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Abstract

Modern society has been increasingly depending on various systems that have consis-

tently enriched our lives. However, an absolute guarantee cannot be made that such

systems will perform their specific functions satisfactorily throughout their intended

life spans. System failure is an unavoidable event, and it can occur under various cir-

cumstances. The consequences of such failures could significantly impact our lives, as

in the cases of nuclear explosions, airplane crashes, and electrical network shutdowns.

Reliability, which is defined as the probability that a component or system will perform

its required function without failures under given conditions for a stated time interval,

is a critical metric of system performance. The appropriate evaluation and enhance-

ment of the reliability of such systems are critical to ensuring that they can meet their

design requirements.

In reliability theory, one of the key problems is to accurately determine the reliability

of a system from the knowledge of its component reliabilities. System reliability could

be used as a decision-making factor when choosing between design alternatives. Thus,

this thesis considers the reliability evaluation. Furthermore, system reliability plays

a major role in determining system performance, wherein systems are expected to be

reliable. It is necessary to design systems with high reliability, leading to the study

of reliability optimization, in which enhancing system reliability is the main objective.

Therefore, this thesis also focuses on the optimal design.

In practice, a system exists such that a cluster of failed components causes system

failure, which can be modeled as a connected-X-out-of-(m,n):F lattice system. Because

of theoretical development and practical applications in the research field of reliability,

much effort has been devoted to studying the reliability of this system. The main ob-

jective of this thesis is to propose methods and algorithms for the reliability evaluation

and the optimal design of connected-X-out-of-(m,n):F lattice systems.

This thesis consists of five chapters. Chapter 1 briefly explains the background and
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introduces the mathematical concepts useful for understanding subsequent chapters.

In addition, the literature reviews related to this thesis are detailed and systematically

classified.

Chapter 2 focuses on system reliability evaluation. Most of the research has been

devoted to studying the reliability of linear-type systems, whereas no study has focused

on toroidal-type systems. The applications, however, emphasize the necessity of study-

ing toroidal-type systems; therefore, we present algorithms for efficiently computing

the reliability of a toroidal-type system. The numerical experiments have shown the

efficiency of the algorithms. Furthermore, as the size of a system becomes large, ob-

taining the exact system reliability becomes time-consuming. Accordingly, it would be

beneficial to use appropriate upper and lower bounds if the exact system reliability is

not necessarily required. Thus, this thesis provides the upper and lower bounds for the

system reliability in such a case. From the results of the numerical experiments, it can

be concluded that the obtained bounds are tighter at the expense of the computational

effort compared with the existing bounds.

Chapter 3 considers the system signature. A stochastic comparison, which compares

the lifetimes of systems, can determine the system that works properly for a longer time.

The system signature is essential for establishing the stochastic comparison. However,

the computation of a system signature is known to be challenging, especially when a

system has a large number of components. Consequently, its practical applications have

generally been limited to relatively small systems. Therefore, methods for efficiently

computing the system signature are proposed for a connected-X-out-of-(m,n):F lattice

system. Numerical experiments are performed for comparing the efficiency of the pro-

posed and existing methods. Moreover, the obtained system signature enables us to

establish the stochastic comparison of these systems.

Chapter 4 addresses the component assignment problem for a linear connected-(r, s)-

out-of-(m,n):F lattice system, which is one type of connected-X-out-of-(m,n):F lattice

system. This problem aims to find a component arrangement that maximizes system

reliability, otherwise known as the optimal arrangement. For the sake of enhancing

system reliability, this problem is of great interest in the research field of reliability.

Although an enumeration method can theoretically find the optimal arrangement, it

is time-consuming and applicable only for small systems. This thesis thus develops

an efficient algorithm for finding the optimal arrangement. In addition, to improve

the efficiency, an algorithm specific to the case in which r = m − 1 and s = n − 1
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is also proposed. The comparison with the existing algorithm demonstrates that the

proposed algorithms outperform the existing one in terms of computation time. In

particular, the result shows that the algorithm specific to the case performs well for a

connected-(m− 1, n− 1)-out-of-(m,n):F lattice system.

The contributions of this thesis are summarized in Chapter 5, and various future

perspectives are discussed. The methods and algorithms resulting from the research in

this thesis will be useful for the reliability evaluation and the optimal design of practical

systems that can be expressed as connected-X-out-of-(m,n):F lattice systems.
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Acronyms and Notation

The following list the acronyms and notation, which are used in this thesis. Additional

notations are defined if necessary when they are introduced for the first time.

Acronyms

• Lin/Con/k/n:F system: linear consecutive-k-out-of-n:F system

• Cir/Con/k/n:F system: circular consecutive-k-out-of-n:F system

• Lin/(r, s)/(m,n):F system:

linear connected-(r, s)-out-of-(m,n):F lattice system

• Cir/(r, s)/(m,n):F system:

circular connected-(r, s)-out-of-(m,n):F lattice system

• Tor/(r, s)/(m,n):F system:

toroidal connected-(r, s)-out-of-(m,n):F lattice system

• Lin/(1, 2)-or-(2, 1)/(m,n):F system:

linear connected-(1, 2)-or-(2, 1)-out-of-(m,n):F lattice system

• Cir/(1, 2)-or-(2, 1)/(m,n):F system:

circular connected-(1, 2)-or-(2, 1)-out-of-(m,n):F lattice system

• Tor/(1, 2)-or-(2, 1)/(m,n):F system:

toroidal connected-(1, 2)-or-(2, 1)-out-of-(m,n):F lattice system

• B&B: branch-and-bound

• B-importance: Birnbaum importance
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• CAP: component assignment problem

• DFS: depth-first search

• FMCIA: finite Markov chain imbedding approach

• IID: independent and identically distributed

• INID: independent but non-identically distributed

• MTTF: mean time to failure

Notation

• |Ω|: the number of elements of the set Ω

• ∅: empty set

• \: set exclusive

• Ec: complement of the event E

• ⌈a⌉: the smallest integer greater than or equal to a

• ⌊a⌋: the greatest integer less than or equal to a

• X (G): indicator function that takes 1 if argument G is true; 0 otherwise

• Tr(A): trace of matrix A

• aT: transpose of row vector a

• Zj: random variable representing the state of the jth component (j = 1, 2, . . . , n)

Zj =

{
0, if the jth component works,

1, if the jth component fails.

• pj: reliability of the jth component, namely, pj = Pr{Zj = 0}

• p = (p1, p2, . . . , pn): vector of reliabilities of n components

• RL(k, n,p): reliability of the Lin/Con/k/n:F system with component reliabili-

ties p
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• RC(k, n,p): reliability of the Cir/Con/k/n:F system with component reliabili-

ties p

• Zij: random variable representing the state of component (i, j) (i = 1, 2, . . . ,m,

j = 1, 2, . . . , n)

Zij =

{
0, if component (i, j) works,

1, if component (i, j) fails.

• pij: reliability of component (i, j), namely, pij = Pr{Zij = 0}

• P = (pij)1≤i≤m,1≤j≤n: matrix of reliabilities of mn components

• RL((r, s), (m,n), P ): reliability of the Lin/(r, s)/(m,n):F system with component

reliabilities P

• RC((r, s), (m,n), P ): reliability of the Cir/(r, s)/(m,n):F system with component

reliabilities P

• RT ((r, s), (m,n), P ): reliability of the Tor/(r, s)/(m,n):F system with component

reliabilities P

• Y
(1,2)
ij : random variable that is defined, for i = 1, 2, . . . ,m and j = 2, 3, . . . , n, as

Y
(1,2)
ij = Zi,j−1 × Zij

• Y
(2,1)
ij : random variable that is defined, for i = 2, 3, . . . ,m and j = 1, 2, . . . , n, as

Y
(2,1)
ij = Zi−1,j × Zij

• RL((m,n), P ): reliability of the Lin/(1, 2)-or-(2, 1)/(m,n):F system with compo-

nent reliabilities P

• RC((m,n), P ): reliability of the Cir/(1, 2)-or-(2, 1)/(m,n):F system with compo-

nent reliabilities P

• RT ((m,n), P ): reliability of the Tor/(1, 2)-or-(2, 1)/(m,n):F system with compo-

nent reliabilities P
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• IB(i): B-importance of component i

• IB(i, j): B-importance of component (i, j)

• T : lifetime of the system

• T1, T2, . . . , TN : lifetimes of the N components

• Ti:N : the ith order statistic (that is, the ith smallest value) among T1, T2, . . . , TN

for i = 1, 2, . . . , N

• s(N) = (s1(N), s2(N), . . . , sN(N)): system signature

• ri(N): the number of path sets of a system with exactly i failed components

(i = 0, 1, . . . , N)

• xij: indicator variable representing the state of component (i, j) (i = 1, 2, . . . ,m,

j = 1, 2, . . . , n)

xij =

0, if component (i, j) works,

1, if component (i, j) fails.

• xj = (x1j, x2j, . . . , xmj): state vector representing the states of the m components

in the jth column (j = 1, 2, . . . , n)

• (xT
1 ,x

T
2 , . . . ,x

T
n): state matrix representing the states of the mn components in a

system

• N(xj): the number of the failed components in the jth column, that is,

N(xj) =
m∑
a=1

xaj

• ϕRS(xT
1 ,x

T
2 , . . . ,x

T
n): structure function of a Lin/(r, s)/(m,n):F system

• αz((r, s), (m,n)): the number of path sets of a Lin/(r, s)/(m,n):F system with

exactly z failed components

• ϕOR(xT
1 ,x

T
2 , . . . ,x

T
n): structure function of a Lin/(1, 2)-or-(2, 1)/(m,n):F system
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• βz(m,n): the number of path sets of a Lin/(1, 2)-or-(2, 1)/(m,n):F system with

exactly z failed components

• ≤st: usual stochastic ordering

• ≤sp: stochastic precedence ordering

• E(Z): expected value of random variable Z

• π(i, j): index of a component assigned to position (i, j) (i = 1, 2, . . . ,m and

j = 1, 2, . . . , n)

• Π = (π(i, j))1≤i≤m,1≤j≤n: arrangement of mn components that assigned compo-

nent π(i, j) to position (i, j)

• p = (p1, p2, . . . , pmn): vector of reliabilities of mn components (in CAP), where

p1 < p2 < · · · < pmn without loss of generality

• RL((r, s), (m,n),p; Π): reliability of the Lin/(r, s)/(m,n):F system under an ar-

rangement Π with component reliabilities p

• Ω: set of all arrangements

• Π∗: optimal arrangement, which is defined as

Π∗ ≡ arg max
Π∈Ω

RL((r, s), (m,n),p; Π)

xv



Chapter 1

Introduction

1.1 Background

Nowadays, there are many sophisticated systems, such as aircraft, space shuttles,

telecommunication networks, robots, and manufacturing facilities [1]. Reliability is

a critical metric of system performance and is defined as the probability that a com-

ponent or system will perform its required function under given conditions for a stated

time interval [2]. This definition contains three elements. The first element is “func-

tion,” and this should be clearly defined to quantify reliability. A failure means that a

component or system cannot perform its function satisfactorily. The second element is

“conditions,” and reliability depends on operating conditions. In other words, a system

or component might be reliable under certain conditions but become unreliable under

more severe conditions. Finally, reliability usually varies with “time”; thus, the time to

failure is a random variable.

An overview of historical developments in reliability engineering is presented as fol-

lows. The theory of reliability engineering has its roots in research on performance

evaluation of various military electronic systems during the Second World War. In

such an unusual situation, the systems were apt to be less reliable because they were

used in severe environments. The tendency was accelerated due to the increased com-

plexity of the systems. For these reasons, many electric systems could not perform

their functions due to frequent failures, which had a risk to cause serious accidents. To

overcome this problem, several new approaches that use probability theory and statis-

tics was introduced. Today, this is called reliability engineering. Over the years, many
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developments in reliability engineering have been obtained. The reliability engineering

is summarized was Birolini [2], and the basic concepts used in the reliability engineering

were introduced in Barlow and Proschan [3].

Modern society has been increasingly depending on various systems that have con-

sistently enriched our lives. However, an absolute guarantee cannot be made that such

systems will perform their specific functions satisfactorily throughout their intended life

spans. System failure is an unavoidable event, and it can occur under various circum-

stances. The consequences of such failures could significantly impact our lives, as in the

cases of nuclear explosions, airplane crashes, and electrical network shutdowns [4]. To

prevent accidents and reduce the causes of failure, these systems should be reliable. The

appropriate evaluation and enhancement of the reliability of such systems are critical to

ensuring that they can meet their design requirements. A reliability study of practical

systems provides helpful insights into industrial manufacturing and contributes to the

stable operation of practical systems.

Reliability theory focuses on evaluating the reliability of a component or system

and enhancing the system reliability during the design and operation phases. These

objectives are generally accomplished according to the following phases:

(1) collecting lifetime data on components using a reliability test;

(2) estimating the reliability of individual components based on the collected lifetime

data;

(3) computing the reliability of a system from the component reliabilities;

(4) optimizing reliability in the design phase;

(5) optimizing reliability in the operation phase.

In the reliability theory, one of the key problems is to accurately determine the reli-

ability of a system from the knowledge of its component reliabilities. System reliability

may be used to solve some optimization problems in the design or operation phase.

In addition, system reliability could be used as a decision-making factor when choos-

ing between design alternatives. Thus, this thesis considers Phase (3), the reliability

evaluation. In this thesis, it is assumed that the mission time of the system and its

components are implicitly specified, which means that we deal primarily with system

and component reliabilities instead of their reliability functions of time.
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A system should satisfy the performance requirements desired by the customer. Sys-

tem reliability plays a major role in determining system performance, wherein systems

are expected to be reliable. As described in Lad et al. [5], reliability has become a

mandatory requirement for customer satisfaction and is playing an increasing role in

determining the competitiveness of products (systems). Hence, it is necessary to design

systems with high reliability, leading to the study of reliability optimization, in which

enhancing system reliability is the main objective. Therefore, this thesis also focuses

on Phase (4), optimal design.

The primary objective of reliability optimization is to increase system reliability. To

realize that, there are five general options [6]:

(i) increasing the reliability of each component in the system;

(ii) providing redundant components in parallel;

(iii) using a combination of enhanced component reliability and redundant components

provisioned in parallel;

(iv) adjusting the system parameters;

(v) reassigning the exchangeable components.

The first option, increasing the component reliability is achieved by the intrinsic tech-

nology of each field and cannot be conducted by reliability engineering. The second and

third options are called the redundancy allocation problem (RAP) and the reliability-

redundancy allocation problem (RRAP), respectively. The RAP aims to determine a

system configuration by either maximizing system reliability under budget constraints

or by minimizing system cost under constraints on the system reliability. The RRAP is

the problem of maximizing system reliability through component reliability choices and

component redundancy. Relevant work could be seen in Kuo and Prasad [7], Kuo and

Wan [8], and Coit and Zio [9]. However, these options do not always yield satisfactory

results [10]. Specifically, the RAP not only increases costs but also adds undesirable

extra volume and weight to the system. Also, the RRAP may incur large costs to select

component reliability, for example, because of the difficulty in production. Therefore,

the other two approaches are considered in this thesis.

The fourth option is a problem of adjusting the system parameters, including a

parameter for determining the system size. Finding the optimal parameters would be
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helpful for designing a system with high reliability. The fifth option is called the compo-

nent assignment problem (CAP). The functionally exchangeable components can have

different reliabilities because of distinct brands, quality, ages, and/or extent of degrada-

tions [11]. Under the assumption that the components are functionally exchangeable,

different arrangements of components result in different system reliabilities. Hence, the

system reliability may be improved by optimally assigning components to positions in

the system.

1.2 System Reliability Modeling

Many modern systems are large and complicated, yet they often have characteristic

features and structures. The study of practical systems often utilizes simplified system

models based on these characteristic features and structures.

1.2.1 Consecutive-k System

In the reliability theory, literature has focused on different types of system models.

Typical system models are a series system and a parallel system; the series system fails

if and only if at least one component fails, whereas the parallel system fails if and only if

all the components fail. Besides, k-out-of-n:F system, which generalizes the series and

parallel systems, fails if and only if at least k of the n components fail. These systems

are relatively simple and quite general but can be applied to a variety of problems.

The state of k-out-of-n:F systems, including series and parallel systems, depends

only on the number of failed components, but not on the positions of failed compo-

nents. However, it is essential to consider the positions of failed components. In a

practical situation, a system exists such that a cluster of failed components causes a

system failure, and we should consider the positions of failed components in such a

system. Practical examples of such systems will be given later. In 1980, Kontoleon [12]

first studied such a system, and subsequently, Chiang and Niu [13] formally named it

“consecutive-k-out-of-n:F system.” Over the past four decades, because of theoretical

development and practical applications in the research field of reliability, much effort

has been devoted to studying the reliability of this system. Here, a consecutive-k sys-

tem is defined as a general term for systems such that a cluster of failed components

causes a system failure. This thesis uses the term “consecutive-k system,” but it is also
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Figure 1.1: Family of the consecutive-k systems.

called a consecutive-type system [14] or a consecutive multi-unit system [15]. Figure 1.1

displays the family of the consecutive-k systems (each system in this figure is explained

later).
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Figure 1.2: Lin/Con/k/n:F system.

1.2.2 Consecutive-k-out-of-n:F System

This subsection introduces a mathematical model to describe the consecutive-k-out-of-

n:F system since this system is the basis of the consecutive-k system. This system can

be classified into a linear-type and circular-type systems. Throughout this thesis, we

use the following nomenclature for the consecutive-k-out-of-n:F systems:

• Lin/Con/k/n:F system: linear consecutive-k-out-of-n:F system

• Cir/Con/k/n:F system: circular consecutive-k-out-of-n:F system

Also, Lin and Cir/Con/k/n:F systems are collectively called a consecutive-k-out-of-n:F

system in this thesis.

Before describing the above systems, we define some common notations. For j =

1, 2, . . . , n, we define the random variable Zj by

Zj =

{
0, if the jth component works,

1, if the jth component fails.
(1.1)

Letting pj denote the reliability of the jth component from the left-hand side of a

Lin/Con/k/n:F system, namely, pj = Pr{Zj = 0} for j = 1, 2, . . . , n, then we have

p = (p1, p2, . . . , pn). (1.2)

Lin/Con/k/n:F system

This system consists of n linearly ordered components and fails if and only if at least

k consecutive components fail as shown in Fig. 1.2. The reliability of the Lin/Con/k/n:F
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Figure 1.3: Cir/Con/k/n:F system.

system with component reliabilities p, denoted by RL(k, n,p), is defined by

RL(k, n,p) = Pr

{
n−k+1∩
l=1

{
l+k−1∏
v=l

Zv = 0

}}
. (1.3)

Cir/Con/k/n:F system

This system consists of n circularly ordered components and fails if and only if

at least k consecutive components fail as shown in Fig. 1.3. The reliability of the

Cir/Con/k/n:F system with component reliabilities p, denoted by RC(k, n,p), is de-

fined by

RC(k, n,p) = Pr

{
n∩

l=1

{
l+k−1∏
v=l

Zv = 0

}}
, (1.4)

where for j = 1, 2, . . . , n, Zj was defined in Eq. (1.1), and for j = n+1, n+2, . . . , n+k−1,

Zj = Zj−n for convenience.

For the applications of these systems, we give some practical examples.

Example 1. Oil Pipeline System (Chiang and Niu [13])

Let us consider an oil pipeline system consisting of n pump stations, and it transports

oil from point A to point B. The pump stations are equally spaced between points A

and B. Each pump station can transport the oil to the k next stations. If one pump

station fails, the flow of the oil would not be interrupted because the next stations could
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carry the load. However, when at least k consecutive pump stations fail, the flow is

interrupted, and the system fails. Thus, such an oil pipeline system can be modeled as

a Lin/Con/k/n:F system.

