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Abstract—We consider the problem of determining the
“closest”, or best Internet host to connect to, from a list of
candidate servers. Most existing approaches rely on the use
of metric, or more specifically Euclidean coordinates to infer
network proximity. This is problematic, given that network
distances such as latency are known to violate the triangle
inequality. This leads us to consider non-metric coordinate
systems. We perform an empirical comparison between the
“min-plus” non-metric coordinates and two metric coordi-
nates, namely L-infinity and Euclidean. We observe that, when
sufficiently many dimensions are used, min-plus outperforms
metric coordinates for predicting Internet latencies.

We also consider the prediction of “widest path capacity”
between nodes. In this framework, we propose a generalization
of min-plus coordinates. These results apply when node coor-
dinates consist in measured network proximity to a random
subset of landmark nodes. We perform empirical validation
of these results on widest path bandwidth between PlanetLab
nodes.

We conclude that appropriate non-metric coordinates such
as generalized min-plus systems are better suited than metric
systems for representing the underlying structure of Internet
distances, measured either via latencies or bandwidth.

I. INTRODUCTION

We consider the problem of determining the closest or
best Internet host to connect to, from a list of candidate
servers, by using network coordinates instead of direct
measurements.

In one application of interest, closeness is measured by IP
packet round-trip time latencies, and several candidate DNS
servers are proposed to a host. The latter then approximates
its latency to a particular server by computing a pseudo-
distance between its and the server’s coordinates. Thus the
decision can be made solely from the coordinates of hosts
and servers, without resorting to direct measurements.

In another application, a node participating in a peer-to-
peer network aims to enter the overlay by connecting to the
nodes with the largest available uplink bandwidth. Similarly,
it can make its decision based on coordinates rather than
direct measurements.

The growth of peer-to-peer applications and location-
aware services motivates the search for efficient solutions
in both contexts.

Many approaches (see e.g. [8]–[10]) have been pro-
posed for predicting Internet latencies. These typically use
metric, or more specifically Euclidean coordinates. On the
other hand, recent work by Kleinberg et al. [5] established

theoretical guarantees on the quality of prediction by non-
Euclidean metric coordinates, and by particular non-metric
coordinates.

To be more specific, we introduce the following nota-
tion. We consider a finite set of N nodes, indexed by
i = 1, . . . , N , and the problem of predicting some function
dij of two nodes i, j, as a function f(xi, xj). Function dij

is typically symmetric, but not necessarily a distance. The
coordinate vectors xi of node i are to be inferred; ideally
few coordinates are used.

In this setup, Kleinberg et al. considered both the L∞

distance function fL∞(xi, xj) := supd
�=1 |xi(�) − xj(�)|,

and the so-called min-plus function, fmin−plus(xi, xj) :=
mind

�=1(xi(�)+xj(�)). For both functions, they showed that
the corresponding prediction is close to the original distance
dij , for most pairs (i, j), provided the original function dij

is a well-behaved metric (more specifically, it has small
doubling dimension).

The coordinates xi(�) used in [5] are in fact measure-
ments between node i and some landmark node z�, which
is selected at random from the whole collection of nodes.
Thus these coordinates are obtained in one shot, from d
measurements per node. In contrast the metric coordinates
used in [8]–[10] are continuously updated on the basis of
new measurements, and thus potentially more finely tuned
than in a one-shot approach.

The applicability of these results to Internet latencies is
however not straightforward: it is well known that Internet
latencies violate the triangle inequality, e.g. [12], [20].
Hence they do not constitute a metric, and a fortiori not
a metric with bounded doubling dimension.

The problem of bandwidth prediction based on network
coordinates has received far less attention; in this context
there is no particular reason to think that metric coordinates
would be appropriate.

Our aim in this paper is to identify non-metric coordinate
systems for accurate prediction of either Internet latencies,
or bandwidth.

Our contributions are as follows:
• We establish that min-plus coordinates can represent

exactly any symmetric, not necessarily metric function
dij . This motivates the use of min-plus coordinates as
a “universal” system, even in non-metric environments.

