEEE IT, title
changed, extra figures adde