Example 2. Microwave Stations of a Telecom Network (Chiang and Niu [13])

Consider a sequence of n microwave stations designed to transmit information from

place A to place B. Assume that the microwave stations are equidistantly spaced be-

tween places A and B and each station is able to transmit information a distance up to

k microwave stations. Whenever there exist no k consecutive failed microwave stations,

the signal flow is not interrupted, and the signal reaches the receiver. However, it can be

readily verified that if at least k consecutive microwave stations fail, the communication

between places A and B will be interrupted, and hence, the whole system fails in this

situation. Thus, such a telecommunication system can be modeled as a Lin/Con/k/n:F

system.

Example 3. Road Lights in a Highway (Dafnis et al. [16], Peng et al. [17])

Let us consider a highway, which needs lighting during night-time. That is why

road lights are installed at regular intervals, e.g., 20 meters. When k consecutive lights

are not working, sufficient light does not exist in a particular area, which may affect

the traffic. Thus, such road lights can be modeled as a Lin/Con/k/n:F system.

Example 4. Production Monitoring System (Zhao et al. [18])

Let us consider a production monitoring system, which has n monitors. Each mon-

itor can observe k units, and they are equally spaced along the production line. If one

monitor fails, the neighboring working monitors can observe the units that the failed

monitor cannot observe. However, if k consecutive monitors fail, the monitoring system

will have a blind area, which means that the whole system is in failure. Thus, such a

production monitoring system can be modeled as a Lin/Con/k/n:F system.

Example 5. Closed Recurring Water-Cooling System (Shen and Cui [19])

Consider a closed recurring water-cooling system with n water pumps in a thermo-

electric plant. The water and steam expelled from a turbine are pumped to a cooling

tower through n water pumps. Because of the disparity of the water level, the cooled

water can be sent back to the boiler to produce steam for the turbine again. For such

a recurring water-cooling system, each pump must be powerful enough to pump water

and steam to at least the next k consecutive pumps. Failure of at least k consecutive
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pumps will interrupt the flow, which leads to the failure of the whole system. Thus, such

a closed recurring water-cooling system can be modeled as a Cir/Con/k/n:F system.

For a comprehensive survey of reliability studies of a consecutive-k-out-of-n:F system

and its generalized systems, see [14, 20–25].

1.2.3 Connected-X-out-of-(m,n):F Lattice System

A consecutive-k-out-of-n:F system can be regarded as a one-dimensional system,

and this system can be extended to two- or d-dimensional versions (d ≥ 3). The

two-dimension consecutive-k-out-of-n:F system was introduced first by Salvia and

Lasher [26] in 1990. After then, Boehme et al. [27] defined a more general two-dimension

consecutive-k-out-of-n:F system, i.e., connected-X-out-of-(m,n):F lattice system. This

system consists of mn components arranged into a rectangular pattern with m rows and

n columns. Here, X denotes the form of failed components that triggers system failure

and is called “failure pattern” throughout this thesis. To put it differently, the system

fails if and only if the system has at least one subset represented by failure pattern X

in which all components fail. This system belongs to the consecutive-k system because

this system has the feature that the system state is determined by the states of con-

secutive components. As typical examples of the connected-X-out-of-(m,n):F lattice

system, we consider the following two systems:

• connected-(r, s)-out-of-(m,n):F lattice system

• connected-(1, 2)-or-(2, 1)-out-of-(m,n):F lattice system

Studying the above systems can provide a basis for research on the general connected-

X-out-of-(m,n):F lattice system.

First, we define a connected-(r, s)-out-of-(m,n):F lattice system. If X represents

(r, s), the connected-X-out-of-(m,n):F lattice system becomes a connected-(r, s)-out-

of-(m,n):F lattice system. The linear-type and circular-type systems have been stud-

ied. As a natural extension of these systems, a toroidal-type system can be consid-

ered, but this system has not been studied so far. Consequently, the connected-(r, s)-

out-of-(m,n):F lattice system can be classified into a linear-type, circular-type, and

toroidal-type systems. Throughout this thesis, we use the following nomenclature for

the connected-(r, s)-out-of-(m,n):F lattice systems:
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Figure 1.4: Lin/(r, s)/(m,n):F system.

• Lin/(r, s)/(m,n):F system [27]:

linear connected-(r, s)-out-of-(m,n):F lattice system

• Cir/(r, s)/(m,n):F system [27]:

circular connected-(r, s)-out-of-(m,n):F lattice system

• Tor/(r, s)/(m,n):F system:

toroidal connected-(r, s)-out-of-(m,n):F lattice system

Also, Lin, Cir, and Tor/(r, s)/(m,n):F systems are collectively called a connected-(r, s)-

out-of-(m,n):F lattice system in this thesis.

Before describing the above systems, we define some common notations. The com-

ponent located at the ith row and the jth column is denoted by component (i, j) as

shown in Fig. 1.4 in a linear-type system. For i = 1, 2, . . . ,m and j = 1, 2, . . . , n, we

define the random variable Zij by

Zij =

{
0, if component (i, j) works,

1, if component (i, j) fails.
(1.5)

Letting pij denote the reliability of component (i, j), namely, pij = Pr{Zij = 0}, for
i = 1, 2, . . . ,m and j = 1, 2, . . . , n, then we have

P = (pij)1≤i≤m,1≤j≤n . (1.6)
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Figure 1.5: Cir/(r, s)/(m,n):F system.

Lin/(r, s)/(m,n):F system

This system consists ofmn components arranged as an (m,n) matrix and fails if and

only if the system has an (r, s) sub-matrix where all components fail. In a linear-type

system, (r, s) sub-matrix represents a matrix that consists of r rows and s columns. Fig-

ure 1.4 depicts the Lin/(r, s)/(m,n):F system. The reliability of the Lin/(r, s)/(m,n):F

system with component reliabilities P , denoted by RL((r, s), (m,n), P ), is defined by

RL((r, s), (m,n), P ) = Pr

{
m−r+1∩
k=1

n−s+1∩
l=1

{
k+r−1∏
u=k

l+s−1∏
v=l

Zuv = 0

}}
. (1.7)

Cir/(r, s)/(m,n):F system

This system forms a cylinder in which both ends of a Lin/(r, s)/(m,n):F system are

connected as shown in Fig. 1.5. For a circular-type system, the component located at

the ith circle and the jth ray is denoted by component (i, j). This system fails if and

only if the system has an (r, s) sub-matrix where all components fail. In a circular-

type system, (r, s) sub-matrix represents a matrix that consists of r circles and s rays.

Figure 1.6 depicts the failures of the Cir/(2, 3)/(5, 6):F systems as two-dimensional

grids. In Fig. 1.6 (b), since the 1st and 6th rays are connected, this system has a (2, 3)

sub-matrix where all components fail. The reliability of the Cir/(r, s)/(m,n):F system
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Figure 1.6: Failures of the Cir/(2, 3)/(5, 6):F systems.

with component reliabilities P , denoted by RC((r, s), (m,n), P ), is defined by

RC((r, s), (m,n), P ) = Pr

{
m−r+1∩
k=1

n∩
l=1

{
k+r−1∏
u=k

l+s−1∏
v=l

Zuv = 0

}}
, (1.8)

where, for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, Zij was defined in Eq. (1.5) and for

i = 1, 2, . . . ,m and j = n+ 1, n+ 2, . . . , n+ s− 1, Zij = Zi,j−n for convenience.

Tor/(r, s)/(m,n):F system

This system has mn components, which are deployed at the intersections of m

circles and n rings as shown in Fig. 1.7. For a toroidal-type system, the component

located at the ith circle and the jth ring is denoted by component (i, j). This system

fails if and only if the system has an (r, s) sub-matrix where all components fail. In

a toroidal-type system, (r, s) sub-matrix represents a matrix that consists of r circles

and s rings. The failures of the Tor/(2, 3)/(5, 6):F systems are pictorially illustrated

in Fig. 1.8 as two-dimensional grids. The system in Fig. 1.8 has a (2, 3) sub-matrix

where all components fail because the 1st and 5th circles are connected. The reli-

ability of the Tor/(r, s)/(m,n):F system with component reliabilities P , denoted by
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Figure 1.7: Tor/(r, s)/(m,n):F system.

RT ((r, s), (m,n), P ), is defined by

RT ((r, s), (m,n), P ) = Pr

{
m∩
k=1

n∩
l=1

{
k+r−1∏
u=k

l+s−1∏
v=l

Zuv = 0

}}
, (1.9)

where, for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, Zij was defined in Eq. (1.5) and for the

other cases,

Zij =


Zi,j−n, if 1 ≤ i ≤ m and n+ 1 ≤ j ≤ n+ s− 1,

Zi−m,j, if m+ 1 ≤ i ≤ m+ r − 1 and 1 ≤ j ≤ n,

Zi−m,j−n, if m+ 1 ≤ i ≤ m+ r − 1 and n+ 1 ≤ j ≤ n+ s− 1,

for convenience.

Second, we define a connected-(1, 2)-or-(2, 1)-out-of-(m,n):F lattice system. If

X represents (1, 2)-or-(2, 1), the connected-X-out-of-(m,n):F lattice system becomes

a connected-(1, 2)-or-(2, 1)-out-of-(m,n):F lattice system. This system can also be

classified into a linear-type, circular-type, and toroidal-type systems similarly to the

connected-(r, s)-out-of-(m,n):F lattice system. Throughout this thesis, we use the fol-

lowing nomenclature for the connected-(1, 2)-or-(2, 1)-out-of-(m,n):F lattice system:

• Lin/(1, 2)-or-(2, 1)/(m,n):F system [27]:

linear connected-(1, 2)-or-(2, 1)-out-of-(m,n):F lattice system

• Cir/(1, 2)-or-(2, 1)/(m,n):F system [27]:
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Figure 1.8: Failure of the Tor/(2, 3)/(5, 6):F system.

circular connected-(1, 2)-or-(2, 1)-out-of-(m,n):F lattice system

• Tor/(1, 2)-or-(2, 1)/(m,n):F system:

toroidal connected-(1, 2)-or-(2, 1)-out-of-(m,n):F lattice system

Also, Lin, Cir, and Tor/(1, 2)-or-(2, 1)/(m,n):F systems are collectively called a

connected-(1, 2)-or-(2, 1)-out-of-(m,n):F lattice systems in this thesis.

Before describing the above systems, we define some common notations. The ran-

dom variables Y
(1,2)
ij and Y

(2,1)
ij are defined, for i = 1, 2, . . . ,m and j = 2, 3, . . . , n,

as

Y
(1,2)
ij = Zi,j−1 × Zij, (1.10)

and, for i = 2, 3, . . . ,m and j = 1, 2, . . . , n,

Y
(2,1)
ij = Zi−1,j × Zij. (1.11)

Lin/(1, 2)-or-(2, 1)/(m,n):F system

This system consists of mn components arranged as an (m,n) matrix. It fails if

and only if the system has the two adjacent failed components in a row or a column.

Note that Y
(1,2)
ij (or Y

(2,1)
ij ) takes one if there exists at least one failure pattern (1, 2)

(or (2, 1)), and otherwise zero. The failure criterion of a Lin/(1, 2)-or-(2, 1)/(m,n):F

system is pictorially explained in Fig. 1.9. Fig. 1.9 (a) shows that the failed compo-
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Figure 1.9: Working and failed Lin/(1, 2)-or-(2, 1)/(m,n):F systems.

nents are located sparsely. Because the working components adjacent to each failed

component can complement the failed one, the system works normally. In contrast,

Fig. 1.9 (b) has two adjacent failed components, and thus, the system fails. The relia-

bility of the Lin/(1, 2)-or-(2, 1)/(m,n):F system with component reliabilities P , denoted

by RL((m,n), P ), is defined by

RL((m,n), P ) = Pr

{
m∏
i=1

n∏
j=2

(
1− Y

(1,2)
ij

)
×

m∏
i=2

n∏
j=1

(
1− Y

(2,1)
ij

)
= 1

}
. (1.12)

Cir/(1, 2)-or-(2, 1)/(m,n):F system

This system consists of mn components, which are arranged in a lattice on the

surface of a cylinder. It fails if and only if the system has the two adjacent failed

components in a circle or ray. The reliability of the Cir/(1, 2)-or-(2, 1)/(m,n):F system

with component reliabilities P , denoted by RC((m,n), P ), is defined by

RC((m,n), P ) = Pr

{
m∏
i=1

n∏
j=1

(
1− Y

(1,2)
ij

)
×

m∏
i=2

n∏
j=1

(
1− Y

(2,1)
ij

)
= 1

}
, (1.13)

where, for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, Zij was defined in Eq. (1.5), and for

i = 1, 2, . . . ,m, Zi0 = Zin for convenience.
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Tor/(1, 2)-or-(2, 1)/(m,n):F system

This system consists of mn components, which are arranged in a lattice on the

surface of a torus. It fails if and only if the system has the two adjacent failed compo-

nents in a circle or ring. The reliability of the Tor/(1, 2)-or-(2, 1)/(m,n):F system with

component reliabilities P , denoted by RT ((m,n), P ), is defined by

RT ((m,n), P ) = Pr

{
m∏
i=1

n∏
j=1

(
1− Y

(1,2)
ij

)
×

m∏
i=1

n∏
j=1

(
1− Y

(2,1)
ij

)
= 1

}
, (1.14)

where, for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, Zij was defined in Eq. (1.5), for i =

1, 2, . . . ,m, Zi0 = Zin, and for j = 1, 2, . . . , n, Z0j = Zmj for convenience.

The following illustrative examples for connected-X-out-of-(m,n):F lattice systems

are presented as follows:

Example 6. Wireless Sensor Network System (Lin et al. [28])

Let us consider a wireless sensor network (WSN). Current and potential applica-

tions of sensor networks include: military sensing, physical security, air traffic control,

traffic surveillance, industrial and manufacturing automation, distributed robotics, en-

vironment monitoring, and building and structures monitoring [29]. Their wide range

of applications is based on the possible use of various sensor types (i.e. thermal, visual,

seismic, acoustic, radar, magnetic) in order to monitor a wide variety of conditions (e.g.

temperature, object presence and movement, humidity, pressure, noise levels) [30]. For

simplicity, we suppose that the sensors in this system are deployed in a lattice struc-

ture. These sensors can detect the information of interest with limited coverage range,

and the system has overlapped coverage ranges among different sensors. If one sensor

fails, we cannot obtain the information within its coverage range; however, the neigh-

boring working sensors can provide the necessary information. On the contrary, if a

cluster of failed sensors exists, it may cause a blind spot in the system; consequently,

the entire system will be unable to function normally. Thus, such a WSN can be mod-

eled as a Lin/(r, s)/(m,n):F system. Depending on the coverage range of each sensor,

a Lin/(1, 2)-or-(2, 1)/(m,n):F system could be used to evaluate this system. Liu [31]

discussed this application in detail.

Example 7. Phased Array Radar (Yuge et al. [32], Lin et al. [33])

Consider a phased array radar. The T/R modules are placed at the coordinate point
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Figure 1.10: Example of a supervision system.

with m rows and n columns. Because of overlapping coverage of the T/R modules, the

radar can continue working when some of the modules are failed sparsely. However, if

an (r, s) sub-matrix of failed components occurs, a blind spot exists, which would lead

the malfunction of the radar. As a result, the whole system is regarded as a failure.

Thus, such a phased array radar can be modeled as a Lin/(r, s)/(m,n):F system.

Example 8. Pattern Detection (Salvia and Lasher [26])

The presence of cancer is diagnosed by reading an X-ray picture represented by an

(m,n) matrix of cells. Unless the local density of cancer cells is sufficiently large, i.e.,

there are (r, s) sub-matrix of cells, the radiologist might not detect their presence. A

Lin/(r, s)/(m,n):F system can be used in such a pattern detection.

Example 9. Supervision System (Boehme et al. [27])

Let us consider a supervision system with mn surveillance cameras arranged into

m rows and n columns to monitor a specified area. Each surveillance camera super-

vises an area with radius r, and all surveillance cameras are the same. Even if the

failed surveillance cameras are located sparsely, the system can work normally. This is

because the working surveillance cameras adjacent to each failed surveillance camera

can complement the failed one, and the whole area can be monitored. However, two

adjacent failed surveillance cameras will cause a blind spot, which is out of observation.

Consequently, the whole system fails. Thus, such a supervision system can be modeled

as a Lin/(1, 2)-or-(2, 1)/(m,n):F system. Figure 1.10 graphically illustrates an exam-

ple of a supervision system, which is modeled as a Lin/(1, 2)-or-(2, 1)/(4, 4):F system.
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Noguchi et al. [34] discussed this application in detail.

Likewise, a Lin/(1, 2)-or-(2, 1)/(m,n):F system can be used to model a lighting

(sprinkler) system with lights (sprinklers) arranged into m rows and n columns.

Example 10. Liquid Crystal Screen (Akiba and Yamamoto [35])

Let us consider a liquid crystal screen, which, for example, is used in a laptop com-

puter. This screen consists of a number of liquid crystal cells arranged in a matrix

configuration. Even if some liquid crystal cells fail sparsely, we can get specific infor-

mation from the screen. However, if there exists a cluster of the failed liquid crystal

cells, information cannot accurately be obtained. Accordingly, the whole system is re-

garded as a failure. Such a liquid crystal screen can be modeled as a Lin/(r, s)/(m,n):F

system.

Besides, when considering a liquid crystal screen with 360-degree wide-area visual

angle, we can use a Cir/(r, s)/(m,n):F system to model this screen.

Example 11. Alarm System (Boehme et al. [27], Makri and Psillakis [36])

Consider an alarm system consisting of sensors arranged in a lattice on the sur-

face of a cylindrical object, e.g., a reactor, where this system has m circles parallel

to the reactor’s base and each circle has n sensors. It is supposed that each sensor

can measure the temperature. This system fails whenever there exists an (r, s) sub-

matrix where all sensors fail. Thus, such a cylindrical alarm system can be modeled

as a Cir/(r, s)/(m,n):F system. Depending on the measuring range of each sensor, a

Cir/(1, 2)-or-(2, 1)/(m,n):F system could be used to evaluate this alarm system.

Also, let us consider an alarm system consisting of sensors arranged in a lattice

on the surface of a toroidal object, e.g., toroidal storage tank and neutron accelerator.

Here, a toroidal object has m vertical circles and n horizontal circles, and the sensors

are deployed at their intersections (Fig. 1.11). This system fails whenever there exists

an (r, s) sub-matrix where all sensors fail, and hence, such a toroidal alarm system

can be modeled as a Tor/(r, s)/(m,n):F system. Depending on the measuring range of

each sensor, a Tor/(1, 2)-or-(2, 1)/(m,n):F system could be used to evaluate this alarm

system.
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Figure 1.11: Example of a toroidal alarm system.

1.2.4 Other Connected-X-out-of-(m,n):F Lattice Systems

Various types of consecutive-k systems have been developed. Some of the representative

systems are listed as follows:

Connected-
∪k

θ=1Xθ-out-of-(m,n):F lattice system [37]

This system consists of mn components arranged as an (m,n) matrix and has multi-

ple failure criteria. Specifically, this system fails if and only if the system has one of the

Xθs where all components fail for θ = 1, 2, . . . , k, where Xθ represents a failure pattern.

If k = 1 and X1 = (r, s), then it is equivalent to a Lin/(r, s)/(m,n):F system; if k = 2,

X1 = (1, 2), and X2 = (2, 1), then it is equivalent to a Lin/(1, 2)-or-(2, 1)/(m,n):F

system.

k-within-consecutive-(r, s)-out-of-(m,n):F system [38]

This system consists of mn components arranged as an (m,n) matrix and fails if

and only if there is at least one cluster of size r × s such that the number of the failed

components within this cluster is at least k. If k = rs, then it is equivalent to a

Lin/(r, s)/(m,n):F system.