• We compare the performance of Vivaldi-like “Eu-
clidean + height” coordinates to L∞ and min-plus
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coordinates, using continuous refinements for all three.
The comparison is performed on three data sets,
namely S3, PlanetLab and King. We observe good
performance for all three, but min-plus coordinates
benefit more from additional coordinates.

• We then consider predicting widest-path bandwidth
measures. We validate these results empirically on the
prediction of widest path bandwidth between nodes in
the S3 data set. In an extended version of the paper,
we introduce a generalization of min-plus coordinates
to this context and we prove theoretical bounds on the
corresponding performance for “one-shot” coordinates
that are measurements to randomly selected landmarks.

II. MIN-PLUS VS METRIC COORDINATES FOR LATENCY

PREDICTION

A. The case for min-plus coordinates

Consider a set of N nodes, indexed by i = 1, . . . , N , and
a function dij : N ×N → R of pairs of nodes. It has been
known since Fréchet [3] that, when dij is a metric, one can
assign N coordinates xi(1), . . . , xi(N) to each node i, in
such a way that the L∞ distance between the coordinate
vectors xi and xj coincides with dij . Indeed, this holds by
setting xi(k) = dik.

In practice we want to use far fewer than N coordinates.
Nevertheless, the fact that an exact reconstruction of metric
dij can be done with many coordinates in the L∞ metric
makes it a good candidate for predicting such dij , even with
few coordinates. Indeed, one might hope that reconstruction
accuracy degrades gracefully as the number of dimensions
is reduced.

We now establish that a similar result holds for min-plus
coordinates, and for arbitrary symmetric, not necessarily
metric dij :

Lemma 1: Any symmetric function dij on a set of N
points can be represented as a min-plus distance, i.e.

dk� = fmin−plus(xk, x�) = min
i

(xk(i)+x�(i)), k �= � (1)

irrespective of whether it satisfies the triangle inequality or
not, for suitable N -dimensional coordinate vectors xi, i =
1, . . . , N .

Proof: We use the following explicit construction. For
i ∈ {1, . . . , N}, and each k ∈ {1, . . . , N}, k �= i, we set
the i-th coordinate xk(i) of point k to

xk(i) = dik − xi(i). (2)

The i-th coordinate of point i, that is xi(i) is then set to

xi(i) =
1
2

min
k,�∈{1,...,N}

(dik + di� − dk�) . (3)

We now check that (1) holds. For a pair of points k, �, by
(2) we have that xk(�) + x�(�) = dk�, so that

N
min
i=1

(xk(i) + x�(i)) ≤ dk�.

On the other hand, for i �= k, i �= �, by (2) and (3) we have
that

xk(i) + x�(i) = dik + di� − 2xi(i)
≥ dik + di� − (dik + di� − dk�)
= dk�.

This concludes the proof.
Note that no claim is made about prediction of the quantities
dii: the construction does not necessarily satisfy dii ≥
xi(i) + xi(i).

This result suggests that min-plus coordinates can be
useful for predicting non-metric quantities dij , such as
Internet Round Trip Times, as documented in [6].

B. Algorithms for setting network coordinates

We now describe the scheme we use for setting coor-
dinates in our empirical comparison. It is inspired by the
Vivaldi system design [8]. The basic algorithm in Vivaldi is
a distributed optimisation, based on modelling the network
as a spring-connected system, and letting the system evolve
to a minimum energy state. More precisely, nodes contin-
uously contact one another; when node i contacts node j,
it performs a small adaptation of its coordinate vector xi

so as to reduce the absolute difference between the actual
quantity dij to be predicted, and the prediction f(xi, xj).
This can be seen as an approximation of a gradient descent
algorithm for minimizing the so-called stress metric, defined
as

σr =
∑
i<j

(dij − f(xi, xj))2. (4)

Stress (and variants with distinct normalizations) is a com-
mon measure of prediction accuracy in the applied statistics
literature (e.g. [2])

Vivaldi [8] proposed a variant of Euclidean coordinates to
better model Internet latencies, and introduced the notion of
“height” parameters, namely the coordinate xi decomposes
into yi, hi where yi is d− 1-dimensional, and hi is a non-
negative height. The scheme then uses the prediction

fV ivaldi(xi, xj) = ||yi − yj ||2 + hi + hj ,

where ||yi−yj ||2 =
√∑

�(yi(�)− yj(�))2. In what follows
we relax the non-negativity constraint on heights, as we
observed that this improves performance.

