13 research outputs found

    Non-Metric Coordinates for Predicting Network Proximity

    Get PDF

    DMFSGD: A Decentralized Matrix Factorization Algorithm for Network Distance Prediction

    Full text link
    The knowledge of end-to-end network distances is essential to many Internet applications. As active probing of all pairwise distances is infeasible in large-scale networks, a natural idea is to measure a few pairs and to predict the other ones without actually measuring them. This paper formulates the distance prediction problem as matrix completion where unknown entries of an incomplete matrix of pairwise distances are to be predicted. The problem is solvable because strong correlations among network distances exist and cause the constructed distance matrix to be low rank. The new formulation circumvents the well-known drawbacks of existing approaches based on Euclidean embedding. A new algorithm, so-called Decentralized Matrix Factorization by Stochastic Gradient Descent (DMFSGD), is proposed to solve the network distance prediction problem. By letting network nodes exchange messages with each other, the algorithm is fully decentralized and only requires each node to collect and to process local measurements, with neither explicit matrix constructions nor special nodes such as landmarks and central servers. In addition, we compared comprehensively matrix factorization and Euclidean embedding to demonstrate the suitability of the former on network distance prediction. We further studied the incorporation of a robust loss function and of non-negativity constraints. Extensive experiments on various publicly-available datasets of network delays show not only the scalability and the accuracy of our approach but also its usability in real Internet applications.Comment: submitted to IEEE/ACM Transactions on Networking on Nov. 201

    Secure referee selection for fair and responsive peer-to-peer gaming

    Get PDF
    Peer-to-Peer (P2P) architectures for Massively Multiplayer Online Games (MMOG) provide better scalability than Client/Server (C/S); however, they increase the possibility of cheating. Recently proposed P2P protocols use trusted referees that simulate/validate the game to provide security equivalent to C/S. When selecting referees from untrusted peers, selecting non-colluding referees becomes critical. Further, referees should be selected such that the range and length of delays to players is minimised (maximising game fairness and responsiveness). In this paper we formally define the referee selection problem and propose two secure referee selection algorithms, SRS-1 and SRS-2, to solve it. Both algorithms ensure the probability of corrupt referees controlling a zone/region is below a predefined limit, while attempting to maximise responsiveness and fairness. The trade-off between responsiveness and fairness is adjustable for both algorithms. Simulations of three different scenarios show the effectiveness of our algorithms

    Non-metric coordinates for predicting network proximity

    Get PDF
    We consider the problem of determining the “closest”, or best Internet host to connect to, from a list of candidate servers. Most existing approaches rely on the use of metric, or more specifically Euclidean coordinates to infer network proximity. This is problematic, given that network distances such as latency are known to violate the triangle inequality. This leads us to consider non-metric coordinate systems. We perform an empirical comparison between the “min-plus” non-metric coordinates and two metric coordinates, namely L-infinity and Euclidean. We observe that, when sufficiently many dimensions are used, min-plus outperforms metric coordinates for predicting Internet latencies. We also consider the prediction of “widest path capacity” between nodes. In this framework, we propose a generalization of min-plus coordinates. These results apply when node coordinates consist in measured network proximity to a random subset of landmark nodes. We perform empirical validation of these results on widest path bandwidth between PlanetLab nodes. We conclude that appropriate non-metric coordinates such as generalized min-plus systems are better suited than metric systems for representing the underlying structure of Internet distances, measured either via latencies or bandwidth

    Impact of the Inaccuracy of Distance Prediction Algorithms on Internet Applications--an Analytical and Comparative Study

    Get PDF
    Distance prediction algorithms use O(N) Round Trip Time (RTT) measurements to predict the N2 RTTs among N nodes. Distance prediction can be applied to improve the performance of a wide variety of Internet applications: for instance, to guide the selection of a download server from multiple replicas, or to guide the construction of overlay networks or multicast trees. Although the accuracy of existing prediction algorithms has been extensively compared using the relative prediction error metric, their impact on applications has not been systematically studied. In this paper, we consider distance prediction algorithms from an application\u27s perspective to answer the following questions: (1) Are existing prediction algorithms adequate for the applications? (2) Is there a significant performance difference between the different prediction algorithms, and which is the best from the application perspective? (3) How does the prediction error propagate to affect the user perceived application performance? (4) How can we address the fundamental limitation (i.e., inaccuracy) of distance prediction algorithms? We systematically experiment with three types of representative applications (overlay multicast, server selection, and overlay construction), three distance prediction algorithms (GNP, IDES, and the triangulated heuristic), and three real-world distance datasets (King, PlanetLab, and AMP). We find that, although using prediction can improve the performance of these applications, the achieved performance can be dramatically worse than the optimal case where the real distances are known. We formulate statistical models to explain this performance gap. In addition, we explore various techniques to improve the prediction accuracy and the performance of prediction-based applications. We find that selectively conducting a small number of measurements based on prediction-based screening is most effective

    Securing Internet Coordinate System: Embedding Phase

    Get PDF
    This paper addresses the issue of the security of Internet Coordinate Systems, by proposing a general method for malicious behavior detection during coordinate computations. We first show that the dynamics of a node, in a coordinate system without abnormal or malicious behavior, can be modeled by a Linear State Space model and tracked by a Kalman filter. Then we show, that the obtained model can be generalized in the sense that the parameters of a filter calibrated at a node can be used effectively to model and predict the dynamic behavior at another node, as long as the two nodes are not too far apart in the network. This leads to the proposal of a Surveyor infrastructure: Surveyor nodes are trusted, honest nodes that use each other exclusively to position themselves in the coordinate space, and are therefore immune to malicious behavior in the system. During their own coordinate embedding, other nodes can then use the filter parameters of a nearby Surveyor as a representation of normal, clean system behavior to detect and filter out abnormal or malicious activity. A combination of simulations and Planet- Lab experiments are used to demonstrate the validity, generality, and effectiveness of the proposed approach for two representative coordinate embedding systems, namely Vivaldi and NPS

    Towards More Efficient Delay Measurements on the Internet

    Get PDF
    As more applications rely on distributed systems (peer-to-peer services, content distribution networks, cloud services), it becomes necessary to identify hosts that return content to the user with minimal delay. A large scale map of delays would aid in solving this problem. Existing methods, which deploy devices to every region of the Internet or use of a single vantage point have yet to create such a map. While services such as PlanetLab offer a distributed network for measurements, they only cover 0.3% of the Internet. The focus of our research is to increase the speed of the single vantage point approach so that it becomes a feasible solution. We evaluate the feasibility of performing large scale measurements by performing an experiment using more hosts than any previous study. First, an efficient scanning algorithm is developed to perform the measurement scan. We then find that a custom Windows network driver is required to overcome bottlenecks in the operating system. After developing a custom driver, we perform a measurement scan larger than any previous study. Analysis of the results reveals previously unidentified drawbacks to the existing architectures and measurement methodologies. We propose novel meth- ods for increasing the speed of experiments, improving the accuracy of measurement results, and reducing the amount of traffic generated by the scan. Finally, we present architectures for performing an Internet scale measurement scan. We found that with custom drivers, the Windows operating system is a capable platform for performing large scale measurements. Scan results showed that in the eleven years since the original measurement technique was developed, the response patterns it relied upon had changed from what was expected. With our suggested improvements to the measurement algorithm and proposed scanning architectures, it may be possible to perform Internet scale measurement studies in the future
    corecore