Combine k-out-of-mn:F and linear connected-(r, s)-out-of-(m,n):F lattice sys-

tem [39]

This system consists of mn components arranged as an (m,n) matrix and fails if

and only if at least k components fail in the system, or there is an (r, s) sub-matrix

where all components fail. If k = mn, then it is equivalent to a Lin/(r, s)/(m,n):F

system.
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Adjacent triangle-(m,n):F triangular lattice system [40]

This system consists of mn components arranged on a triangular lattice and fails if

the system has three adjacent failed components that are the vertices of a triangle.

In addition, as a natural generalization, the concept of the connected-X-out-of-

(m,n):F lattice system can be extended to space, that is to say, this system can be

extended to multi-dimensional cases. These systems are listed below:

• Three-dimensional consecutive-k-out-of-n:F system [41]

• Three-dimensional consecutive-(r1, r2, r3)-out-of-(n1, n2, n3):F system [42,43]

• Conditional three-dimensional consecutive-(r, r, r)-out-of-(n, r, r):F system [44]

• d-dimensional consecutive-k-out-of-n:F system [45,46]

• Three-dimensional adjacent triangle:F triangular lattice system [47]

For a comprehensive survey of reliability studies of connected-X-out-of-(m,n):F lattice

systems and its generalized systems, see Kuo and Zuo [22] and Yamamoto and Ak-

iba [48]. Recent developments can be found in Akiba et al. [49] and Cui and Dong [25].

1.3 General Problems for Consecutive-k Systems

In this section, we briefly take an overview of the general problems for consecutive-k

systems, which are addressed in Chapters 2, 3, and 4 of this thesis. Recall that this

thesis is devoted to Phases (3) and (4) in page 2.

(3) computing the reliability of a system from the component reliabilities;

(4) optimizing reliability in the design phase.

(3) Computing the reliability of a system from the component

reliabilities

One of the traditional problems in the research field of reliability is known as the

reliability evaluation, that is, to compute the system reliability when the component

reliabilities are given. It is noteworthy that system reliability provides a useful tool
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to solve some optimization problems in the design or operation phase. Therefore, the

system reliability evaluation is a fundamental step in all reliability studies.

(3-1) Reliability Evaluation (Exact method)

In many situations, the exact system reliabilities are necessary, such as reliability op-

timization, component importance analysis [50]. For a small system, generally, the

system reliability can be obtained by enumeration method, which is the simplest of all

methods for computing system reliability. For example, let us consider a system with

N components. This method enumerates 2N possible system states that depend on the

states of N components. These 2N system states are identified for being a working or

failed state of the system, and eventually, the system reliability can be obtained as a

summation of the probabilities associated with the working states. Since this method

needs to identify the 2N possible system states, it is inefficient and time-consuming,

and as a result, it may fail to obtain the system reliability within a reasonable time.

Consequently, the practical application of this method is limited to relatively small

systems. Therefore, many valuable methods for the reliability of consecutive-k systems

have been developed.

Fundamental techniques for system reliability evaluation are pivotal decomposi-

tion, the inclusion-exclusion method, and the sum-of-disjoint-products method (see [22,

Chapter 5]). In the case where the components are independent and identically dis-

tributed, most researchers have used the combinatorial approach for reliability evalua-

tion. The combinatorial approach can find an explicit expression of system reliability as

a function of common component reliability. In the case where the components are inde-

pendent but non-identically distributed, two types of methods are common and popular

for efficiently computing the reliability of the consecutive-k systems: the recursive equa-

tion approach and the finite Markov chain imbedding approach (FMCIA). For deriving

a recursive equation, we condition some components in a system, and then, “the event

that the system works” is decomposed into “several disjoint events that systems with

the conditions work.” In this manner, a recursive equation for computing the system re-

liability can be derived. This approach is called the event decomposition approach [22].

Many recursive equation approaches for computing the reliability of consecutive-k-out-

of-n:F systems have been reported in the literature. For a Lin/Con/k/n:F system, the

recursive equation was first used by Chiang and Niu [13], and subsequently, Hwang [51]

derived the well-known recursive equation. Lin [52] derived a recursive equation for the
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reliability of a Lin and Cir/Con/k/n:F systems consisting of the components with the

same reliability.

The FMCIA has also been one of the most successful approaches for computing the

reliability of a consecutive-k system. The basic idea of the FMCIA is to construct a

finite state Markov chain to fit the discussed problems and then use the property of the

Markov chain to give the solutions [53]. It was first employed by Fu [54] and Fu and

Hu [55], and subsequently, this method was named “finite Markov chain imbedding”

by Fu and Koutras [56]. In addition, Zhao and Cui [57] introduced the accelerated

scan FMCIA, which can reduce the number of matrices required for computing the

system reliability. As a result, the complexity of computation can be reduced, and the

efficiency of computation can be enhanced.

The recursive equation approach and the FMCIA are also used to compute the

reliability of connected-X-out-of-(m,n):F lattice systems. For a Lin/(r, s)/(m,n):F

system, Yamamoto and Miyakawa [58] and Noguchi et al. [59] derived the recur-

sive equations. Zhao et al. [60] employed the FMCIA to compute the reliability

of the Lin/(r, s)/(m,n):F system. For a Cir/(r, s)/(m,n):F system, Yamamoto and

Miyakawa [61] and Yamamoto and Akiba [62] derived the recursive equations. For

a Lin/(1, 2)-or-(2, 1)/(m,n):F system, Higashiyama [63], and Yamamoto et al. [64]

derived the recursive equations. For a Cir/(1, 2)-or-(2, 1)/(m,n):F system, Hi-

gashiyama [65] derived the recursive equations.

(3-2) Reliability Evaluation (Bounds)

The above methods enable us to obtain the reliability of consecutive-k systems ef-

ficiently. For example, the method of Lin [52] can compute the reliability of a

Lin/Con/k/n:F system with k = 50 and n = 16384000 in about 5 seconds. How-

ever, when we compute the reliability of a large connected-X-out-of-(m,n):F lattice

system, the conventional methods require significant computation time and may fail to

obtain the system reliability. To mitigate this difficulty, the upper and lower bounds

for system reliability have also been used since they can be computed in a shorter com-

putation time. A lower bound is the minimum system reliability, whereas an upper

bound is an optimistic estimation of the system reliability.

Many upper and lower bounds for system reliability have been reported. First, we

introduce the existing lower bounds for system reliability. Let us consider a coherent

22



system1 with n components, and this system has N minimal cut sets as follows:

C = {C1, C2, . . . , CN}. (1.15)

where a set C ⊆ {1, 2, . . . , n} is called a cut set of a coherent system if the system

fails when all the components in C fail. In particular, a cut set that does not contain

other cut sets is called a minimal cut set. Let pi denote the reliability of component i

for i = 1, 2, . . . , n, and Esary and Proschan [66] provided a well-known lower bound as

follows:

LBEP =
∏
C∈C

(
1−

∏
i∈C

(1− pi)

)
. (1.16)

The lower bound LBEP is obtained by considering a series system with |C| independent
subsystems, and each subsystem has a parallel structure whose components are con-

tained in each minimal cut. As argued in Boutsikas and Koutras [67], a combination

of several minimal cut sets results in reducing the number of subsystems, and as a

result, we can obtain a tighter lower bound. An arbitrary partition of C in Eq. (1.15) is

denoted by {C1,C2, . . . ,Cv} for v = 2, 3, . . . , N , such that Cs ⊆ C, for s = 1, 2, . . . , v,

Cs ∩ Ct = ∅ when s ̸= t, and
∪v

s=1 Cs = C. Let R (Cs) be the reliability of a system

with the minimal cuts Cs for s = 1, 2, . . . , v, and then the lower bound is

LB
(G)
EP =

v∏
s=1

R (Cs) . (1.17)

Next, we introduce the existing upper bounds for system reliability. Yamamoto and

Miyakawa [58] established an upper bound for the reliability of a Lin/(r, s)/(m,n):F

system. This upper bound can be extended to any coherent system. An arbitrary

partition of C in Eq. (1.15) is denoted by {K0,K1,K2, . . . ,Ku} for u = 2, 3, . . . , N , such

that Ks ⊆ C for s = 0, 1, . . . , v, Ks∩Kt = ∅ when s ̸= t, and
∪u

s=0 Ks = C. Besides, for
any A ∈ Ks and B ∈ Kt (s = 1, 2, . . . , v, t = 1, 2, . . . , v, and s ̸= t), A ∩ B = ∅ holds.

Let R (Ks) be the reliability of a system with the minimal cuts Ks for s = 1, 2, . . . , v,

1A general system that satisfies the following conditions: (a) the state of the system depends on
the states of all of its components; (b) the improvement of any component usually does not degrade
the performance of the system.
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and then an upper bound UB
(G)
YM is given by

UB
(G)
YM =

u∏
s=1

R (Ks) . (1.18)

Fu and Koutras [68] provided an upper bound for system reliability, and subsequently,

Boutsikas and Koutras [67] established an upper bound (UB
(G)
FK) for the reliability of

any coherent system, which can be obtained by generalizing the upper bound derived

by Fu and Koutras [68].

Boutsikas and Koutras [67] derived some bounds that extended the existing bounds

and comprehensively compared the derived and existing bounds. The result showed

that the lower bound LB
(G)
EP and the upper bound UB

(G)
FK exhibit the highest per-

formance among the bounds available in the literature so far. In addition, the up-

per and lower bounds for the reliability of the connected-X-out-of-(m,n):F lattice

systems were reported by many papers (e.g., Yamamoto and Miyakawa [58], Ya-

mamoto [69], Godbole [46], Boutsikas and Koutras [67], Hsieh and Chen [70], and

Lin et al. [33].) Moreover, Beiu and Daus [71] reviewed several bounds for the reliabil-

ity of the Lin/(r, s)/(m,n):F systems.

(3-3) Component Importance Analysis

According to Si et al. [72], the importance measure is defined as a criterion to evaluate

the degree of the system performance changes due to the state changes of certain com-

ponent. In reliability engineering, importance measures are generally used to rank the

components in a system according to their contributions to the proper functioning of

the entire system. For a review of the literature on importance measures, the reader is

referred to Ohi [73] and Amrutkar and Kamalja [74]. Among all the importance mea-

sures, the Birnbaum importance (B-importance) is still one of the most widely studied

importance measures in the context of consecutive-k systems [19]. The B-importance

was introduced by Birnbaum [75], and it means the probability of the occurrence of

the circumstances where the state of a component critically contributes to the system

state [73]. The B-importance of component i, denoted by IB(i), can be computed by

IB(i) = R(1i,p
i)−R(0i,p

i), (1.19)

where R(1i,p
i) (R(0i,p

i)) is the reliability of the system in which the reliability of
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component i is 1 (0). In real applications, it is important to identify the most critical

component of the system in designing and operating a reliable system. For instance,

the B-importance can be used to determine which component should be preferentially

maintained.

As for Lin/Con/k/n:F systems, Zhu et al. [50] and Kamalja [76] investigated B-

importance patterns, which become a guide for designing and operating a reliable sys-

tem [18]. Furthermore, Zhao et al. [60] provided the B-importance of the components

in a Lin/(r, s)/(m,n):F system as a numerical example. Recently, Dui and Si [77]

addressed reliability optimization based on the B-importance.

(4) Optimizing reliability in the design phase

Here, we describe optimizing reliability in the design phase. Recall that two approaches

to enhancing system reliability are considered in this thesis.

(iv) adjusting the system’s parameters;

(v) reassigning the exchangeable components.

(4-1) Stochastic Comparison

A stochastic comparison compares the lifetimes2 of systems and can be used to ap-

propriately determine the system parameters. The system signature is essential for

establishing the stochastic comparison. The concept of system signature, which is a

useful tool for analyzing coherent systems [78], was introduced by Samaniego [79]. As-

sume a coherent system consisting of N components, whose lifetimes are independent

and identically distributed. Samaniego [78] defined the system signature as follows:

Definition 1.1 (Samaniego [78]). The system signature, denoted by s(N), is an N -

dimensional probability vector whose ith element si(N) is equal to the probability that

the ith component failure causes the system to fail. In brief,

si(N) = Pr{T = Ti:N}, (1.20)

where T is the lifetime of the system and Ti:N is the ith order statistic of the N

component failure times, that is, the time of the ith component failure.

2A lifetime is defined as the time when a component or system fails.
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Note that
∑N

i=1 si(N) = 1. By means of the system signature, the reliability function

can be represented as

Pr{T > t} =
N∑
i=1

si(N) Pr{Ti:N > t}, (1.21)

which shows the probability that the system’s lifetime is larger than t, the probability

that the system will survive beyond time t, or the probability that the system will fail

after time t [22]. Samaniego [78] summarized the studies on the system signature.

In reliability engineering, the system signature has various theoretical applications,

a few of which are described here. As noted above, the system signatures are used

primarily to establish stochastic comparisons of some systems. The essential feature of

this approach is that it is based on system structural invariant, which depends only on

a structure function and does not depend on probabilistic properties (such as lifetime

distribution) of the components [80]. The stochastic comparisons of the consecutive-k-

out-of-n:F systems were reported by the existing studies [81–83].

The system signature can also be used to derive the mean time to failure (MTTF

for short) and the mean number of failed components that are failed at the time of

system failure [84], which can be easily derived once a system signature is obtained.

This is advantageous when repeated analysis of a system is required, for example,

in the analysis of real-time systems, importance measure analysis, and optimization

problems [85]. Now, the system signature has become an indispensable tool in the

reliability studies.

(4-2) Component Assignment Problem (Exact method)

Another reliability optimization problem that has been studied in the research field of

reliability is the component assignment problem (CAP). This problem aims to find a

component arrangement that maximizes system reliability, otherwise known as the op-

timal arrangement. A practical system is expected to be reliable and work satisfactorily

for a long time. For the sake of enhancing the system reliability in the design phase, the

problem of how and where to assign the components to the system is of great interest

in the research field of reliability. Considerable work has been done on the CAP for

coherent systems, particularly on Con/k/n:F systems, Kuo and Zhu [86] summarized

the results of the CAP.

Optimal arrangements are classified into two types: invariant and variant opti-
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mal arrangements. An invariant optimal arrangement is an optimal arrangement that

depends only on the ordering of the values of component reliabilities, and a variant

optimal arrangement is an optimal arrangement that depends on the numerical values

of component reliabilities.

An attractive characteristic of an invariant optimal arrangement is that if we know

only the ordering of the component reliabilities, it is possible to determine the optimal

arrangement without any computations of the system reliability. Even if it is hard

to obtain the exact values of component reliabilities, it may be relatively easy to get

their orderings. For example, the reliability of components can be ordered according to

their ages. Besides, in a practical situation, the component reliabilities are statistically

estimated (Phase (2)). If the estimated values have an error or vary within a range,

but the ordering of the estimated values is the same as the ordering of the actual

component reliabilities, then we can obtain the invariant optimal arrangement. Zuo

and Kuo [87] summarized the results available for the invariant optimal arrangement

of Lin/Con/k/n:F systems and Cir/Con/k/n:F systems.

Most of the optimal arrangements depend on the values of component reliabilities,

that is to say, they are variant optimal arrangements. Thus, we need to solve a com-

binatorial optimization problem for finding the optimal arrangement. An exhaustive

enumeration method is a classic method for exactly solving the CAP. This method

generates all possible component arrangements, evaluates system reliability under each

component arrangement, and then finds the optimal arrangement. However, when the

number of components is not small, this method encounters the combinatorial explosion

problem, and thereby, it may fail to find the optimal arrangement within a reasonable

time. Therefore, methods for solving the CAP are required and can be broadly classified

into two approaches: the exact method and the approximate method.

In general, exact methods are used to find the optimal arrangement of small or

middle-sized systems. A branch-and-bound (B&B) framework is a fundamental and

widely used methodology for efficiently finding an optimal solution to the combinatorial

optimization problem. The method systematically enumerates all possible candidates

for the solution and finds the solution effectively by discarding candidates that will not

be optimal. The operation term where non-optimal candidates are discarded is called

“pruning” in this thesis. To enhance the speed of the B&B method, we should perform

the pruning as many times as possible. In the CAP, basically, there are three pruning

types as follows [88]:
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(a) pruning based on the necessary condition that the optimal arrangement must

satisfy;

(b) pruning for eliminating the equivalent arrangement;

(c) pruning based on system reliability.

Here, equivalent arrangements mean component arrangements with the same system

reliability for any component reliabilities. The mathematical definition of the equivalent

arrangements is given in Chapter 4. Besides, combining the B&B method with a

particular recursive equation reduces the complexity of computation, which is explained

in Chapter 4.

As for consecutive-k-out-of-n:F systems, Hanafusa and Yamamoto [88] developed a

B&B-based algorithm for finding the optimal arrangement of a Lin/Con/k/n:F system.

This algorithm incorporates (a) pruning based on the necessary condition, (b) pruning

for eliminating the equivalent arrangement, and (c) pruning based on system reliability.

It employs the recursive equation derived by Hwang [51] to compute the system reli-

ability. Shingyochi and Yamamoto [89] developed a B&B-based algorithm for finding

the optimal arrangement of a Cir/Con/k/n:F system. This algorithm also incorporates

(a), (b), and (c) and employs the recursive equation [51].

As for connected-X-out-of-(m,n):F lattice systems, especially Lin/(r, s)/(m,n):F

system, Koutras et al. [90] established the necessary condition that the optimal ar-

rangement must satisfy. Omura et al. [91] proposed an algorithm for finding the opti-

mal arrangement, which is available for the case of r = m and s = 2. It utilizes the

invariant optimal arrangement of a Lin/Con/2/n:F system [92] to reduce the number

of candidates for the optimal arrangement. For the case of r = m − 1 and 2s > n,

Omura et al. [93] developed a B&B-based algorithm for finding the optimal arrange-

ment. This algorithm incorporates (a) pruning based on the necessary condition and

(b) pruning for eliminating the equivalent arrangement.

(4-3) Component Assignment Problem (Approximate method)

Even if we use this efficient algorithm, it is time-consuming and sometimes impossible

to find the optimal arrangement for a large system. On the other hand, the heuristic

and meta-heuristic methods can solve large-scale problems more efficiently. Therefore,

these are not able to certify the optimality of the solutions that they find. Generally,
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they are classified into two groups: heuristics methods and meta-heuristics methods3.

In solving the CAP for Lin/Con/k/n:F systems or Cir/Con/k/n:F systems, various

heuristic and meta-heuristic methods have been reported over the past thirty years.

(1) Heuristic method [87,94,95].

(2) Meta-heuristic method, such as genetic algorithm [11, 96–99], simulated anneal-

ing [100,101], and ant colony optimization [102,103].

Some heuristic and meta-heuristic methods are based on the B-importance. The basic

idea behind these methods is that the higher reliable components should be assigned

to the position with a higher B-importance.

Heuristic methods have been reported. Zuo and Kuo [87] developed two ZK-type

heuristics, namely, ZKA and ZKB heuristics. In the ZKA heuristic, starting from the

least reliable component, if the B-importance of this component is larger than that of

the next more reliable component, we exchange these two components. If this exchange

improves the system reliability, we keep the arrangement in which these two components

have been exchanged. Conversely, in the ZKB heuristic, starting from the least reliable

component, if its B-importance is not the least important one among all the components

with higher reliabilities, this component is exchanged with that of the least important.

If this exchange improves the system reliability, we keep the arrangement in which these

two components have been exchanged. Also, Lin and Kuo [94] proposed two LK-type

heuristics, which are named as LKA and LKB heuristics. The LKA heuristic assigns the

least reliable component into all positions and then assigns the unassigned most reliable

component into the position with the highest B-importance. In contrast, the LKB

heuristic assigns the most reliable component into all positions and then assigns the

unassigned least reliable component into the position with the smallest B-importance.

Yao et al. [95] proposed the B-importance-based two-stage approach (BITA) for solving

the CAP, which combines the LK-type heuristic with ZK-type heuristic.