For our experiments, we use a distributed algorithm
inspired by Vivaldi, adapted to each specific coordinate
system.

The Algorithm for min-plus coordinates minimizes the
same stress cost function in a distributed fashion. Each node
i updates its coordinates and error estimates when it obtains
a real RTT measurement for node j. The updates are based
on both the measured RTT, the coordinates of node j and
an error estimate communicated by node j. The details for
the case of min-plus coordinates are described in Algorithm
1 below.

Updates for coordinates and errors use simple weighted
moving averages. The gain for coordinate updates is wcc,
where w is defined in the Algorithm, and the factor cc has
been selected experimentally.

The algorithms used for Vivaldi and L∞ coordinates were
similar, using a suitably modified definition for fij .

C. Measures of Accuracy

Several performance indices could be used to measure
the accuracy of particular prediction schemes, the “stress”



Algorithm 1 Algorithm for node i, using min-plus coordi-
nates
RPC-MIN-PLUS-UPDATE(rtt, xj , ej)
// Node j is rtt ms away, has coordinates xj

// and error estimate ej

1: fij ← mind
l=1(xi(l) + xj(l))

2: w ← ei

ei+ej

3: es ← |fij−rtt|
rtt {Relative error}

4: ei ← es · ce · w + ei · (1− ce · w)
5: if fij < rtt then
6: for all l such that xi(l) + xj(l) = fij do
7: xi(l)← xi(l) + cc · w · (rtt− fij)
8: end for
9: else

10: Choose at random l such that xi(l) + xj(l) = fij

11: xi(l)← xi(l)− cc · w · (fij − rtt)
12: end if

function being one possible objective function. An alter-
native objective function, namely the relative rank loss
(RRL), is introduced in [6] as a better index for the present
application context of “best node selection”. RRL is defined
as a function of the actual quantities dij and their estimates
d̂ij as follows. It counts the fraction of ordered triplets
(i, j, k) for which the distances dij and dik are ordered in
the opposite way as d̂ij and d̂ik. This cost function can
be interpreted as the probability that some node i fails to
select the closest neighbor among two candidates j, k when
relying on comparison of reconstructed rather than actual
distances.

We propose a variant of this measure of accuracy, a
Smooth Relative Rank Loss, SRRL, which has two addi-
tional features: (a) it puts no penalty when the mis-ordered
nodes j, k have distances dij , dik to the querying node i
that differ by no more than some absolute tolerance dmin

(typically 10ms); (b) it puts a penalty of no more than
min(1, (d2 − d1)/d1) when the swapped distances are d1

and d2, d1 < d2. The meaning is that the penalty is bounded
by the relative error (d2−d1)/d1 made in choosing the node
at distance d2.

The explicit of the SRRL is given by

σsrrl =
1

N(N − 1)(N − 2)

∑
i,j,k:i�=j �=k

ϕ(dij , dik) · 1d̂ij<d̂ik

(5)
where ϕ is the cost function associated with a misordering,

ϕ(d2, d1) = 1− exp
[
−max

(
0,

d2 − d1 − dmin

d1 + dmin

)]
. (6)

These minor modifications we brought to the RRL cost
function are practically motivated: SRRL is tolerant to small
relative as well as absolute errors. It is “smoother” than RRL
and therefore easier to manipulate.

