60 research outputs found

    An Expectation Maximization Algorithm to Model Failure Times by Continuous-Time Markov Chains

    Get PDF
    In many applications, the failure rate function may present a bathtub shape curve. In this paper, an expectation maximization algorithm is proposed to construct a suitable continuous-time Markov chain which models the failure time data by the first time reaching the absorbing state. Assume that a system is described by methods of supplementary variables, the device of stage, and so on. Given a data set, the maximum likelihood estimators of the initial distribution and the infinitesimal transition rates of the Markov chain can be obtained by our novel algorithm. Suppose that there are m transient states in the system and that there are n failure time data. The devised algorithm only needs to compute the exponential of m×m upper triangular matrices for O(nm2) times in each iteration. Finally, the algorithm is applied to two real data sets, which indicates the practicality and efficiency of our algorithm

    Semiannual progress report no. 1, 16 November 1964 - 30 June 1965

    Get PDF
    Summary reports of research in bioelectronics, electron streams and interactions, plasmas, quantum and optical electronics, radiation and propagation, and solid-state electronic

    Geoinformatic methodologies and quantitative tools for detecting hotspots and for multicriteria ranking and prioritization: application on biodiversity monitoring and conservation

    Get PDF
    Chi ha la responsabilità di gestire un’area protetta non solo deve essere consapevole dei problemi ambientali dell’area ma dovrebbe anche avere a disposizione dati aggiornati e appropriati strumenti metodologici per esaminare accuratamente ogni singolo problema. In effetti, il decisore ambientale deve organizzare in anticipo le fasi necessarie a fronteggiare le prevedibili variazioni che subirà la pressione antropica sulle aree protette. L’obiettivo principale della Tesi è di natura metodologica e riguarda il confronto tra differenti metodi statistici multivariati utili per l’individuazione di punti critici nello spazio e per l’ordinamento degli “oggetti ambientali” di studio e quindi per l’individuazione delle priorità di intervento ambientale. L’obiettivo ambientale generale è la conservazione del patrimonio di biodiversità. L’individuazione, tramite strumenti statistici multivariati, degli habitat aventi priorità ecologica è solamente il primo fondamentale passo per raggiungere tale obiettivo. L’informazione ecologica, integrata nel contesto antropico, è un successivo essenziale passo per effettuare valutazioni ambientali e per pianificare correttamente le azioni volte alla conservazione. Un’ampia serie di dati ed informazioni è stata necessaria per raggiungere questi obiettivi di gestione ambientale. I dati ecologici sono forniti dal Ministero dell’Ambiente Italiano e provengono al Progetto “Carta della Natura” del Paese. I dati demografici sono invece forniti dall’Istituto Italiano di Statistica (ISTAT). I dati si riferiscono a due aree geografiche italiane: la Val Baganza (Parma) e l’Oltrepò Pavese e Appennino Ligure-Emiliano. L’analisi è stata condotta a due differenti livelli spaziali: ecologico-naturalistico (l’habitat) e amministrativo (il Comune). Corrispondentemente, i risultati più significativi ottenuti sono: 1. Livello habitat: il confronto tra due metodi di ordinamento e determinazione delle priorità, il metodo del Vettore Ideale e quello della Preminenza, tramite l’utilizzo di importanti metriche ecologiche come il Valore Ecologico (E.V.) e la Sensibilità Ecologica (E.S.), fornisce dei risultati non direttamente comparabili. Il Vettore Ideale, non essendo un procedimento basato sulla ranghizzazione dei valori originali, sembra essere preferibile nel caso di paesaggi molto eterogenei in senso spaziale. Invece, il metodo della Preminenza probabilmente è da preferire in paesaggi ecologici aventi un basso grado di eterogeneità intesa nel senso di differenze non troppo grandi nel E.V. ed E.S. degli habitat. 