Meta-heuristic methods have also been used to solve the CAP. Shingyochi et al. [96]

and Shingyochi and Yamamoto [97] provided the efficient genetic algorithms for find-

3In their original definition, the meta-heuristic methods are problem-independent algorithmic frame-
works, whereas the heuristic methods are designed for a specific problem and inapplicable for other
problems. In the context of the CAP, however, meta-heuristic methods refer not just to a framework
but also to an algorithm for solving a specific problem. Hence, a group of methods based on frame-
works such as the genetic algorithm, the simulated annealing, and the ant colony optimization is called
meta-heuristics in this thesis.
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ing the optimal arrangement in a Lin/Con/k/n:F systems and Cir/Con/k/n:F sys-

tem. In addition to the genetic algorithm, Shingyochi et al. [101] proposed two dif-

ferent types of simulated annealing algorithms: a standard simulated annealing and

improved simulated annealing. The improved one can effectively eliminate the equiv-

alent arrangements, which can reduce the solution space. Yao et al. [11] proposed a

B-importance-based genetic local search approach (BIGLS). The local search is based

on the ZK-type heuristics, which can gradually reduce the solution space and find the

optimal solution effectively. The numerical experiments showed that the BIGLS algo-

rithm improved almost all the non-optimal arrangements generated by the BITA [11].

Cai et al. [98] proposed a B-importance-based genetic algorithm (BIGA), which in-

tegrates both the advantages of BITA and the genetic algorithm to search the near-

global optimal solution for Lin/Con/k/n:F systems. The numerical experiments showed

that the BIGA obtained better results than the BIGLS in large systems [98]. Re-

cently, Wang et al. [103] developed an ant colony optimization algorithm, which is

also based on the B-importance. They concluded that the algorithm performed better

than the BIGLS algorithm for large Lin/Con/k/n:F systems. Approximate methods

for consecutive-k-out-of-n:F systems were proposed, whereas those for connected-X-

out-of-(m,n):F lattice systems have not been reported so far.

Many studies have been devoted to the CAP, wherein all components are function-

ally exchangeable and can be assigned to any position in the system. Zhu et al. [104]

extended this CAP to the multi-type component assignment problem (MCAP) for

Lin/Con/k/n:F systems. This problem aims to find a component arrangement with the

maximum system reliability , assuming that each component should be assigned only to

a position that belongs to the same type as the component. Furthermore, Zhu et al. [104]

proposed a B-importance-based local search method and B-importance-based genetic

algorithm for solving the MCAP.
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Table 1.2: Approaches for computing the reliability of connected-(r, s)-out-of-(m,n):F
lattice systems and connected-(1, 2)-or-(2, 1)-out-of-(m,n):F lattice systems.

Recursive equation approach FMCIA

(b)

Linear-type system [58,59] [60]

Circular-type system [61,62] —

Toroidal-type system Section 2.1 —

(c)

Linear-type system [63,64] Subsection 2.2.2

Circular-type system [65], Subsection 2.2.3 Subsection 2.2.3

Toroidal-type system Subsection 2.2.4 Subsection 2.2.4

(b) Connected-(r, s)-out-of-(m,n):F lattice system.
(c) Connected-(1, 2)-or-(2, 1)-out-of-(m,n):F lattice system.

1.4 Research Scope and Objective

In practice, a system exists such that a cluster of failed components causes system fail-

ure, which can be modeled as a connected-X-out-of-(m,n):F lattice system. Because

of theoretical development and practical applications in the research field of reliabil-

ity, much effort has been devoted to studying the reliability of this system. The main

objective of this thesis is to propose methods and algorithms for the reliability evalua-

tion and the optimal design of connected-X-out-of-(m,n):F lattice system; specifically,

a connected-(r, s)-out-of-(m,n):F lattice system and a connected-(1, 2)-or-(2, 1)-out-of-

(m,n):F lattice system.

Table 1.1 summarizes the studies of reliability evaluation, computing the system

signature, and the component assignment problem. Note that the system signature is

necessary to establish the stochastic comparisons. The 3rd row of Table 1.1 shows the

studies for the consecutive-k-out-of-n:F systems; the 4th row shows those for connected-

(r, s)-out-of-(m,n):F lattice systems; the 5th row shows those for connected-(1, 2)-or-

(2, 1)-out-of-(m,n):F lattice systems. The symbol “—” implies that the topic has not

been studied, and for example, “Chapter 2” at the 4th row and the 2nd column means

that the exact method for a connected-(r, s)-out-of-(m,n):F lattice system will be dis-

cussed in Chapter 2 of this thesis.

Table 1.2 summarizes the existing for computing the reliability of connected-(r, s)-

out-of-(m,n):F lattice systems and connected-(1, 2)-or-(2, 1)-out-of-(m,n):F lattice sys-
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tems. As it is clear from Table 1.2, most of the research has been devoted to studying

the reliability of linear-type and circular-type systems [58–65], whereas and no study

has focused on toroidal-type systems. The application shown in Subsection 1.2.3, how-

ever, emphasizes the necessity of studying toroidal-type systems; therefore, we present

algorithms for efficiently computing the reliability of a Tor/(r, s)/(m,n):F system. Also,

previous studies proposed the recursive equation approaches and the FMCIA separately,

and no study compares the efficiency of both methods directly. The comparison enables

us to select which approach should be used for efficiently computing system reliability.

Thus, this thesis proposes both the recursive equation approach and the FMCIA for

computing the reliability of Lin, Cir, and Tor/(1, 2)-or-(2, 1)/(m,n):F systems. Note

that the recursive equation approach for a Lin/(1, 2)-or-(2, 1)/(m,n):F system has al-

ready been proposed by Yamamoto et al. [64]. Then, we comprehensively compare the

efficiency of the recursive equation approaches and the FMCIA, which is the first-ever

attempt to compare both methods. Furthermore, as the size of a system becomes large,

obtaining the exact system reliability becomes time-consuming. Accordingly, it would

be beneficial to use appropriate upper and lower bounds if obtaining the exact system

reliability is not necessary. One can make a trade-off between the computational effort

and the quality of the bounds (closeness to the exact value). Several useful and simple

bounds were reported, e.g., [66] and [68], whereas the bounds that require the computa-

tional burden but are tighter have not been sufficiently discussed. Tighter bounds can

appropriately evaluate the system reliability compared with the existing bounds. Thus,

we derive tighter bounds for the reliability of a Lin/(1, 2)-or-(2, 1)/(m,n):F system at

the expense of the computational effort compared with the existing bounds.

This thesis deals with optimizing reliability for only the linear-type system. One

reason for studying the linear-type system is to provide a basis for research on the

general connected-X-out-of-(m,n):F lattice systems.

In reliability engineering, the system signature has various theoretical applications.

For example, the system signature has been proved to be significantly useful for es-

tablishing a stochastic comparison, presenting the MTTF and so on. However, the

computation of a system signature is known to be challenging, especially when a sys-

tem has a large number of components. Consequently, its practical applications have

generally been limited to relatively small systems. Despite the fact that the system sig-

nature of a Lin/Con/k/n:F system has been studied [81–83], no study has discussed the

system signature of a connected-X-out-of-(m,n):F lattice system. Therefore, methods
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for efficiently computing the system signature are proposed for a connected-X-out-

of-(m,n):F lattice system. The obtained system signatures enable us to establish a

stochastic comparison of these systems.

This thesis considers the variant optimal arrangement because most of the optimal

arrangements depend on the values of component reliabilities. Table 1.1 shows that

many studies proposed several heuristic and meta-heuristic methods [11, 87, 94–103].

The advantage of these methods is usually providing good results in a relatively short

time, whereas the drawback is not to be able to guarantee global optimality. Mean-

while, exact methods can provide the optimal arrangement and its system reliability,

which can be used to measure the performance of heuristic and meta-heuristic methods.

Therefore, this thesis focuses on the exact method because optimal arrangements are

often necessary. For a Lin/(r, s)/(m,n):F system, as shown in Table 1.1, while several

algorithms were developed for finding the optimal arrangement [91, 93], these algo-

rithms are limited to special cases. This thesis thus develops an algorithm for finding

the optimal arrangement of a general Lin/(r, s)/(m,n):F system.

The methods and algorithms resulting from the research in this thesis will be useful

for the reliability evaluation and the optimal design of practical systems that can be ex-

pressed as connected-X-out-of-(m,n):F lattice systems. In some cases, this connected-

X-out-of-(m,n):F lattice system may be an oversimplification. Ideally, we would like to

target any system models and present a method and algorithm for the reliability eval-

uation and the optimal design, but this is a difficult task. It is meaningful to develop a

method for efficiently evaluating the system reliability and designing the optimal sys-

tem for a system with special structures, e.g., the connected-X-out-of-(m,n):F lattice

system because this study would also be a clue to the studies for more general systems.

Throughout this thesis, we make the following assumptions unless specified other-

wise:

(a) each component and the system can have only two states: either working or failed;

(b) all components are mutually statistically independent;

(c) all components reliabilities are given.
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1.5 Organization of the Thesis

This thesis considers three problems: the reliability evaluation, computing the system

signature, and the component assignment problem. This thesis consists of five chapters.

Chapter 1: Introduction

Chapter 2: Reliability Evaluation

Chapter 3: Computing the System Signature

Chapter 4: Component Assignment Problem

Chapter 5: Conclusions

Also, Figs. 1.12 and 1.13 show the organization of this thesis.

Chapter 1 briefly explains the background and introduces the mathematical concepts

useful for understanding subsequent chapters. In addition, the literature reviews related

to this thesis are detailed and systematically classified in the consecutive-k system

subject area.

Chapter 2 focuses on the system reliability evaluation, which involves computing

the system reliability when the component reliabilities are provided. Section 2.1 pro-

vides a recursive equation approaches and subsequently propose two kinds of algo-

rithms for efficiently computing the reliability of a Tor/(r, s)/(m,n):F system. An

example is used to illustrate the proposed algorithms, and we evaluate the proposed

algorithms. Also, we provide the B-importance for a Tor/(r, s)/(m,n):F system by the

proposed algorithm. Section 2.2 proposes the recursive equation approaches for Cir and

Tor/(1, 2)-or-(2, 1)/(m,n):F systems and the FMCIA for Lin, Cir, and Tor/(1, 2)-or-

(2, 1)/(m,n):F systems and compares their efficiency. Note that the recursive equation

approach for a Lin/(1, 2)-or-(2, 1)/(m,n):F system has already been proposed by Ya-

mamoto et al. [64]. As mentioned above, there are no studies on efficiency comparisons

between both methods. Section 2.3 discusses the upper and lower bounds for the relia-

bility of a Lin/(1, 2)-or-(2, 1)/(m,n):F system. We derive new upper and lower bounds

and conduct numerical experiments to evaluate the derived bounds. Finally, Section 2.4

summarizes the contributions of the chapter.

Chapter 3 deals with the system signature of a Lin/(r, s)/(m,n):F system and

Lin/(1, 2)-or-(2, 1)/(m,n):F system. The system signature has various theoretical ap-

plications; for example, it is used to establish stochastic comparisons of some systems.
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Section 3.1 presents the existing methods for computing the system signature, which are

compared with the proposed methods in order to investigate the efficiency. Sections 3.2

and 3.3 propose methods for computing the system signatures of a Lin/(r, s)/(m,n):F

system and a Lin/(1, 2)-or-(2, 1)/(m,n):F system, respectively. An example is used to

illustrate the proposed algorithms, and we evaluate the proposed algorithms. Addi-

tionally, numerical experiments are conducted to compare the efficiency between the

proposed and existing methods. As an example, Section 3.4 compares the connected-

X-out-of-(m,n):F lattice systems based on the stochastic order. Finally, Section 3.5

summarizes the contributions of the chapter.

Chapter 4 considers the CAP, which intends to find the optimal arrangement of

components that maximizes the system reliability. Section 4.1 introduces the nota-

tion used throughout this chapter and provides a detailed description of the CAP in a

Lin/(r, s)/(m,n):F system. Besides, we present the existing properties (e.g., the nec-

essary conditions that the optimal arrangement must satisfy). Section 4.2 develops an

algorithm for finding the optimal arrangement in the general case. To speed up this

algorithm, we derive three conditions for pruning, which are based on the existing prop-

erties. Also, an example is used to illustrate the proposed algorithm. To decrease the

computational burden, Section 4.3 focuses on a special case: r = m− 1 and s = n− 1.

We derive four conditions for pruning and subsequently develop an algorithm for finding

the optimal arrangement. Note that this algorithm specializes in the case of r = m− 1

and s = n−1. An example is used to illustrate the proposed algorithm. In Section 4.4,

to investigate the efficiency of the proposed algorithms, we compare these algorithms

with the existing algorithm through the numerical experiment. Finally, Section 4.5

summarizes the contributions of the chapter.

The contributions of this thesis are summarized in Chapter 5, and various future

perspectives are discussed.
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Chapter 1: Introduction

Chapter 2: Reliability Evaluation

2.1 Reliability of 

a Tor/(r, s)/(m, n):F System

2.2 Reliability of a Connected-

(1, 2)-or-(2, 1)-out-of-(m, n):F 

Lattice System

2.3 Bounds for the Reliability of 

a Lin/(1, 2)-or-(2, 1)/(m, n):F

System

2.4 Summary

〇

Figure 1.12: Organization of this thesis (Chapters 1 and 2).

37



Chapter 5: Conclusions

〇

Chapter 4: Component

Assignment Problem

4.1 CAP in a Lin/(r, s)/(m, n):F 

System

4.3 Algorithm for Solving 

the CAP in the Case 

of r=m-1 and s=n-1

4.4 Efficiency Investigation

4.5 Summary

3.1 Existing Methods for Computing 

the System Signature

3.2 System Signature of a

Lin/(r, s)/(m, n):F System

3.3 System Signature of a 

Lin/(1, 2)-or-(2, 1)/ 

(m, n):F System

3.4 Stochastic Comparisons of the 

Connected-X-out-of-(m, n):F 

Lattice Systems

3.5 Summary

Chapter 3: Computing 

the System Signature

4.2 Algorithm for Solving 

the CAP in the 

General Case

Figure 1.13: Organization of this thesis (Chapters 3, 4, and 5).
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Chapter 2

Reliability Evaluation

The aim of this chapter is to propose methods for computing the reliability of some

connected-X-out-of-(m,n):F lattice systems. The system reliability evaluation is a fun-

damental step in all reliability studies. Section 2.1 provides a recursive equation ap-

proach and subsequently proposes two kinds of algorithms for efficiently computing the

reliability of a Tor/(r, s)/(m,n):F system. Also, Section 2.1 provides the B-importance

for a Tor/(r, s)/(m,n):F system by the proposed algorithm. Section 2.2 proposes re-

cursive equation approach and the finite Markov chain imbedding approach (FMCIA)

for computing the reliability of Lin, Cir, and Tor/(1, 2)-or-(2, 1)/(m,n):F systems and

compares their efficiency. Section 2.3 derives new upper and lower bounds and conducts

numerical experiments to evaluate the derived bounds. Finally, Section 2.4 summarizes

the contributions of the chapter.

2.1 Reliability of a Tor/(r, s)/(m,n):F System

As already mentioned in Section 1.4, many existing studies focused on linear-type and

circular-type connected-X-out-of-(m,n):F lattice systems. However, there are practical

systems that cannot be evaluated by existing system models because they have a specific

structure; one of the examples is a toroidal-type system. In a practical situation,

there are various kinds of toroidal-type objects, such as toroidal storage tanks, neutron

accelerators, cooling tubes, and offshore platform flotation units [106, 107]. Because a

Tor/(r, s)/(m,n):F system might be used to evaluate the reliability of such systems, in

this section, we consider the reliability of a Tor/(r, s)/(m,n):F system.
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Figure 2.1: Event decomposition of a Tor/(r, s)/(m,n):F system.

2.1.1 Proposal of a Computational Method

This subsection presents a recursive equation approach for efficiently computing the re-

liability of a Tor/(r, s)/(m,n):F system. First, we employ the event decomposition ap-

proach [22] to compute the reliability of the Tor/(r, s)/(m,n):F system. This technique

is valuable for computing the reliability of a system and is widely used for deriving the

recursive equations [58,62,69]. Likewise, we apply this approach to a Tor/(r, s)/(m,n):F

system As a result, “the event that the Tor/(r, s)/(m,n):F system works” can be dis-

jointly decomposed into “several events that each Cir/(r, s)/(m,n):F system with an

additional condition works” as shown in Fig. 2.1. This additional condition is explained

later. For simplicity, in this chapter, it is assumed that the separation is made between

circles 1 and m. Because these events are disjoint, the summation of all the reliabilities

of the Cir/(r, s)/(m,n):F systems with an additional condition becomes the reliability

of the Tor/(r, s)/(m,n):F system.

For expressing the “additional condition,” we define the following notation. For

k = 1, 2, . . . ,m, l = 1, 2, . . . , n, and x = 1, 2, . . . , r − 1, we define the following random

variable.

Ykl(x) =
k+x−1∏
u=k

l+s−1∏
v=l

Zuv, (2.1)
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where Zuv is defined in Eq. (1.5). Ykl(x) takes 1 if all the components fail in the rectangle

with four corners (k, l), (k+x− 1, j), (k+x− 1, l+ s− 1), and (k, l+ s− 1); otherwise,

it takes 0. In particular, the event {Ykl(1) = 0} means that at least one of components

(k, l), (k, l + 1), . . . , (k, l + s− 1) works.

Next, let h, g be n-dimensional integer vectors (h1, h2, . . . , hn), (g1, g2, . . . , gn), re-

spectively, where hl, gl ∈ {0, 1, . . . , r} for l = 1, 2, . . . , n. We consider an i× s rectangle

with four corners (1, l), (i, l), (i, l + s − 1), and (1, l + s − 1). For i = 1, 2, . . . ,m and

l = 1, 2, . . . , n, we define the event A(i, l;hl; gl) as

A(i,l;hl; gl) =

{Y1l(i) = 1}, if 1 ≤ i ≤ hl and gl = i,

{Y1l(hl) = 1} ∩ {Yil(1) = 0}, if i = hl + 1 and gl = 0,

{Y1l(hl) = 1} ∩ {Yhl+1,l(1) = 0} ∩W (i, l;hl; gl)

∩{Yi−gl,l(1) = 0} ∩ {Yi−gl+1,l(gl) = 1}, if i ≥ hl + 2,

∅, otherwise,

(2.2)

where W (i, l;hl; gl) means the event that there exists no (r, s) sub-matrix where all the

components fail in the rectangle with four corners (hl+2, l), (i−gl−1, l), (i−gl−1, l+

s−1), and (hl+2, l+s−1). The three cases of A(i, l;hl; gl) are graphically represented

in Fig. 2.2, where the elements of g and h represent the length of a rectangle in which

all the components fail.

For i = r, r + 1, . . . ,m, we define the reliability of a Cir/(r, s)/(i, n):F system in

which the states of the components on both ends are given by h and g as follows:

RC(i;h; g) = Pr

{
n∩

l=1

A(i, l;hl; gl)

}
, (2.3)

where both ends mean a few circles including the 1st (ith) circle. Figure 2.2 represents

a part of a Cir/(r, s)/(i, n):F system in which the states of the components on both

ends are given by h and g. Note that, for i = 0 and any h, we define

RC(0;h; g) =

{
1, if g = (0, . . . , 0),

0, otherwise.
(2.4)
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Figure 2.2: Definition of A(i, l;hl; gl).

The events that Cir/(r, s)/(m,n):F systems in which the states of the compo-

nent on both ends are given by h and g are disjoint. Hence, the reliability of

the Tor/(r, s)/(m,n):F system can be obtained by summing up the reliabilities of

Cir/(r, s)/(m,n):F systems in which the states of the component on both ends are

given by h and g. However, if there exists an (r, s) sub-matrix where all the com-

ponents fail when both ends of a Cir/(r, s)/(m,n):F system are connected, then we

have

RC(m;h; g) = 0.