D. Experimental Framework

We compared the results obtained for three data sets,
PlanetLab [17], HP S3 [16], King [18]. Each data set
comprises latency or bandwidth measurements between all

node pairs, expressed as matrices. These matrices were
input into a network packet simulator and used for testing
the various algorithms. Although the algorithms themselves
are distributed, and only require a small subset of all
the measurements per iteration, the full matrix is used to
compute the resulting SRRL.

The PlanetLab data set was obtained by parsing the All
Pair Ping tool logs. The logs were generated during three
months – February, March and April 2006 – with measure-
ments performed every 20 minutes. For each pair of nodes,
the smallest reported latency was taken as the input to the
final distance matrix, as it best reflects the actual physical
properties of the IP path between the nodes. Missing values
in the resulting matrix were filled by computing a shortest
path distance over the graph with edge lengths set to the
smallest reported latency, and to infinity in the absence
of observations. Note that for node pairs with observed
latencies, the smallest observed latency was not replaced
by a shortest path distance.

The largest connected component of the resulting graph
has 217 nodes. The triangle inequality is violated for
21.18% of all the triplets (i, j, k) from this largest com-
ponent.

The S3 contains latency and bandwidth information. The
latency is estimated via the HP tool “NetVigator”. For
latency measurements, we consider the largest connected
component of the corresponding graph. This gives a 419-
node graph with almost no missing edges. The triangle
inequality violation ratio equals 9.09%.

For bandwidth measurements (used in Section IV), we
used a “widest-path” algorithm to fill in the high percentage
of missing edges (again, by leaving the existing values
unmodified). The analogue of the triangle inequality is
violated for 78.64% of the triangles. This was expected,
as Internet routing is not designed for finding widest paths.

The King data set involves 1740 Internet DNS servers.
The technique used to obtain this data is described in [11].
The RTT between servers A and B is approximated by the
difference between the RTT measured to A and the RTT
measured to B, going through A1. The resulting matrix
of RTT’s is available online at [18]. For this data set, the
triangle inequality violation ratio equals 12.68%.

E. Results

We compare the performance of schemes according to
the Smooth Relative Rank Loss (SRRL) criterion. Figures
1, 3 and 2 show the SRRL for varying dimensions and
for the data sets S3, King and Planet Lab respectively. In
all three cases, we compare the performance of “Vivaldi”
(Euclidean + height), L∞ and min-plus coordinates. In all
cases, the coordinates are optimized to minimize stress (4)
using the corresponding modified Vivaldi algorithm2. The

1a DNS query is sent to A for a domain served by B, to ensure that the
data packet will follow the path A – B – A.

2It may seem more consistent to perform continuous optimization of
the actual criterion of interest, namely the SRRL. We have done such
experiments, using a regularized version of SRRL, the gradient of which
is well defined. The corresponding simulation results are very similar, with
achieved SRRL’s only marginally smaller.



algorithm runs until it reaches a stable state. We observed
empirically that less than 15000 exchanges suffice. The
result depends marginally on the actual random nodes that
each node contacts to update its own coordinates. This
is reflected by the empirical standard deviations for the
resulting average SRRL, represented on the plots as error
bars (± standard deviation). For the King data set, we only
evaluated “Vivaldi” and min-plus coordinates, and for only
up to 20 dimensions, since simulations are particularly long
for this data set.

We stress that it is reasonably cheap in practice to use
many coordinates: the impact on local storage at nodes is
manageable; the number of communications between nodes
is unaffected; for each communication, more coordinates
need to be exchanged, but the amount of coordinates that
can be communicated in a single IP packet is well above
100.

For both S3 and PlanetLab, we observe that min-plus
coordinates outperform Vivaldi coordinates for dimensions
above 18 and 12 respectively, in terms of SRRL (Figures
1 and 2). We also noticed that, in terms of RRL (not
reported here due to lack of space), 8 and 4 dimensions
respectively suffice for min-plus coordinates to outperform
Vivaldi coordinates. L∞ coordinates achieve an intermediate
performance. For lower dimensions, Vivaldi coordinates
typically outperform the other two. More importantly, we
observe that the reported SRRL are small even for as few
as three dimensions. Min-plus appears better at exploiting
additional dimensions.