2. Livello comunale: Al fine di prendere delle decisioni gestionali ed essendo gli habitat solo delle suddivisioni naturalistiche di un dato territorio, è necessario spostare l’attenzione sulle corrispondenti unità amministrative territoriali (i Comuni). Da questo punto di vista, l’introduzione della demografia risulta essere un elemento centrale oltre che di novità nelle analisi ecologico-ambientali. In effetti, l’analisi demografica rende il risultato di cui al punto 1 molto più realistico introducendo altre dimensioni (la pressione antropica attuale e le sue tendenze) che permettono l’individuazione di aree ecologicamente fragili. Inoltre, tale approccio individua chiaramente le responsabilità ambientali di ogni singolo ente territoriale nei riguardi della difesa della biodiversità. In effetti un ordinamento dei Comuni sulla base delle caratteristiche ambientali e demografiche, chiarisce le responsabilità gestionali di ognuno di essi. Un’applicazione concreta di questa necessaria quanto utile integrazione di dati ecologici e demografici viene discussa progettando una Rete Ecologica (E.N.). La Rete cosi ottenuta infatti presenta come elemento di novità il fatto di non essere “statica” bensì “dinamica” nel senso che la sua pianificazione tiene in considerazione il trend di pressione antropica al fine di individuare i probabili punti di futura fragilità e quindi di più critica gestione.Who has the responsibility to manage a conservation zone, not only must be aware of environmental problems but should have at his disposal updated databases and appropriate methodological instruments to examine carefully each individual case. In effect he has to arrange, in advance, the necessary steps to withstand the foreseeable variations in the trends of human pressure on conservation zones. The essential objective of this Thesis is methodological that is to compare different multivariate statistical methods useful for environmental hotspot detection and for environmental prioritization and ranking. The general environmental goal is the conservation of the biodiversity patrimony. The individuation, through multidimensional statistical tools, of habitats having top ecological priority, is only the first basic step to accomplish this aim. Ecological information integrated in the human context is an essential further step to make environmental evaluations and to plan correct conservation actions. A wide series of data and information has been necessary to accomplish environmental management tasks. Ecological data are provided by the Italian Ministry of the Environment and they refer to the Map of Italian Nature Project database. The demographic data derives from the Italian Institute of Statistics (ISTAT). The data utilized regards two Italian areas: Baganza Valley and Oltrepò Pavese and Ligurian-Emilian Apennine. The analysis has been carried out at two different spatial/scale levels: ecological-naturalistic (habitat level) and administrative (Commune level). Correspondingly, the main obtained results are: 1. Habitat level: comparing two ranking and prioritization methods, Ideal Vector and Salience, through important ecological metrics like Ecological Value (E.V.) and Ecological Sensitivity (E.S.), gives results not directly comparable. Being not based on a ranking process, Ideal Vector method seems to be used preferentially in landscapes characterized by high spatial heterogeneity. On the contrary, Salience method is probably to be preferred in ecological landscapes characterized by a low degree of heterogeneity in terms of not large differences concerning habitat E.V. and E.S.. 2. Commune level: Being habitat only a naturalistic partition of a given territory, it is necessary, for management decisions, to move towards the corresponding administrative units (Communes). From this point of view, the introduction of demography is an essential element of novelty in environmental analysis. In effect, demographic analysis makes the goal at point 1 more realistic introducing other dimensions (actual human pressure and its trend) which allows the individuation of environmentally fragile areas. Furthermore this approach individuates clearly the environmental responsibility of each administrative body for what concerns the biodiversity conservation. In effect communes’ ranking, according to environmental/demographic features, clarify the responsibilities of each administrative body. A concrete application of this necessary and useful integration of ecological and demographic data has been developed in designing an Ecological Network (E.N.).The obtained E.N. has the novelty to be not “static” but “dynamic” that is the network planning take into account the demographic pressure trends in the individuation of the probable future fragile points

    Acoustical measurements on stages of nine U.S. concert halls

    Get PDF
    corecore