Therefore, we need to determine h and g such that there exists no (r, s) sub-matrix

where all the components fail when both ends are connected. Hence, we define the sets
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S and T (h) by

S =

{
h

n∏
l=1

X (hl < r) = 1

}
, (2.5)

and for h ∈ S,

T (h) =

{
g

n∏
l=1

X (hl + gl < r) = 1

}
, (2.6)

where X (G) is an indicator function that takes 1 if argument G is true; 0 otherwise.

T (h) is a set of g such that there exists no (r, s) sub-matrix where all the components

fail when h is given and both ends are connected. By using the above sets, the reliability

of the Tor/(r, s)/(m,n):F system is computed by

RT ((r, s), (m,n), P ) =
∑
h∈S

∑
g∈T (h)

RC(m;h; g). (2.7)

However, some gs (hs) are impossible to exist. For example, suppose s = 2, n = 3,

and g = (g1, g2, g3) = (1, 0, 1). g1 = 1 and g3 = 1 state that components (i, 1), (i, 2),

and (i, 3) fail, whereas g2 = 0 states that component either (i, 2) or (i, 3) is working,

which is clearly impossible. For convenience, if h or g is impossible to exist, we define

RC(i;h; g) = 0

for any i. We provide the sets of h and g that are impossible to exist based on Yamamoto

and Akiba [62], which are expressed by

Ch =

{
h hl > hl+1 and hl+x < hl+x+1

for some l ∈ {1, 2, . . . , n} and some x ∈ {1, 2, . . . , s− 1}

}
, (2.8)

and

Cg =

{
g gl > gl+1 and gl+x < gl+x+1

for some l ∈ {1, 2, . . . , n} and some x ∈ {1, 2, . . . , s− 1}

}
, (2.9)

where hl = hl−n and gl = gl−n for l = n+ 1, n+ 2, . . . , n+ s.
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Using the sets in Eqs. (2.8) and (2.9), for i = 1, 2, . . . ,m, if h ∈ Ch or g ∈ Cg, then

we have

RC(i;h; g) = 0,

and hence, we can eliminate h ∈ Ch, g ∈ Cg from the sets S, T (h), respectively.

Consequently, we can obtain RT ((r, s), (m,n), P ) efficiently from Eq. (2.7).

To describe a recursive equation approach, we introduce some additional notation. A

vector x = (x1, x2, . . . , xn) represents the states of n components in a ring, where xj = 0

if the jth component works; otherwise xj = 1 for j = 1, 2, . . . , n. For convenience,

xj = xj−n for j = n+ 1, n+ 2, . . . , n+ s− 1. Also, we introduce an n-dimensional 0-1

binary vector d = (d1, d2, . . . , dn), and the element dl is defined, for l = 1, 2, . . . , n, as

dl =
l+s−1∏
v=l

xv. (2.10)

In words, dl = 1 if all the components (i, l), (i, l + 1), . . . , (i, l + s − 1) fail; otherwise

dl = 0. Note that component (i, l) is regarded as component (i, l−n) for l = n+1, n+

2, . . . , n+s−1 and i = 1, 2, . . . ,m. Moreover, for i = 1, 2, . . . ,m and d ∈ {0, 1}n, Fi(d)

is defined as

Fi(d) = Pr

{
n∩

l=1

{Yil(1) = dl}

}
, (2.11)

which is a probability that the states of components in circle i are given by d. Because

we assume that all components are mutually statistically independent, Fi(d) can be

computed by

Fi(d) =
∑

x∈U(d)

n∏
j=1

pij
1−xj(1− pij)

xj , (2.12)

where

U(d) =

{
x ∈ {0, 1}n

l+s−1∏
v=l

xv = dl, (l = 1, 2, . . . , n)

}
. (2.13)

Furthermore, let g′ be an n-dimensional integer vector (g′1, g
′
2, . . . , g

′
n), where g′l ∈

{0, 1, . . . , r} for l = 1, 2, . . . , n.
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Using the above notation, we can compute the reliability of the Tor/(r, s)/(m,n):F

system by the following theorem.

Theorem 2.1. (a) For i = 1, 2, . . . ,m and h, g ∈ S,

RC(i;h; g) =



Fi(d)
∑

g′∈Θ(i;h;g)

RC(i− 1;h; g′), if {(1 ≤ i ≤ hl and gl = i)

or (i = hl + 1 and gl = 0)

or (i ≥ hl + 2) for any l}
and (h /∈ Ch and g /∈ Cg),

0, otherwise,

(2.14)

where

Θ(i;h; g) =


g′ g′l ∈ {gl − 1}, if (2 ≤ i ≤ hl and gl = i)

or (i ≥ hl + 2 and gl > 0),

g′l ∈ {hl}, if i = hl + 1 and gl = 0,

g′l ∈ {0, 1, . . . , r − 1}, if i ≥ hl + 2 and gl = 0,

 , (2.15)

and for l = 1, 2, . . . , n,

dl =

{
0, if gl = 0,

1, if gl > 0.
(2.16)

As the boundary condition, for i = 0,

RC(i;h; g) =

{
1, if g = (0, . . . , 0),

0, otherwise.
(2.17)

(b)

RT ((r, s), (m,n), P ) =
∑

h∈S\Ch

∑
g∈T (h)\Cg

RC(m;h; g), (2.18)

where the sets S, T (h), Ch, and Cg are given by Eqs. (2.5), (2.6), (2.8), and (2.9),

respectively.

We provide a proof of Theorem 2.1 in Appendix.
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2.1.2 Algorithm and Illustrative Example

In this subsection, we propose an algorithm based on Theorem 2.1 for efficiently comput-

ing the reliability of the Tor/(r, s)/(m,n):F system. The critical point of the algorithm

is how to compute the recursive equation in Eq. (2.14). Although this recursive equa-

tion is expressed as a recursive form, it can also be coded by using iteration, such as

a for-loop. When recursion and iteration are compared, a recursive program tends to

be simple but is not as efficient as iterative ones. The main reason is that the recur-

sion has function calls, and consequently, they place a heavy burden on memory. For

efficient computation, therefore, we employ iteration for implementing the algorithm in

this section.

When computing RC(i;h; g) by Eq. (2.14) recursively, we can save the required

memory space. Generally, a memory with (rn × m) is required. However, since

RC(i;h; g) can be computed from only RC(i − 1;h; g′), RC(i;h; g) can be computed

as follows. We prepare two memories with size (rn × 1): RC
odd and RC

even, and provide

the initial values for RC
even by Eq. (2.17). For i = 1, 2, . . . ,m, if i is odd, then we

compute RC
odd from RC

even, and subsequently, RC
even is initialized. If i is even, then we

compute RC
even from RC

odd, and subsequently, RC
odd is initialized. Such a computation of

RC(i;h; g) needs only a memory with size (rn × 2). An example of this computation is

given later.

In summary, this algorithm is characterized by two advantages:

1. It utilizes iteration, and thus, the cost of the function call can be avoided.

2. It saves the required memory space because two small spaces (for odd and even)

are used alternatively.

Next, we provide the detailed steps of an algorithm based on Theorem 2.1. Basically,

the algorithm is executed in the following steps:

Step 1: Enumerate all elements in S \Ch by Eqs. (2.5) and (2.8), and compute Fi(d)

for i = 1, 2, . . . ,m and d ∈ {0, 1}n by Eq. (2.12).

Step 2: Select h ∈ S \Ch, and set i = 0 and RC
even = (1, 0, . . . , 0)T based on Eq. (2.17),

and set RC
odd = (0, . . . , 0)T.
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Step 3: Set i = i + 1. If i is odd, compute RC
odd from RC

even by Eq. (2.14), and

subsequently, initialize RC
even; if i is even, compute RC

even from RC
odd by Eq. (2.14),

and subsequently, initialize RC
odd. Repeat this step until i = m.

Step 4: Compute
∑

g∈T (h)\Cg
RC(m;h; g) in Eq. (2.18) for the fixed h.

Step 5: If all elements in S \Ch have been selected, go to Step 6; otherwise, go back

to Step 2.

Step 6: Obtain RT ((r, s), (m,n), P ) by Eq. (2.18).

When computing
∑

g′∈Θ(i;h;g) R
C(i − 1;h; g′) in Step 3, we need the set Θ(i;h; g).

Considering when we should obtain the set Θ(i;h; g), we have two cases:

Case A) before computing
∑

g′∈Θ(i;h;g)

RC(i− 1;h; g′)s in Step 3;

Case B) in Step 1 as a preprocessing step.

An algorithm in Case A is just called “Algorithm A” in this section. In Algorithm A,

the set Θ(i;h; g) is generated again and again in Step 3. It is obvious from Eq. (2.15)

that Θ(i;h; g) does not depend on h and i when i ≥ r + 2. Hence, we enumerate the

elements of Θ(i;h; g) with i ≥ r + 2 for g ∈ S \Cg beforehand (i.e., Case B) and store

them. As a result, although preprocessing time and extra memory space are needed,

we can use the elements instantly, which means that computational complexity may

decrease. An algorithm in Case B is just called “Algorithm B” in this section.

Finally, we demonstrate how Algorithm A computes the reliability of the

Tor/(r, s)/(m,n):F system. For instance, let us consider a Tor/(2, 2)/(3, 3):F system

with common component reliability p and unreliability q, where p+ q = 1 for a simple

illustration.

Step 1: We enumerate all the elements in S \ Ch as follows:

S \ Ch = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} ,

and, we compute Fi(d) as follows:

Fi((0, 0, 0)) = p3 + 3p2q, Fi((0, 0, 1)) = pq2,

Fi((0, 1, 0)) = pq2, Fi((1, 0, 0)) = pq2,

Fi((1, 1, 1)) = q3.
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For convenience, we use the following notation. For h ∈ S \ Ch if i is even,

RC
even =


RC(i;h; (0, 0, 0))

RC(i;h; (0, 0, 1))

RC(i;h; (0, 1, 0))

RC(i;h; (1, 0, 0))

RC(i;h; (1, 1, 1))



T

=


a1

a2

a3

a4

a5



T

,

and, if i is odd,

RC
odd =


RC(i;h; (0, 0, 0))

RC(i;h; (0, 0, 1))

RC(i;h; (0, 1, 0))

RC(i;h; (1, 0, 0))

RC(i;h; (1, 1, 1))



T

=


b1

b2

b3

b4

b5



T

.

Step 2: For example, we select h = (1, 0, 0), set i = 0, RC
even = (1, 0, 0, 0, 0), and set

RC
odd = (0, 0, 0, 0, 0).

Step 3: First, we consider the i = 1 case. Since i is odd, we compute RC
odd from RC

even

as follows:

b4 = F1((1, 0, 0))
∑

g′∈Θ(1;(1,0,0);(1,0,0))

RC(0; (1, 0, 0); g′),

= pq2 × a1,

= pq2,

where

Θ(1; (1, 0, 0); (1, 0, 0)) = {(0, 0, 0)},

and b1 = b2 = b3 = b5 = 0. Subsequently, we initialize RC
even.

Next, we consider the i = 2 case. Since i is even, we compute RC
even from RC

odd as
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follows:

a1 = F2((0, 0, 0))
∑

g′∈Θ(2;(1,0,0);(0,0,0))

RC(1; (1, 0, 0); g′),

= (p3 + 3p2q)× b4,

= (p3 + 3p2q)pq2,

where

Θ(2; (1, 0, 0); (1, 0, 0)) = {(1, 0, 0)}.

Similarly,

a2 = pq2 × b4 = p2q4,

a3 = pq2 × b4 = p2q4,

a4 = 0,

a5 = 0.

Subsequently, we initialize RC
odd.

Finally, we consider the i = 3 case. Since i is odd, we compute RC
odd from RC

even as

follows:

b1 = (p3 + 3p2q)× (a1 + a2 + a3),

= (p3 + 3p2q)(p3 + 3p2q)pq22p2q4,

b2 = pq2 × (a1 + a3) = pq2(p3 + 3p2q)pq2p2q4,

b3 = pq2 × (a1 + a2) = pq2(p3 + 3p2q)pq2p2q4.

Note that b4 and b5 are unnecessary in the next step.

Step 4: We compute ∑
g∈T ((1,0,0))\Cg

RC(3; (1, 0, 0); g) = b1 + b2 + b3,

where

T ((1, 0, 0)) \ Cg = {(0, 0, 0), (0, 0, 1), (0, 1, 0)},

and memorize the value. Steps 2–4 continue until all the elements in S\Ch are selected
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(Step 5).

Step 6: Eventually, we obtain RT ((2, 2), (3, 3), P ) as follows:

RT ((2, 2), (3, 3), P ) =
∑

h∈S\Ch

∑
g∈T (h)\Cg

RC(3;h; g),

=
∑

g∈T ((0,0,0))\Cg

RC(3; (0, 0, 0); g) +
∑

g∈T ((0,0,1))\Cg

RC(3; (0, 0, 1); g)

+
∑

g∈T ((0,1,0))\Cg

RC(3; (0, 1, 0); g) +
∑

g∈T ((1,0,0))\Cg

RC(3; (1, 0, 0); g)

+
∑

g∈T ((1,1,1))\Cg

RC(3; (1, 1, 1); g).

Also, Algorithm B enumerates all the elements in Θ(i;h; g) as follows:

Θ(i;h; (0, 0, 0)) = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} ,

Θ(i;h; (0, 0, 1)) = {(0, 0, 0), (0, 1, 0), (1, 0, 0)} ,

Θ(i;h; (0, 1, 0)) = {(0, 0, 0), (0, 0, 1), (1, 0, 0)} ,

Θ(i;h; (1, 0, 0)) = {(0, 0, 0), (0, 0, 1), (0, 1, 0)} ,

Θ(i;h; (1, 1, 1)) = {(0, 0, 0)} ,

for i = r+2, r+3, . . . ,m and any h, and then they are stored in Step 1 as a preprocessing

step. As a result, in Step 3 of Algorithm B, we do not need to enumerate the elements

in Θ(i;h; g) if i ≥ r + 2.

2.1.3 Efficiency Investigation

Computational complexity analysis

Here, the computational complexity analysis is conducted for the comparison of Algo-

rithms A and B. First, we analyze the time and space complexities of Algorithm A.

Step 1 takes O(m2n) time to compute Fi(d) for i = 1, 2, . . . ,m and d ∈ {0, 1}n because

the maximum number of Fi(d)s is m2n. In Step 3, once h is determined, for each i,

the maximum number of RC(i;h; g)s is rn, and the set S has at most rn elements.

Because it takes O(n) time to obtain the set Θ(i;h; g), Step 3 needs at most O(mnr2n)

time. Hence, Algorithm A needs O(m2n+ rn(mnrn)) (= O(m2n+mnr2n)) time. Also,

50



Table 2.1: Time and space complexities of Algorithms A and B.

time space

Algorithm A O(m2n + rn(mnrn)) O(m2n + rn)

Algorithm B O(m2n + rn(n+mrn)) O(m2n + rn + r2n)

Fi(d) requires O(m2n) space. The maximum number of the memories required for

RC(i − 1;h; g′) is O(2rn) because we prepare two rn memories for odd i and even i.

Hence, Algorithm A needs O(m2n + rn) (= O(m2n + 2rn)) space.

Next, we analyze the time and space complexities of Algorithm B. Step 1 takes

O(m2n) time in a similarly to Algorithm A. It also needs at most O(nrn) time to prepare

the set Θ(i;h; g). In Step 3, it takes at most O(mr2n) time. Hence, Algorithm B

needs O(m2n + rn(n + mrn)) (= O(m2n + nrn + mr2n)) time. Also, Fi(d) requires

O(m2n) space. Θ(i;h; g) needs at most O(rn × rn) space. The maximum number of

the memories required for RC(i − 1;h; g′)s is O(2rn) in a similarly to Algorithm A.

Hence, Algorithm B needs O(m2n + rn + r2n) (= O(m2n + 2rn + r2n)) space.

Table 2.1 summarizes the time and space complexities of Algorithms A and B. In

conclusion, Algorithm A needs less memory space than Algorithm B, but Algorithm B

has better time complexity compared to Algorithm A.

From the results, we see that the time complexity of both algorithms is polynomial

order for m but exponential order for n. Note that we can obtain the same result

even if we swap r and s, m and n simultaneously due to structural symmetry. In

other words, the reliability of the Tor/(r, s)/(m,n):F system is equivalent to that of the

Tor/(s, r)/(n,m):F system. Thus, in order to efficiently compute the system reliability,

the parameter n should be the smaller value of either circle or ring.

Numerical experiment

Here, we investigate the efficiency of Algorithms A and B through numerical experi-

ments. Computation time also plays a key role in the measure of the computational

efficiency of different algorithms, and thus, we compare both algorithms in terms of the

actual computation time. Each method was programmed in MATLAB R2018a and im-

plemented on a computer with Intel Core i5 3.20 GHz CPU, 8.0 GB memory, Microsoft

Windows 10 OS. In the numerical experiments, for i = 1, 2, . . . ,m and j = 1, 2, . . . , n,
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Table 2.2: Comparison of computation times of Algorithms A and B ((r, s) = (2, 2)).

m n (a) Alg. A (sec.) (b) Alg. B (sec.) (b)/(a) (%) RT ((2, 2), (m,n), P )

5 4 0.0622 0.0757 121.6 0.9924

10 4 0.0645 0.0757 117.4 0.9848

50 4 0.0861 0.0830 96.4 0.9262

100 4 0.1126 0.0869 77.2 0.8579

5 6 0.0958 0.0860 89.7 0.9886

10 6 0.1346 0.1039 77.2 0.9773

50 6 0.3401 0.1358 39.9 0.3396

100 6 0.5966 0.1687 28.3 0.7945

5 8 0.5142 0.2355 45.8 0.9848

10 8 1.0603 0.2882 27.2 0.9698

50 8 4.8967 0.6848 14.0 0.8578

100 8 9.5726 1.1458 12.0 0.7359

5 10 7.9547 1.8794 23.6 0.9810

10 10 18.7168 2.5650 13.7 0.9624

50 10 105.6483 7.4481 7.0 0.8256

100 10 213.5176 13.6000 6.4 0.6816

5 12 214.7146 44.2102 20.6 0.9773

10 12 505.9578 53.9138 10.7 0.9550

50 12 2785.7716 130.0507 4.7 0.7945

100 12 5747.4053 224.5364 3.9 0.6313

5 14 7461.2738 1549.9041 20.8 0.9735

10 14 17798.3021 1714.3453 9.6 0.9477

50 14 N/A 2939.6827 — 0.7647

100 14 N/A 4797.1235 — 0.5847

the component reliabilities P are given by

pij =

{
0.9, if i+ j is odd,

0.8, if i+ j is even.

Tables 2.2 and 2.3 show the comparison of the computation time required for the

52



Table 2.3: Comparison of computation times of Algorithms A and B ((m,n) = (20, 6)).

r s (a) Alg. A (sec.) (b) Alg. B (sec.) (b)/(a) (%) RT ((r, s), (20, 6), P )

2 2 0.1897 0.1137 59.9 0.2497

3 2 7.1225 1.7938 25.2 0.8406

4 2 220.8854 50.3901 22.8 0.9788

2 3 0.1313 0.1026 78.1 0.8406

3 3 2.4281 0.6265 25.8 0.9921

4 3 47.2759 10.4654 22.1 0.9997

2 4 0.0992 0.0891 89.8 0.9787

3 4 0.9341 0.2723 29.1 0.9997

4 4 10.5731 2.3424 22.2 1.0000

cases of (r, s) = (2, 2) and (m,n) = (20, 6), respectively. In these tables, N/A means

that the algorithm failed to compute the system reliability in 12 hours. We confirmed

that both algorithms provided the same results.

First, we investigate the efficiency of both algorithms in the case where (r, s) is fixed.

It is clear from Table 2.2 that the algorithms perform better when the parameter m is

large, whereas computation time increases with the parameter n. This is because the

number of elements of the sets S and T (h) increases exponentially as the parameter

n is large. Moreover, when comparing Algorithms A and B, in the case where m and

n are small, we found that although a computation time of Algorithm A was shorter

than that of Algorithm B, their computation times were sufficiently short. In contrast,

when m or n is not small, Table 2.2 shows that Algorithm A requires more computation

times compared with Algorithm B.