The King data set yields a different picture, with Vivaldi
coordinates outperforming min-plus coordinates (Figure 3).
But again, the most striking fact is perhaps that small
SRRL can be achieved with few dimensions, and this for
all proposed coordinate systems.
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Fig. 1. Smooth Relative Rank Loss - S3 data set (6 runs per point)

III. GENERALISATION OF MIN-PLUS COORDINATES

In this section, we give an intuitive generalisation of
the min-plus coordinates applied to bottleneck bandwidth
prediction in a widest path routing context.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  5  10  15  20  25  30  35

S
R

R
L 

(%
)

Dimension

PlanetLab Dataset - SRRL

minplus
euclidean + heights

L infinity

Fig. 2. Smooth Relative Rank Loss - PlanetLab data set (10 runs per
point)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 2  4  6  8  10  12  14  16  18  20

S
R

R
L 

(%
)

Dimension

King Dataset - SRRL

minplus
euclidean + heights

Fig. 3. Smooth Relative Rank Loss - King data set (4 runs per point)

Given a set of landmark nodes �(1), . . . , �(K) and
wi�(1), . . . , wi�(K) for all nodes i, we estimate the weight
wij as the max-min distance:

ŵij =
K

max
k=1

(
min(wi�(k), wj�(k))

)
. (7)

In this case, we can show that by choosing sufficiently
many landmarks we can ensure that with high probability
ŵij = wij , so there is no distortion. Hence perfect recon-
struction is possible for almost all bottleneck capacities.
Further details are available in an extended version of the
paper.

Figure 4 shows the RRL (in percentage) based on the ex-
tended min-plus scheme (or equivalently, max-min scheme)
described in Section III, based on a random selection of
landmarks. The RRL, defined by analogy with that of Sec-
tion II-C, counts the fraction of ordered triples (i, j, k) for
which bottleneck capacities wij and wik are ordered in the
opposite way to max-min esimates ŵij and ŵik. The curve
labeled “Original S3 data” is obtained using the original
bandwidths reported in S3; we see that RRL remains at 30%
irrespective of the number of dimensions. The curve labeled
“Widest path S3 data” is obtained from the modified S3 data,



where original bottleneck bandwidth measures have been
replaced by widest path bandwidth measures. We see that for
2 dimensions, the achieved RRL is already below 0.1%, and
is further decreased by additional dimensions. This confirms
the theoretical result of section III, stating that the proposed
scheme allows exact reconstruction of bottleneck bandwidth
for most node pairs, under the assumption of widest-path
routing.
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IV. CONCLUSIONS

We have considered the problem of selecting the best
host to connect to, using network coordinates, and more
specifically non-metric coordinates. We first showed that
min-plus coordinates can represent perfectly any symmetric
function dij (such as Internet latencies), if we use a large
number of dimensions.

We compared the performance of min-plus, against two
metric coordinate systems, namely L∞ and Vivaldi for
predicting Internet latencies on three data sets. The three
approaches led to comparable – and good– performance,
when individual node coordinates were finely optimized.
Min-plus slightly outperformed the other two approaches
when using large number of dimensions.

It is interesting to notice that coordinate systems such as
min-plus and even L∞, proposed initially purely for theo-
retical reasons, manage performance comparable to or better
than Vivaldi. In contrast, Vivaldi uses Euclidean+heights
coordinates in an attempt to capture real-world features.

Bandwidth prediction using coordinates has received little
attention. We proposed an extension of min-plus coordinates
to a general algebraic framework for routing, which en-
compasses bottleneck bandwidth prediction. In this setup,
we proved (refer to extended version) performance guar-
antees of schemes based on random landmark selections.
In particular, we proved that exact reconstruction of bot-
tleneck bandwidth can be done with few dimensions and
for most node pairs, assuming widest-path routing is used.
This assumption is realistic in a peer-to-peer system which
implements overlay routing.