Next, we investigate the efficiency of both algorithms in the case where (m,n) is

fixed. As it is clear from Table 2.3, the computation time of both algorithms increases

exponentially as r increases. On the other hand, the result shows that both algorithms

perform well as the parameter s becomes large. The reason for this observed behavior is

that the number of elements of the sets Ch and Cg increases as the parameter s is large.

For example, when (m,n) = (20, 6), if (r, s) = (2, 2), then |Ch| = 35; if (r, s) = (2, 4),

then |Ch| = 50, where |Ω| refers to the number of elements of the set Ω. Moreover,

when comparing Algorithms A and B, we see that the computation time of Algorithm B

does not increase with r, which illustrates the efficiency of Algorithm B.
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Collectively, these results indicate that Algorithm B outperforms Algorithm A for

both cases when we have enough memory space. Note that Algorithm B needs extra

memory space (O(r2n)). The main reason for Algorithm B to be efficient is that we can

instantly use the elements of Θ(i;h; g), which are enumerated beforehand and stored.

As a result, it is possible to avoid redundant computations.

2.1.4 Birnbaum Importance for a Tor/(r, s)/(m,n):F System

In this subsection, we discuss the Birnbaum importance (B-importance) for a

Tor/(r, s)/(m,n):F system. The failure of a component may cause system failure,

whereas another failed component has little effect on the system state. Components that

tend to cause system failure are considered as more important than the others in the

system, and thus, such important components should be strictly maintained. Therefore,

we provide B-importance for the Tor/(r, s)/(m,n):F system by the proposed algorithm

as a numerical example.

Let IB(i, j) be the B-importance of component (i, j) in a Tor/(r, s)/(m,n):F system

with component reliabilities P , and then, from Eq. (1.19), IB(i, j) is computed by

IB(i, j) =RT ((r, s), (m,n), (1(i,j), P ))−RT ((r, s), (m,n), (0(i,j), P )), (2.19)

where

(k(i,j), P ) =



p11 . . . p1j . . . p1n
...

. . .
...

...

pi1 . . . k . . . pin
...

...
. . .

...

pm1 . . . pmj . . . pmn


,

for i = 1, 2, . . . ,m, j = 1, 2, . . . , n, and k ∈ {0, 1}. In words, (1(i,j), P ) is a matrix

obtained by replacing pij with 1 in P . The proposed algorithms enable us to easily

compute the B-importance.

We computed the B-importance of each component in a Tor/(2, 2)/(7, 7):F system

with pij = 0.7 for any i, j by the proposed algorithm as shown in Table 2.4. The

computation time was about 4 seconds. Table 2.4 shows that each component has the

same B-importance, which means that each component has an equal opportunity to

contribute to the system failure because of structural symmetry. We also computed the
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Table 2.4: Birnbaum importance for a Tor/(2, 2)/(7, 7):F system with pij = 0.7 for any
i, j.

Ring 1 Ring 2 Ring 3 Ring 4 Ring 5 Ring 6 Ring 7

Circle 1 0.060 0.060 0.060 0.060 0.060 0.060 0.060

Circle 2 0.060 0.060 0.060 0.060 0.060 0.060 0.060

Circle 3 0.060 0.060 0.060 0.060 0.060 0.060 0.060

Circle 4 0.060 0.060 0.060 0.060 0.060 0.060 0.060

Circle 5 0.060 0.060 0.060 0.060 0.060 0.060 0.060

Circle 6 0.060 0.060 0.060 0.060 0.060 0.060 0.060

Circle 7 0.060 0.060 0.060 0.060 0.060 0.060 0.060

Table 2.5: Birnbaum importance for a Tor/(2, 2)/(7, 7):F system with p4,4 = 0.3 and
pij = 0.7 for the others.

Ring 1 Ring 2 Ring 3 Ring 4 Ring 5 Ring 6 Ring 7

Circle 1 0.058 0.058 0.058 0.059 0.058 0.058 0.058

Circle 2 0.058 0.058 0.056 0.055 0.056 0.058 0.058

Circle 3 0.058 0.056 0.077 0.098 0.077 0.056 0.058

Circle 4 0.059 0.055 0.098 0.060 0.098 0.055 0.059

Circle 5 0.058 0.056 0.077 0.098 0.077 0.056 0.058

Circle 6 0.058 0.058 0.056 0.055 0.056 0.058 0.058

Circle 7 0.058 0.058 0.058 0.059 0.058 0.058 0.058

B-importance of each component in a Tor/(2, 2)/(7, 7):F system with p4,4 = 0.3 and

pij = 0.7 for the others as shown in Table 2.5, where the value denoted in boldface is the

least reliable component, which is located at (4, 4). Table 2.5 shows that the components

adjacent to component (4, 4) have a high B-importance in order to avoid system failure.

Thus, it suggests that we should somehow improve one of the components adjacent to

component (4, 4), namely, component (4, 3), (3, 4), (4, 5), or (5, 4).
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2.2 Reliability of a Connected-(1, 2)-or-(2, 1)-out-of-

(m,n):F Lattice System

This section proposes the recursive equation approaches for Cir and Tor/(1, 2)-or-

(2, 1)/(m,n):F systems and the FMCIA for Lin, Cir, and Tor/(1, 2)-or-(2, 1)/(m,n):F

systems. Note that Yamamoto et al. [64] proposed the recursive equation approach for

a Lin/(1, 2)-or-(2, 1)/(m,n):F system. Because there are no studies on efficiency com-

parisons between both methods, we compare the efficiency of both methods through

numerical experiments. This comparison will give a guideline to decide which method

should be used.

2.2.1 Notation

To uniformly describe both methods, we introduce some common notation. First, we fo-

cus on a column of a linear-type system (or a ray of a circular-type system). Let x,y,y′

be m-dimensional integer vectors (x1, x2, . . . , xm), (y1, y2, . . . , ym), (y
′
1, y

′
2, . . . , y

′
m) re-

spectively, where xi, yi, y
′
i ∈ {0, 1} for i = 1, 2, . . . ,m. For example, xi = 0 means that

the ith component works and xi = 1 means that it fails. We define the sets WL and

ΩL(y) as

WL =

{
y

m∑
i=2

yi−1yi = 0

}
, (2.20)

and

ΩL(y) =

{
y′ ∈ WL

m∑
i=1

yiy
′
i = 0

}
. (2.21)

If the states of the m components in a column are given by y and y ∈ WL, there

exists no failure pattern (2, 1) in the column. Let us consider the situation where the

states of the 2m components in the (j − 1)th and jth columns are given by y′ and y,

respectively. If y′ ∈ ΩL(y), there exists no failure pattern (1, 2) in the (j − 1)th and

jth columns. For j = 1, 2, . . . , n and y ∈ WL, Gj(y) is a probability that the states of
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the m components in the jth column are given by y, which is expressed by

Gj(y) =
m∏
i=1

pij
1−yi(1− pij)

yi . (2.22)

Second, we focus on a circle of a circular-type or toroidal system. Let h, g, g′ be n-

dimensional integer vectors (h1, h2, . . . , hn), (g1, g2, . . . , gn), (g
′
1, g

′
2, . . . , g

′
n) respectively,

where hj, gj, g
′
j ∈ {0, 1} for j = 1, 2, . . . , n. The sets WC and ΩC(g) are defined as

WC =

{
g

n∑
j=2

gj−1gj = 0

}
, (2.23)

and

ΩC(g) =

{
g′ ∈ WC

n∑
j=1

gjg
′
j = 0

}
. (2.24)

If the states of the n components in a column are given by g, and g ∈ WC , there exists

no failure pattern (1, 2) in the circle. Let us consider the situation where the states of

the 2n components in the (i− 1)th and ith circles are given by g′ and g, respectively.

If g′ ∈ ΩC(g), there exists no failure pattern (2, 1) in the (i− 1)th and ith circles. For

i = 1, 2, . . . ,m and g ∈ WC , Fi(g) is expressed by

Fi(g) =
n∏

j=1

pij
1−gj(1− pij)

gj , (2.25)

which is a probability that the states of the n components in the ith circle are given by

g.

2.2.2 Computational Method for a Lin/(1, 2)-or-(2, 1)/(m,n):F

System

This subsection proposes the FMCIA for computing the reliability of a Lin/(1, 2)-or-

(2, 1)/(m,n):F system. The recursive equation approach in Yamamoto et al. [64] was

found to be more efficient than a method in Higashiyama [63]. Hence, we only present

the recursive equation approach in Yamamoto et al. [64] and compare the FMCIA with
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Figure 2.3: Lin/(1, 2)-or-(2, 1)/(m, j):F systems with a condition.

it through numerical experiments.

(A) Recursive equation approach [64]

First, we provide a recursive equation approach for computing the reliability of a

Lin/(1, 2)-or-(2, 1)/(m,n):F system. For j = 1, 2, . . . , n and y ∈ {0, 1}m, a probability

RL(j;y) is defined as

RL(j;y) = Pr

{{
m∏
i=1

j∏
l=2

(
1− Y

(1,2)
il

)
×

m∏
i=2

j∏
l=1

(
1− Y

(2,1)
il

)
= 1

}∩{
m∩
i=1

{Zij = yi}

}}
,

(2.26)

which shows the reliability of a Lin/(1, 2)-or-(2, 1)/(m, j):F system in which the states

of the m components in the jth column are given by y. Figure 2.3 (a) illustrates the

Lin/(1, 2)-or-(2, 1)/(m, j):F system in which the states of the m components in the

jth column are given by y. Then, we can compute the reliability of a Lin/(1, 2)-or-

(2, 1)/(m,n):F system by the following theorem.
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Theorem 2.2 (Yamamoto et al. [64]). (a) For j = 1, 2, . . . , n and y,y′ ∈ {0, 1}m,

RL(j;y) =


Gj(y)

∑
y′∈ΩL(y)

RL(j − 1;y′), if j ≥ 2 and y ∈ WL,

Gj(y), if j = 1 and y ∈ WL,

0, otherwise,

(2.27)

where WL and ΩL(y) are given in Eqs. (2.20) and (2.21), respectively.

(b)

RL((m,n), P ) =
∑

y∈WL

RL(n;y). (2.28)

(B) FMCIA

Next, we provide the FMCIA for computing the reliability of a Lin/(1, 2)-or-

(2, 1)/(m,n):F system. For j = 1, 2, . . . , n and y,y′ ∈ WL, a transition probability

from a state represented by y′ to a state represented by y is

mL
y′,y(j) =

{
Gj(y), if y ∈ ΩL(y′),

0, otherwise,
(2.29)

where Gj(y) is given by Eq. (2.22), and then a transition probability matrix is

ML(j) =
(
mL

y′,y(j)
)
|WL|×|WL| . (2.30)

Then, we can compute the reliability of a Lin/(1, 2)-or-(2, 1)/(m,n):F system by the

following theorem.

Theorem 2.3.

RL((m,n), P ) = π0

(
n∏

j=1

ML(j)

)
uT, (2.31)

where π0 = (1, 0, . . . , 0)|WL|, u = (1, . . . , 1)|WL|, and ML(j) is given by Eq. (2.30).

Theorem 2.3 can be proved similarly to Theorem 2.9.

In the case where the components are independent and identically distributed (the
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IID case), all the transition probability matrices are the same as follows:

ML(1) = ML(2) = · · · = ML(n) = ML. (2.32)

A significantly faster method is available to compute
(
ML
)n
, namely, the fast-matrix-

power algorithm [52]. As a result, we can compute the system reliability in the log-

arithmic order of the number of columns, denoted as n. We provide the following

corollary.

Corollary 2.1.

RL((m,n), P ) = π0

(
ML
)n

uT. (2.33)

Corollary 2.1 can be proved directly from Theorem 2.3.

2.2.3 Computational Method for a Cir/(1, 2)-or-(2, 1)/(m,n):F

System

This subsection proposes two kinds of methods for computing the reliability of a

Cir/(1, 2)-or-(2, 1)/(m,n):F system, i.e., the recursive equation approach and the FM-

CIA. Furthermore, for each method, we develop two approaches: (1) ray approach,

which focuses on the state of components located at the end ray of the system and

increases the number of rays, and (2) circle approach, which focuses on the state of

components located at the end circle of the system and increases the number of circles.

(1-A) Recursive equation approach (ray approach)

First, we provide a recursive equation approach for computing the reliability of

a Cir/(1, 2)-or-(2, 1)/(m,n):F system, which is based on the ray approach. For j =

2, 3, . . . , n and x,y ∈ {0, 1}m, a probability RL(j;x;y) is defined as

RL(j;x;y) =Pr

{{
m∏
i=1

j∏
k=2

(
1− Y

(1,2)
ik

)
×

m∏
i=2

j∏
k=1

(
1− Y

(2,1)
ij

)
= 1

}
∩{

m∩
i=1

{Zi,1 = xi}

}∩{
m∩
i=1

{Zij = yi}

}}
, (2.34)

which shows the reliability of a Lin/(1, 2)-or-(2, 1)/(m, j):F system in which the states
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of the m components in the 1st column are given by x and the states of the m compo-

nents in the jth column are given by y. Figure 2.3 (b) illustrates this Lin/(1, 2)-

or-(2, 1)/(m, j):F system. Then, we can compute the reliability of a Cir/(1, 2)-or-

(2, 1)/(m,n):F system by the following theorem.

Theorem 2.4. (a) For j = 1, 2, . . . , n and x,y,y′ ∈ {0, 1}m,

RL(j;x;y) =


Gj(y)

∑
y′∈ΩL(y)

RL(j − 1;x;y′), if j ≥ 2 and x,y ∈ WL,

Gj(y), if j = 1 and x,y ∈ WL,

0, otherwise,

(2.35)

where WL and ΩL(y) are given in Eqs. (2.20) and (2.21), respectively.

(b)

RC((m,n), P ) =
∑

x∈WL

∑
y∈ΩL(x)

RL(n;x;y). (2.36)

Appendix provides the proof of Theorem 2.4.

(1-B) FMCIA (ray approach)

Next, we provide the FMCIA for computing the reliability of a Cir/(1, 2)-or-

(2, 1)/(m,n):F system, which is based on the ray approach. The reliability of a

Cir/(1, 2)-or-(2, 1)/(m,n):F system can be obtained by the following theorem.

Theorem 2.5.

RC((m,n), P ) = Tr

(
n∏

j=1

ML(j)

)
, (2.37)

where ML(j) is given by Eq. (2.30).

Note that Tr(A) represents a trace of a matrix A. Theorem 2.5 can be proved

similarly to Theorem 2.9.

When the components are independent and identically distributed, we can com-

pute the reliability of a Cir/(1, 2)-or-(2, 1)/(m,n):F system efficiently by the following

corollary.
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Corollary 2.2.

RC((m,n), P ) = Tr
(
ML
)n

, (2.38)

where ML is given by Eq. (2.32).

From Theorem 2.5, Corollary 2.2 is immediately proved.

(2-A) Recursive equation approach (circle approach)

First, we provide a recursive equation approach for computing the reliability of a

Cir/(1, 2)-or-(2, 1)/(m,n):F system, which is based on the circle approach. For i =

1, 2, . . . ,m and g ∈ {0, 1}n, a probability RC(i; g) is defined as

RC(i; g) = Pr

{{
i∏

k=1

n∏
j=1

(
1− Y

(1,2)
kj

)
×

i∏
k=2

n∏
j=1

(
1− Y

(2,1)
kj

)
= 1

}∩{
n∩

j=1

{Zkj = gj}

}}
,

(2.39)

which shows the reliability of a Cir/(1, 2)-or-(2, 1)/(i, n):F system in which the states of

the n components in the ith circle are given by g. Figure 2.4 (a) illustrates the Cir/(1, 2)-

or-(2, 1)/(i, n):F system in which the states of the n components in the ith circle are

given by g. Then, we can compute the reliability of a Cir/(1, 2)-or-(2, 1)/(m,n):F

system by the following theorem.

Theorem 2.6. (a) For i = 1, 2, . . . ,m and g, g′ ∈ {0, 1}n,

RC(i; g) =


Fi(g)

∑
y′∈ΩC(g)

RC(i− 1; g′), if i ≥ 2 and g ∈ WC ,

Fi(g), if i = 1 and g ∈ WC ,

0, otherwise,

(2.40)

where WC and ΩC(g) are given in Eqs. (2.23) and (2.24), respectively.

(b)

RC((m,n), P ) =
∑

y∈WC

RC(m; g). (2.41)

We can prove Theorem 2.6 in the same manner as Theorem 2.4.
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Figure 2.4: Cir/(1, 2)-or-(2, 1)/(i, n):F systems with a condition.

(2-B) FMCIA (circle approach)

Next, we provide the FMCIA for computing the reliability of a Cir/(1, 2)-or-

(2, 1)/(m,n):F system, which is based on the circle approach. For i = 1, 2, . . . ,m

and g, g′ ∈ WC , a transition probability from a state represented by g′ to a state

represented by g is

mC
g′,g(i) =

{
Fi(g), if g ∈ ΩC(g′),

0, otherwise,
(2.42)

where Fi(g) is given by Eq. (2.25), and then a transition probability matrix is

MC(i) =
(
mC

g′,g(i)
)
|WC |×|WC | . (2.43)

Then, we can compute the reliability of a Cir/(1, 2)-or-(2, 1)/(m,n):F system by the

following theorem.

Theorem 2.7.

RC((m,n), P ) = π0

(
m∏
i=1

MC(i)

)
uT, (2.44)
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where π0 = (1, 0, . . . , 0)|WC |, u = (1, . . . , 1)|WC |, and MC(i) is given by Eq. (2.43).

Theorem 2.7 can be proved similarly to Theorem 2.9.

In the IID case, all the transition probability matrices are the same as follows:

MC(1) = MC(2) = · · · = MC(m) = MC . (2.45)

Thus, we can compute the reliability of a Cir/(1, 2)-or-(2, 1)/(m,n):F system efficiently

by the following corollary.

Corollary 2.3.

RC((m,n), P ) = π0

(
MC

)m
uT. (2.46)

The proof is straightforward from Theorem 2.7.

2.2.4 Computational Method for a Tor/(1, 2)-or-(2, 1)/(m,n):F

System

This subsection proposes both the recursive equation approach and the FMCIA for

computing the reliability of Tor/(1, 2)-or-(2, 1)/(m,n):F systems.

(A) Recursive equation approach

First, we provide a recursive equation approach for computing the reliability of a

Tor/(1, 2)-or-(2, 1)/(m,n):F system. For i = 2, 3, . . . ,m and h, g ∈ {0, 1}n, a probabil-

ity RC(i;h; g) is defined as

RC(i;h; g) =Pr

{{
i∏

k=1

n∏
j=1

(
1− Y

(1,2)
kj

)
×

i∏
k=2

n∏
j=1

(
1− Y

(2,1)
kj

)
= 1

}
∩{

n∩
j=1

{Z1j = hj}

}∩{
n∩

j=1

{Zkj = gj}

}}
, (2.47)

which shows the reliability of a Cir/(1, 2)-or-(2, 1)/(i, n):F system in which the states of

the n components in the 1st circle are given by h and the states of the n components in

the ith circle are given by g. Figure 2.4 (a) illustrates this Cir/(1, 2)-or-(2, 1)/(i, n):F

system. Then, we can compute the reliability of a Tor/(1, 2)-or-(2, 1)/(m,n):F system

by the following theorem.

64



Theorem 2.8. (a) For i = 1, 2, . . . ,m and h, g, g′ ∈ {0, 1}n,

RC(i;h; g) =


Fi(g)

∑
g′∈ΩC(g)

RC(i− 1;h; g′), if i ≥ 2 and h, g ∈ WC ,

Fi(g), if i = 1 and h, g ∈ WC ,

0, otherwise,

(2.48)

where WC and ΩC(g) are given in Eqs. (2.23) and (2.24), respectively.

(b)

RT ((m,n), P ) =
∑

h∈WC

∑
g∈ΩC(h)

RC(m;h; g). (2.49)

We can prove Theorem 2.8 in the same manner as we did Theorem 2.4.

(B) FMCIA

Next, we provide the FMCIA for computing the reliability of a Tor/(1, 2)-or-

(2, 1)/(m,n):F system. The reliability of a Tor/(1, 2)-or-(2, 1)/(m,n):F system can

be obtained by the following theorem.

Theorem 2.9.

RT ((m,n), P ) = Tr

(
m∏
i=1

MC(i)

)
, (2.50)

where MC(i) is given by Eq. (2.43).

Appendix provides the proof of Theorem 2.9.

When the components are independent and identically distributed, we can com-

pute the reliability of a Tor/(1, 2)-or-(2, 1)/(m,n):F system efficiently by the following

corollary.

Corollary 2.4.

RT ((m,n), P ) = Tr
(
MC

)m
, (2.51)

where MC is given by Eq. (2.45).

Corollary 2.4 follows immediately from Theorem 2.9.
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Table 2.6: Approaches for computing the reliability of connected-(1, 2)-or-(2, 1)-out-of-
(m,n):F lattice systems.

Recursive equation approach FMCIA

(INID & IID cases) (INID case) (IID case)

Linear-type Theorem 2.2 [64] Theorem 2.3 Corollary 2.1

Circular-type (ray approach) Theorem 2.4 Theorem 2.5 Corollary 2.2

Circular-type (circle approach) Theorem 2.6 Theorem 2.7 Corollary 2.3

Toroidal-type Theorem 2.8 Theorem 2.9 Corollary 2.4

Table 2.6 summarizes the approaches for computing the reliability of connected-

(1, 2)-or-(2, 1)-out-of-(m,n):F lattice systems.

2.2.5 Efficiency Investigation

In this subsection, we compare the recursive equation approach and the FMCIA in terms

of the actual computation time. Two computational experiments were conducted for a

Lin/(1, 2)-or-(2, 1)/(m,n):F system and a Tor/(1, 2)-or-(2, 1)/(m,n):F system. In each

experiment, both methods are compared in the case where the components are inde-

pendent but non-identically distributed (INID case) and the IID case. In the INID case,

the component reliabilities P are given, for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, by

pij =

{
0.999, if i+ j is odd,

0.995, if i+ j is even.

In the IID case, the component reliabilities is given by pij = 0.999 for i = 1, 2, . . . ,m

and j = 1, 2, . . . , n.

Table 2.7 shows the comparison of the computation time required for a Lin/(1, 2)-

or-(2, 1)/(m,n):F system in the INID case. First, we confirmed that both methods gave

the same system reliabilities. The computation times of both methods tend to increase

as the number of rows, denoted as m, increases, as shown in Table 2.7. It is obvious

from Table 2.7 that the recursive equation approach [64] is more efficient in most cases.

Table 2.8 shows the comparison of the computation time required for a Lin/(1, 2)-or-

(2, 1)/(m,n):F system in the IID case. When the number of columns, denoted as n, is

relatively small and the number of rows is large, the recursive equation approach [64]
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Table 2.7: Comparison of computation times of the recursive equation approach and
the FMCIA for a Lin/(1, 2)-or-(2, 1)/(m,n):F system in the INID case (sec.).

m n (A) Recursive equation approach (B) FMCIA (B)/(A) (%) RL((m,n), P )

10 10 0.040 0.039 97.97 0.9991

10 50 0.055 0.055 100.50 0.9954

10 100 0.074 0.082 110.82 0.9907

15 10 0.531 0.484 91.18 0.9986

15 50 0.666 0.889 133.44 0.9929

15 100 0.920 1.112 120.83 0.9858

20 10 37.597 39.689 105.56 0.9982

20 50 49.205 58.860 119.62 0.9905

20 100 64.725 80.040 123.66 0.9810

Table 2.8: Comparison of computation times of the recursive equation approach and
the FMCIA for a Lin/(1, 2)-or-(2, 1)/(m,n):F system in the IID case (sec.).

m n (A) Recursive equation approach (B) FMCIA (B)/(A) (%) RL((m,n), P )

14 250 0.752 0.583 77.51 0.9933

14 500 1.213 0.598 49.28 0.9866

14 1000 2.098 0.675 32.17 0.9735

14 2000 3.864 0.654 16.93 0.9476

17 250 7.573 14.959 197.53 0.9918

17 500 13.263 15.974 120.45 0.9837

17 1000 24.791 17.384 70.12 0.9676

17 2000 47.741 18.520 38.79 0.9363

is more efficient, whereas the FMCIA outperforms the recursive equation approach [64]

when the number of columns is large. Overall, we obtained the following findings. In

the INID case, we should use the recursive equation approach; in the IID case, if the

number of columns is large, we should use the FMCIA. Note that we can obtain the

same result even if we swap m and n due to the system symmetry.

Table 2.9 shows the comparison of the computation time required for a Tor/(1, 2)-

or-(2, 1)/(m,n):F system in the INID case. Here, N/A means that a method failed

to compute the system reliability in 12 hours. We can see in Table 2.9 that the FM-

CIA can compute the system reliability in a shorter time than the recursive equation

approach in all the cases. Table 2.10 shows the comparison of the computation time
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Table 2.9: Comparison of computation times of the recursive equation approach and
the FMCIA for a Tor/(1, 2)-or-(2, 1)/(m,n):F system in the INID case (sec.).

n m (A) Recursive equation approach (B) FMCIA (B)/(A) (%) RT ((m,n), P )

10 10 0.258 0.035 13.45 0.9990

10 50 0.642 0.052 8.13 0.9951

10 100 1.055 0.082 7.78 0.9901

15 10 45.358 0.902 1.99 0.9984

15 50 222.912 2.985 1.34 0.9922

15 100 458.170 5.643 1.23 0.9845

Table 2.10: Comparison of computation times of the recursive equation approach and
the FMCIA for a Tor/(1, 2)-or-(2, 1)/(m,n):F system in the IID case (sec.).

n m (A) Recursive equation approach (B) FMCIA (B)/(A) (%) RT ((m,n), P )

14 250 295.064 0.467 0.16 0.9930

14 500 599.108 0.490 0.08 0.9861

14 1000 1181.618 0.492 0.04 0.9725

14 2000 2354.054 0.484 0.02 0.9457

17 250 17080.153 9.579 0.06 0.9916

17 500 31205.300 10.226 0.03 0.9832

17 1000 N/A 10.848 — 0.9667

17 2000 N/A 11.771 — 0.9345

required for a Tor/(1, 2)-or-(2, 1)/(m,n):F system in the IID case. From Table 2.10,

the computation time of the FMCIA does not increase with m, which illustrates the

efficiency of the FMCIA. Thus, within the scope of the experiment, we can conclude

that the FMCIA outperforms the recursive equation approach. According to the above

results, we suggest using the FMCIA for efficiently computing the reliability of the

Tor/(1, 2)-or-(2, 1)/(m,n):F system.

Remark

Here, we consider how to compute a recursive equation for system reliability. As noted

above, a recursive equation can be expressed as not only a recursive form but also it-

eration, and the iteration is preferable because of the efficiency. A recursive equation

can be rewritten as a matrix form and computed by the multiplications of the matrices,
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which is called the matrix-based method in this thesis. Note that the matrix-based

method generates a matrix from the recursive equation, whereas the FMCIA [60] gen-

erates a matrix directly. However, these methods compute the system reliability by the

same form such as Eq. (2.31). Hence, we compare the computation times of (A) the re-

cursive equation approach [58] and (B) a matrix-based method in a Lin/(r, s)/(m,n):F

system. We consider only the IID case and r = m − 1 for simplicity. That is, we

consider a Lin/(r, s)/(r+ 1, n):F system with the common component reliability p and

unreliability q, where p+ q = 1.

(A) Recursive equation approach First, we present the recursive equation [58] in

the case of r = m − 1. Let RL(j; (g1, g2)) be the reliability of a Lin/(r, s)/(r + 1, j):F

system in which all the components fail in the r× g1 rectangle with four corners (1, j),

(1, j− g1+1), (r, j− g1+1), and (r, j) and the r× g2 rectangle with four corners (2, j),

(2, j−g2+1), (r+1, j−g2+1), and (r+1, j). Figure 2.5 exemplifies a Lin/(2, 2)/(3, j):F

system when g = (2, 1). For the case of g1 = 0, 1, . . . , s − 1 and g2 = 0, 1, . . . , s − 1,

RL(j; (g1, g2)) can be computed as follows:

RL(j; (0, 0)) = α×
∑

(g1,g2)∈{0,1,...,s−1}2
RL(j − 1; (g1, g2)), (2.52)

where α = 1− (2pqr + qr+1). For g1 = 1, 2, . . . , s− 1, we have

RL(j; (g1, 0)) = β ×
∑

g2∈{0,1,...,s−1}

RL(j − 1; (g1 − 1, g2)), (2.53)

and for g2 = 1, 2, . . . , s− 1, we see that

RL(j; (0, g2)) = β ×
∑

g1∈{0,1,...,s−1}

RL(j − 1; (g1, g2 − 1)), (2.54)

where β = pqr. For g1 = 1, 2, . . . , s− 1 and g2 = 1, 2, . . . , s− 1, we have

RL(j; (g1, g2)) = γ ×RL(j − 1; (g1, g2)), (2.55)

69



Figure 2.5: Lin/(2, 2)/(3, j):F system when g = (2, 1).

where γ = qr+1. Using Eqs. (2.52)–(2.55), the reliability of a Lin/(r, s)/(m,n):F system

can be computed by

RL((r, s), (r + 1, n), P ) =
∑

(g1,g2)∈{0,1,...,s−1}2
RL(n; (g1, g2)). (2.56)

(B) Matrix-based method Second, we provide a matrix-based method. From

Eqs. (2.52)–(2.56), we can compute the reliability of a Lin/(r, s)/(m,n):F system as

follows:

RL((r, s), (r + 1, n), P ) = u (Ms)
n πT

0 , (2.57)

where u = (1, . . . , 1)d, π0 = (1, 0, . . . , 0)d, and the general form of the matrix Ms can

be expressed, for s = 2, 3, . . . , n− 1, as

Ms =



As As−1 · · · A2 α

Bs

Bs−1 O
. . .

O B2 0


d×d

, (2.58)
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Table 2.11: Comparison of computation times of (A) Recursive equation approach and
(B) Matrix-based method ((r, s) = (4, 4), p = 0.05).

(m,n) (5, 10) (5, 102) (5, 103) (5, 104) (5, 105)

(A) Recursive equation approach (sec.) 0.0424 0.0487 0.0552 0.1679 0.8362

(B) Matrix-based method (sec.) 0.0093 0.0109 0.0124 0.0110 0.0114

(B)/(A) (%) 21.88 22.37 22.46 6.55 1.36

RL((r, s), (r + 1, n), P ) 0.9998 0.9973 0.9728 0.7587 0.0632

Table 2.12: Comparison of computation times of (A) Recursive equation approach and
(B) Matrix-based method ((m,n) = (5, 1000), p = 0.05).

(r, s) (4,20) (4,30) (4,40) (4,50) (4,60)

(A) Recursive equation approach (sec.) 0.2087 0.3472 0.7159 0.7787 1.0112

(B) Matrix-based method (sec.) 0.0158 0.0639 0.2243 1.0332 2.1626

(B)/(A) (%) 7.57 18.40 31.33 132.68 213.87

RL((r, s), (r + 1, n), P ) 0.006 0.513 0.915 0.988 0.998

where, for l = 2, 3, . . . , s,

Al =



α α α · · · α

O(s−l)×l

2β β β · · · β

β O
. . .

O β 0


s×l

, Bl =


γ O

. . .

O γ

0


(l−1)×l

,

d = 1 + 2 + · · ·+ (s− 1) =
1

2
s(s+ 1), (2.59)

and O means a zero matrix.

We investigate the efficiency of the recursive equation approach and the matrix-

based method through numerical experiments. Tables 2.11 and 2.12 show the com-

parison of the computation time required for the cases of (r, s) = (4, 4) and (m,n) =

(5, 1000), respectively. We confirmed that both methods provided the same system
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reliabilities. First, we investigate the efficiency of both methods in the case where s is

fixed. As can be seen from Table 2.11, the matrix-based method is more efficient, es-

pecially for systems with large n. The reason is that by utilizing the fast-matrix-power

algorithm [52], the reliability can be obtained in logarithmic time for the parameter n.

Second, we investigate the efficiency of both methods in the case where n is fixed. It is

clear from Table 2.12 that, when s ≤ 40, the matrix-based method performs better than

the recursive equation approach, whereas when s ≥ 50, the recursive equation approach

is more efficient. This is because as the parameter s is large, the size of matrix (Ms)

is also large, and as a result, the required computation time typically grows rapidly.

However, Ms is a matrix in which many or most of the elements have a value of zero,

which is called a sparse matrix. The multiplications of this sparse matrix are easy to

compute by using computing software, e.g., MATLAB. Overall, we can conclude that

the matrix-based method outperforms the recursive equation approach for computing

the reliability of a Lin/(r, s)/(r + 1, n):F system with common component reliability p

when n is large and s is small.

2.3 Bounds for the Reliability of a Lin/(1, 2)-or-

(2, 1)/(m,n):F System

In this section, we consider upper and lower bounds for the reliability of a Lin/(1, 2)-

or-(2, 1)/(m,n):F system. One can make a trade-off between the computational effort

and the quality of the bounds (closeness to the exact value). Several useful and simple

bounds were reported, e.g., [66–68], whereas the bounds that require the computational

burden but are tighter have not been sufficiently discussed. Tighter bounds can ap-

propriately evaluate the system reliability compared with the existing bounds. Thus,

this section derives tighter bounds for the reliability of a Lin/(1, 2)-or-(2, 1)/(m,n):F

system at the expense of the computational effort.
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Figure 2.6: Lin/(1, 2)-or-(2, 1)/(b− a+ 1, n):F subsystem.

2.3.1 Derivation of Upper and Lower Bounds

First, we introduce some notation. Recall that the reliabilities of the components in a

Lin/(1, 2)-or-(2, 1)/(m,n):F system is

P = (pij)1≤i≤m,1≤j≤n ,

where pij is the reliability of component (i, j) for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

We consider a sub-matrix obtainable by removing some of the rows from the matrix P ,

which is defined as follows:

P[a,b] = (pij)a≤i≤b,1≤j≤n .

Accordingly, RL((b−a+1, n), P[a,b]) denotes the reliability of a Lin/(1, 2)-or-(2, 1)/(b−
a + 1, n):F subsystem, where 1 ≤ a < b ≤ m. Here, a Lin/(1, 2)-or-(2, 1)/(b − a +

1, n):F subsystem is obtained by removing rows 1, 2, . . . , a− 1, b+ 1, b+ 2, . . . ,m from

a Lin/(1, 2)-or-(2, 1)/(m,n):F system as shown in Fig. 2.6.

In addition, we define probabilities S(γ)((b− a+ 1, n), P[a,b]) as

S(γ)((b− a+ 1, n), P[a,b]) = Pr

{
b∏

i=a,i ̸=γ

n∏
j=2

(
1− Y

(1,2)
ij

)
×

b∏
i=a+1

n∏
j=1

(
1− Y

(2,1)
ij

)
= 1

}
,

(2.60)
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Figure 2.7: Definition of S(γ)((b− a+ 1, n), P[a,b]).

where a ≤ γ ≤ b. In words, S(γ)((b − a + 1, n), P[a,b]) means a probability that a

Lin/(1, 2)-or-(2, 1)/(b−a+1, n):F subsystem has no failure pattern (2, 1) in each column

and no failure pattern (1, 2) in each row except for the γth row for a ≤ x ≤ b, a ̸= b as

shown in Fig. 2.7. S(γ)((b− a+ 1, n), P[a,b]) is used to compute an upper bound that is

derived in this section.

We explain the idea behind the derived bounds for the reliability of a Lin/(1, 2)-or-

(2, 1)/(m,n):F system. From Eq. (1.18), we can obtain the upper bound for the system

reliability as follows:

RL((b, n), P[1,b])×RL((m− b, n), P[b+1,m]). (2.61)

LetDb([1,m], n) denote the difference between the exact system reliability and its upper

bound in Eq. (2.61), and then, Db([1,m], n) can be expressed, for 1 ≤ a < b ≤ m, as

RL((m,n), P ) = RL((b, n), P[1,b])×RL((m− b, n), P[b+1,m])−Db([1,m], n), (2.62)

or equivalently,

Db([1,m], n) = RL((b, n), P[1,b])×RL((m− b, n), P[b+1,m])−RL((m,n), P ). (2.63)

Here, the difference Db([l1, l2], n) represents the probability that a Lin/(1, 2)-or-

(2, 1)/(l2 − l1 + 1, n):F system has at least one failure pattern (2, 1) in rows b and

b + 1 and no failure patterns in any other positions. This is graphically presented in

Fig. 2.8.
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Figure 2.8: Definition of Db([l1, l2], n).

The reliabilities of the subsystems (RL((b, n), P[1,b]) and RL((m − b, n), P[b+1,m]))

can be computed by the existing method, such as Theorem 2.2 [64] and Theorem 2.3,

whereas the computation of Db([1,m], n) in Eq. (2.62) is often difficult. Hence, we

present the upper and lower bounds for the probability Db([1,m], n). If we substitute

the upper bound of Db([1,m], n) into Db([1,m], n) in Eq. (2.62), instead of the exact

value, then the value of the right-hand side is less than the exact value and exhibits

the negative error. Consequently, the lower bounds for the system reliability can be

obtained. Meanwhile, if we substitute the lower bound of Db([1,m], n) into Db([1,m], n)

in Eq. (2.62), then the value of the right-hand side is always greater than the exact

value and exhibits the positive error. Consequently, the upper bounds for the system

reliability can be obtained.

We present the following theorem.

Theorem 2.10. The lower and upper bounds (LBD(b, l1, l2), UBD(b, l1, l2)) are given

by

LBD(b, l1, l2) =RL((b, n), P[1,b])×RL((m− b, n), P[b+1,m])

−RL((l1 − 1, n), P[1,l1−1])×Db([l1, l2], n)×RL((m− l2, n), P[l2+1,m]),

(2.64)

and

UBD(b, l1, l2) =RL((b, n), P[1,b])×RL((m− b, n), P[b+1,m])

− S(l1)((l1, n), P[1,l1])×Db([l1, l2], n)× S(l2)((m− l2 + 1, n), P[l2,m]),

(2.65)
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where

Db([l1, l2], n) =RL((b− l1 + 1, n), P[l1,b])×RL((l2 − b− 1, n), P[b+1,l2])

−RL((l2 − l1 + 1, n), P[l1,l2]). (2.66)

Appendix provides the proof of Theorem 2.10.

Although Theorem 2.2 [64] and Theorem 2.3 can provide the reliability of the sub-

system RL((b − a + 1, n), P[a,b])), a method for computing S(γ)((b − a + 1, n), P[a,b]),

which is defined in Eq. (2.60), has not been reported. Thus, we propose a recursive

equation approach for efficiently computing S(γ)((b − a + 1, n), P[a,b]). First, we define

the following sets:

W S =

{
y

b∑
i=a+1

yi−1yi = 0

}
, (2.67)

and

ΩS(y, γ) =

{
y′ ∈ W S

b∑
i=a,i̸=γ

yiy
′
i = 0

}
. (2.68)

The following proposition can provide S(γ)((b− a+ 1, n), P[a,b]).