An extended version of this paper gives further theoretical
bounds in prediction quality and presents a generalised min-
plus routing algebra.

REFERENCES

[1] I. Abraham, Y. Bartal, T-H. Chan, K. Dhamdhere, A. Gupta, J.
Kleinberg, O. Neiman and A. Slivkins. Metric embeddings with
relaxed guarantees. Proc. 46th IEEE Symposium on Foundations
of Computer Science, 2005.

[2] I. Borg and P.J.F. Groenen. Modern Multidimensional Scaling. 2nd
Editions. Springer, 2005

[3] M. Fréchet. Les dimensions d’un ensemble abstrait. Math. Ann.
68 (1909-1910), 145-168.

[4] R. E. Gomory and T.C. Hu. Multi-terminal network flows. Journal
of the SIAM, 9:551-570, 1961.

[5] J. Kleinberg, A. Slivkins and T. Wexler. Triangulation and Embed-
ding using Small Sets of Beacons. Proc. 45th IEEE Symposium
on Foundations of Computer Science, 2004.

[6] E.K. Lua, T. Griffin, M. Pias, H. Zheng and J. Crowcroft. On the
accuracy of embeddings for Internet coordinate systems. Internet
Measurement Conference (IMC), 2005.

[7] J. L. Sobrinho. Algebra and Algorithms for QoS Path Computation
and Hop-by-Hop Routing in the Internet. IEEE/ACM Transactions
on Networking, Vol. 10, No 4, 541-550, 2002.

[8] F. Dabek, R. Cox, F. Kaashoek, R . Morris, Vivaldi: A Decen-
tralized Network Coordinate System, SIGCOMM’04, MIT CSAIL,
Cambridge, MA

[9] M. Costa, M. Castro, A. Rowstron, P. Key, PIC: Practical Internet
Coordinates for Distance Estimation. In ICDCS, Tokyo, Japan,
2004.

[10] L. Tang, M. Crovella, Virtual Landmarks fot the Internet, Depart-
ment of Computer Science, Boston University

[11] K. P. Gummadi, S. Saroiu, S. D. Gribble, King: Estimating Latency
Between Arbitrary Internet End Hosts, SIGCOMM IMW 2002

[12] S.Lee, Zhi-Li Zhang, S. Saha, On the suitability of embedding of
Internet Hosts, in Proc. ACM Sigmetrics, 2006.

[13] Y. Shavitt and T. Tankel, Big-Bang simulation for em-
bedding network distances in Euclidean space, E.E.-Systems
Department, Tel-Aviv University, Tech. Rep., July 2002.
http://citeseer.ist.psu.edu/shavitt02bigbang.html

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery,
Numerical Recipes in C – The Art of Scientific Computing – Second
Edition, Cambridge University Press

[15] N. Hu, P. Steenkiste, Estimating Available Bandwidth Using Packet
Pair Probing, Carnegie Mellon, CMU-CS-02-166

[16] HP’s Scalable Sensing Service (S3),
http://networking.hpl.hp.com/s-cube/index.html

[17] PlanetLab All Pair Pings,
http://pdos.csail.mit.edu/˜strib/pl_app/,
http://ping.ececs.uc.edu/ping/

[18] The King Data Set,
http://pdos.csail.mit.edu/p2psim/kingdata/

[19] B. Wong, A. Slivkins, E.G. Sirer. Meridian: A Lightweight Net-
work Location Service without Virtual Coordinates. In SIGCOMM,
August 2005.

[20] H. Zheng, E. K. Lua, M. Pias, T. G. Griffin, Internet Routing Poli-
cies and Round-Trip-Times, in Passive and Active Measurement
Workship (PAM), 2005.

[21] T. S. Eugene Ng, Hui Zhang, Predicting Internet Network Distance
with Coordinates-Based Approaches, IEEE INFOCOM’02, New
York, NY, June 2002