Proposition 2.1. (a) For j = 1, 2, . . . , n and y,y′ ∈ {0, 1}(b−a+1),

S(j;y) =


Gj(y)

∑
y′∈ΩS(y,γ)

S(j − 1;y′), if j ≥ 2 and y ∈ W S,

Gj(y), if j = 1 and y ∈ W S,

0, otherwise,

(2.69)

where W S and ΩS(y, γ) are given in Eqs. (2.67) and (2.68), respectively, and

Gj(y) =
b∏

i=a

pij
1−yi(1− pij)

yi .
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(b)

S(γ)((b− a+ 1, n), P[a,b]) =
∑

y∈WS

S(n;y). (2.70)

This proposition can be proved similarly to Theorem 2.4.

2.3.2 Numerical Experiment

In this subsection, we conduct the numerical experiments to compare the derived bounds

with the existing bounds. For i = 1, 2, . . . ,m and j = 1, 2, . . . , n, the component

reliabilities P are given by

pij =

{
α, if i+ j is odd,

β, if i+ j is even.

When we compute the bounds in Theorem 2.10, the values and the computation times

may be affected by changing the parameters: b, l1, and l2, which determine the size

of subsystems. Note that we should obtain the greatest of the lower bounds and the

smallest of the upper bounds.

First, we investigate the effects of the parameter b as a preliminary experiment.

Here, we set l1 = b − w and l2 = b + w. Table 2.13 shows the number of the rows of

the subsystems (b and m− b), the values of the derived bounds, and the times required

for obtaining the upper and lower bounds for w ∈ {5, 6, 7}. From Table 2.13, we can

see that the parameter b affects the computation times although it hardly changes the

obtained values. This suggests that both b and m − b should be small simultaneously

to compute the values in a shorter time. Thus, we set

b = ⌊m/2⌋, (2.71)

where ⌊a⌋ denotes the greatest integer less than or equal to a.

Second, we investigate the effects of the parameters l1 and l2 as a preliminary exper-

iment. The experimental results are listed in Table 2.14, including the number of the

rows of the subsystems (l1− 1, l2− l1+1, m− l2 for the lower bound and l1, l2− l1+1,

m − l2 + 1 for the upper bound), the values of the derived bounds, and the times

required for obtaining the upper and lower bounds. The result in Table 2.14 shows
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Table 2.13: Bounds for the reliability of the Lin/(1, 2)-or-(2, 1)/(36, 100):F system and
their computation times when (α, β) = (0.995, 0.999) for various b.

w b m− b Lower bound (LBD(b, l1, l2)) Upper bound (UBD(b, l1, l2)) time [s]

5

15 21 0.965594 0.965595 96.07

16 20 0.965594 0.965595 37.43

17 19 0.965594 0.965595 16.83

18 18 0.965594 0.965595 11.28

6

15 21 0.965594 0.965595 92.52

16 20 0.965594 0.965595 36.04

17 19 0.965594 0.965595 16.31

18 18 0.965594 0.965595 10.98

7

15 21 0.965594 0.965595 91.52

16 20 0.965594 0.965595 36.13

17 19 0.965594 0.965595 16.48

18 18 0.965594 0.965595 11.24

that the parameters hardly change the obtained values, whereas the computation times

are affected by the parameters. From the results, basically, we suggest minimizing the

maximum number of rows of the subsystems to compute the values in a shorter time.

Therefore, we set

l1 = ⌊m/3⌋, (2.72)

and

l2 = m− l1 + 1. (2.73)

Third, we compare the derived bounds LBD(b, l1, l2) and UBD(b, l1, l2) with the

existing upper bound (UB
(G)
FK) and lower bounds (LBEP and LB

(G)
EP ). Boutsikas and

Koutras [67] compared some existing upper and lower bounds for the reliability of a

Lin/(r, s)/(m,n):F system and pointed out that the best available bounds were the

upper bound (UB
(G)
FK) and the lower bound (LB

(G)
EP ). We present the upper bound of

Boutsikas and Koutras [67] for the reliability of a Lin/(1, 2)-or-(2, 1)/(m,n):F system
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Table 2.14: Bounds for the reliability of the Lin/(1, 2)-or-(2, 1)/(36, 100):F system and
their computation times when (α, β) = (0.995, 0.999) for various l1 and l2.

Lower bound (LBD(b, l1, l2)) Upper bound (UBD(b, l1, l2))

l1 − 1 l2 − l1 + 1 m− l2 value l1 l2 − l1 + 1 m− l2 + 1 value time [s]

8 20 8 0.965594 9 20 9 0.965595 40.98

9 18 9 0.965594 10 18 10 0.965595 14.77

10 16 10 0.965594 11 16 11 0.965595 10.75

11 14 11 0.965594 12 14 12 0.965595 10.19

12 12 12 0.965594 13 12 13 0.965595 10.09

13 10 13 0.965594 14 10 14 0.965595 10.42

14 8 14 0.965594 15 8 15 0.965595 11.18

15 6 15 0.965594 16 6 16 0.965595 12.70

16 4 16 0.965594 17 4 17 0.965595 16.80

as follows:

UB
(G)
FK =

m−1∏
i=1

n−1∏
j=1

(1− αij)×
m−1∏
i=1

(1− βi)×
n−1∏
j=1

(1− γj), (2.74)

where

αij = pi+1,j−1pi,j−1pi−1,jpi−1,j+1(qijqi,j+1 + qijqi+1,j − qijqi,j+1qi+1,j),

βi = pi−1,npi,n−1pi+1,n−1qinqi+1,n,

γj = pm,j−1pm−1,jpm−1,j+1qmjqm,j+1,

Note that pij = 1 if i = 0 or j = 0 for convenience, and qij is the unreliability of compo-

nent (i, j) (qij = 1− pij). Also, applying Eq. (1.17) to the Lin/(1, 2)-or-(2, 1)/(m,n):F

system yields

LB
(G)
EP (b) = RL((b, n), P[1,b])× S(b)((m− b+ 1, n), P[b,m]), (2.75)

where b = ⌊m/2⌋. In addition, LBEP , which is a well-known simple lower bounds, is

computed from Eq. (1.16).

Table 2.15 compares the derived and existing lower and upper bounds. The first

row lists the parameters for the system size and the second row lists the component
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Table 2.15: Comparison of the derived and existing lower and upper bounds for a
Lin/(1, 2)-or-(2, 1)/(m,n):F system.

(m,n) (30, 30) (40, 40)

(α, β) (0.950, 0.990) (0.995, 0.999) (0.950, 0.990) (0.995, 0.999)

time value time value time value time value

LBD(b, l1, l2) 0.67 0.448896 0.66 0.991412 45.51 0.238073 45.36 0.984654

LBEP 0.00 0.418860 0.02 0.991338 0.00 0.210054 0.01 0.984521

LB
(G)
EP (b) 2.43 0.436528 2.45 0.991121 308.00 0.229368 307.30 0.984267

UBD(b, l1, l2) 0.54 0.449056 0.47 0.991412 45.93 0.238224 46.01 0.984655

UB
(G)
FK 0.01 0.466385 0.01 0.991449 0.01 0.255203 0.01 0.984721

reliability, and the others list the computation times (sec.) and values for the upper

and lower bounds. From the results, we found that the derived bounds needed more

computation times compared with the existing ones except for LB
(G)
EP (b). Furthermore,

we obtained the bounds that are tighter than the best of the existing bounds within the

scope of the experiment. From Table 2.15, we have tighter upper and lower bounds as

the component reliability is high. In particular, when (α, β) = (0.995, 0.999), the upper

bound UBD(b, l1, l2) and the lower bound LBD(b, l1, l2) were coincident to at least five

after the decimal point. It is noteworthy that the values can be regarded as the exact

system reliability up to five decimal places.

2.4 Summary

This chapter focused on the system reliability evaluation. Here, we summarize the

individual contributions of each part.

(A) Computing the reliability of the Tor/(r, s)/(m,n):F system Section 2.1

considered the reliability of the Tor/(r, s)/(m,n):F system. First, we provided a recur-

sive equation approach, and, for efficiently computing the system reliability, we pro-

posed two kinds of algorithms. One of the algorithms was incorporated with the idea

that the elements of Θ(i;h; g) are enumerated beforehand and stored with the purpose

of increasing efficiency, which enables us to avoid redundant computations. It was the-

oretically shown that the algorithm with the above idea required extra memory space

but has better time complexity compared to the other one. Computational results sug-
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gest that this idea is particularly useful. Furthermore, we obtained the B-importance

for the Tor/(r, s)/(m,n):F system by the proposed algorithm as a numerical example.

(B) Comparison of the recursive equation approach and the FMCIA Sec-

tion 2.2 proposed the recursive equation approach and the FMCIA for computing the

reliability of Lin, Cir, and Tor/(1, 2)-or-(2, 1)/(m,n):F systems. Note that the recursive

equation approach for a Lin/(1, 2)-or-(2, 1)/(m,n):F system has already been proposed

by Yamamoto et al. [64]. One of the contributions of this chapter is to describe them

in a unified manner. Because there were no studies reported on efficiency comparisons

between both methods, we investigated the efficiency of both methods through numer-

ical experiments. In conclusion, we see that their efficiency depends on the situation.

Specifically, for a Lin/(1, 2)-or-(2, 1)/(m,n):F system, in the INID case, the recursive

equation approach was more efficient. In the IID case, if the number of columns was

large, the FMCIA outperformed the recursive equation approach. On the other hand,

for a Tor/(1, 2)-or-(2, 1)/(m,n):F system, within the scope of the experiment, we can

conclude that the FMCIA outperforms the recursive equation approach. This result

enables us to select which exact method should be used for efficiently computing the

system reliability.

(C) Bounds for the reliability of a Lin/(1, 2)-or-(2, 1)/(m,n):F system Sec-

tion 2.3 derived the upper and lower bounds for the reliability of a Lin/(1, 2)-or-

(2, 1)/(m,n):F system. Moreover, we conducted numerical experiments to evaluate

the derived bounds. From the results, within the scope of the experiment, it was found

that the derived bounds were tighter than the best of the existing bounds, although

they required more computation time. Therefore, It was concluded that we obtained the

tighter bounds at the expense of the computational effort compared with the existing

bounds.

Together with the results of the numerical experiments in this chapter, we can se-

lect appropriate methods for computing the reliability of a Lin/(1, 2)-or-(2, 1)/(m,n):F

system according to the following guideline. Note that we can obtain the same result

even if we swap m and n due to the system symmetry. If min{m,n} ≤ 20, we suggest

using the exact methods. In the INID case, the recursive equation approach in The-

orem 2.2 [64] should be used; in the IID case, if the number of columns is large, the
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FMCIA in Theorem 2.3. should be used. If 20 ≤ min{m,n} ≤ 40, we suggest using

the bounds in Theorem 2.10. It is worth noting that the upper and lower bounds are

approximately coincident when the component reliabilities are high. If 40 ≤ min{m,n},
we should use the existing simple bounds, e.g., LBEP [66] and UB

(G)
FK [68].
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Chapter 3

Computing the System Signature

The aim of this chapter is to propose methods for computing the system signatures of a

Lin/(r, s)/(m,n):F system and Lin/(1, 2)-or-(2, 1)/(m,n):F system. The system signa-

ture has various theoretical applications; for example, it is used to establish stochastic

comparisons among some systems. Section 3.1 presents the existing methods for com-

puting the system signature, which are compared with the proposed methods in order

to investigate the efficiency. Sections 3.2 and 3.3 propose methods for computing the

system signatures of a Lin/(r, s)/(m,n):F system and a Lin/(1, 2)-or-(2, 1)/(m,n):F sys-

tem, respectively. Additionally, numerical experiments are conducted to compare the

efficiency between the methods proposed in Sections 3.2 and 3.3 and existing methods.

As applications of the system signature, Section 3.4 compares the connected-X-out-of-

(m,n):F lattice systems based on the stochastic order. Finally, Section 3.5 summarizes

the contributions of the chapter.

3.1 Existing Methods for Computing the System

Signature

Let us consider a coherent system consisting of N components whose lifetimes are

independent and identically distributed (IID). Recall that a coherent system is defined

in Section 1.3. Let T1, T2, . . . , TN be the lifetimes of the N components, and let T be

the lifetime of the system. Recall that Samaniego [79] defined the system signature as
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a probability vector s(N) = (s1(N), s2(N), . . . , sN(N)), and its element is defined as

si(N) = Pr{T = Ti:N}, (3.1)

where Ti:N is the ith order statistic (that is, the ith smallest value) among T1, T2, . . . , TN

for i = 1, 2, . . . , N . However, the computation of a system signature is known to be

challenging, especially when a system has a large number of components. This section

presents several existing methods for computing a system signature.

The most common method is to directly compute the system signature based on the

definition in Kochar et al. [108]. In terms of the orderings of the lifetimes of components,

the system signature can be computed as

si(N) =
Number of orderings for which the ith failure causes system failure

N !
. (3.2)

From the assumption that Ti, i = 1, 2, . . . , N , are IID, the N ! permutations of these N

distinct failure times are equally likely. Although it is simple and straightforward, this

method becomes time-consuming and possibly inapplicable to large size systems.

One approach is a modular decomposition, which can reduce the computational

complexity if the system signatures of all modules are given. Da et al. [109,110] derived

two basic formulas for computing the system signature of a system that can be decom-

posed into two subsystems (modules). Marichal et al. [111] considered the general case

where a system can be partitioned into several disjoint modules and provided a general

formula of the system signature in terms of the system signatures of the modules. Re-

cently, Jia et al. [112] derived the explicit formulas for computing the system signature

of a modular system. However, the modular decomposition cannot be used to compute

the system signature of the Lin/(r, s)/(m,n):F system and Lin/(1, 2)-or-(2, 1)/(m,n):F

system because these systems cannot be decomposed into disjoint modules.

Other approaches compute a system signature via additional information, e.g., dom-

inations1, minimal cut set2, and minimal path set3. For example, Boland et al. [113]

provided the linkage between the dominations and the system signatures, which en-

ables us to compute the system signature from the dominations. Also, Da et al. [114]

1Let us suppose that a system with N components, and all components have a common reliability p.
The reliability of the system can be expressed as

∑N
i=1 dip

i, where coefficients di are called dominations.
2A minimal set of components whose failure ensures the failure of the system.
3A minimal set of components whose functioning ensures the functioning of the system.
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proposed an algorithm for computing the system signature under the assumption that

minimal cut/path sets are given in advance or easy to obtain. Let us consider a coher-

ent system with N components and k minimal cut sets: C1, C2, . . . , Ck. Letting D be

a subset of {1, 2, . . . , k} including the empty set, then we define

nD =

∣∣∣∣∣∪
i∈D

Ci

∣∣∣∣∣ ,
where |Ω| refers to the number of elements of the set Ω. Using the above notation,

Da et al. [114] presented the following explicit formulas for computing the system sig-

nature via minimal cut sets:

si(N) =
∑

D⊆{1,2,...,k}

(−1)|D|

(
i−1
nD

)(
n
nD

) −
∑

D⊆{1,2,...,k}

(−1)|D|

(
i

nD

)(
n
nD

) . (3.3)

Boland [115] provided an equation for computing a system signature from a well-

known quantity. For i = 1, 2, . . . , N , the ith element of a system signature can be

computed as follows:

si(N) =
ri−1(N)(

N
i−1

) − ri(N)(
N
i

) , (3.4)

where ri(N) is the number of path sets of a system with exactly i failed components for

i = 0, 1, . . . , N . Equation (3.4) implies that if ri(N)s are obtained, we can compute the

system signature easily. In other words, a classical combinational approach enables us

to compute a system signature. Typically, this approach tends to be applied to com-

pute the system signatures of systems with regular structures, such as consecutive-k

systems. For example, Eryilmaz [116] and Eryilmaz and Tuncel [117] gave ri(N)s of

consecutive-k-out-of-n:F systems in order to compute the system signature. Triantafyl-

lou [14] provided a comprehensive review of computing the system signatures of various

consecutive-k systems.

A few methods for obtaining the number of path sets ri(N) of a Lin/(1, 2)-or-

(2, 1)/(m,n):F system were reported. El-Sayed [118] derived an equation in the m = 2

case, which was the first-ever attempt to obtain ri(N)s of a Lin/(1, 2)-or-(2, 1)/(m,n):F

system. Subsequently, Ishikawa et al. [119] derived two equations in the cases of m = 2

and 3. When m = 2, an equation provided in Ishikawa et al. [119] has a smaller
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number of terms than in that of El-Sayed [118]. Thus, we present the equation derived

by Ishikawa et al. [119]. Letting, for convenience of notation, rz(m, j) be the number

of path sets of a Lin/(1, 2)-or-(2, 1)/(m, j):F system with exactly z failed components

for z = 0, 1, . . . , 2n and j = 1, 2, . . . , n. The number of path sets rz(2, n) is given by

rz(2, j) = rz(2, j − 1) + rz−1(2, j − 1) + rz−1(2, j − 2), (3.5)

for j = 3, 4, . . . , n and z = 2, 3, . . . , 2n. As the boundary condition, for j ≤ 2 or z ≤ 1,

rz(2, j) =



1, if z = 0 and j ≥ 1,

2j, if z = 1 and j ≥ 1,

2, if z = 2 and j = 2,

0, otherwise.

(3.6)

Furthermore, Ishikawa et al. [119] gave the equation for obtaining rz(3, n)s in the m = 3

case. The number of path sets rz(3, n) is given by

rz(3, j) =rz(3, j − 1) + rz−1(3, j − 1) + 2rz−1(3, j − 2) + 3rz−2(3, j − 2)

+ rz−3(3, j − 2) + rz−2(3, j − 3)− rz−4(3, j − 3)− rz−4(3, j − 4), (3.7)

for j = 5, 6, . . . , n and z = 4, 5, . . . , 3n. As the boundary condition, for j ≤ 4 or z ≤ 3,

rz(3, j) =



1, if z = 0 and j ≥ 1,

3j, if z = 1 and j ≥ 1,

1
2
(9j2 − 13j + 6), if z = 2 and j ≥ 1,

1
2
(9j3 − 39j2 + 64j − 40), if z = 3 and j ≥ 1,

6, if z = 4 and j = 3,

61, if z = 4 and j = 4,

1, if z = 5 and j = 3,

18, if z = 5 and j = 4,

2, if z = 6 and j = 4,

0, otherwise.

(3.8)
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Note that the number of rows and the number of columns are symmetric, and thus,

we can also obtain the number of path sets when n = 2 and 3 by Eqs. (3.5) and (3.7),

respectively.

Although the equations for the cases of m = 2 and 3 were reported, the explicit

representations are not available for any m and n. Generally, it is possible to derive the

equation for obtaining the number of path sets when m is given. However, the approach

proposed by Ishikawa et al. [119] is quite cumbersome because the number of terms in-

creases as the parameter m increases. Furthermore, an equation for obtaining ri(N)s of

the Lin/(r, s)/(m,n):F system has not been reported so far. Therefore, we propose the

efficient methods for computing the system signatures of a Lin/(r, s)/(m,n):F system

and Lin/(1, 2)-or-(2, 1)/(m,n):F system.

3.2 System Signature of a Lin/(r, s)/(m,n):F System

In this section, we compute the system signature of a Lin/(r, s)/(m,n):F system. When

using Eq. (3.4) to obtain the system signature, we need the number of path sets of the

Lin/(r, s)/(m,n):F system. Accordingly, we propose an efficient method, depending on

a structure of the Lin/(r, s)/(m,n):F system.

3.2.1 Notation

In this subsection, we define some notations. To indicate whether or not component

(i, j) works, for i = 1, 2, . . . ,m and j = 1, 2, . . . , n, we define the indicator variable xij

by

xij =

0, if component (i, j) works,

1, if component (i, j) fails.
(3.9)

The states of the m components in the jth column are represented by the state vector

xj = (x1j, x2j, . . . , xmj) for j = 1, 2, . . . , n. For j = 1, 2, . . . , n, the number of the failed

components in the jth column, denoted by N(xj), is given by

N(xj) =
m∑
a=1

xaj. (3.10)
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Figure 3.1: Definition of Aj(g).

The states of the mn components in a Lin/(r, s)/(m,n):F system can be expressed as a

matrix (xT
1 ,x

T
2 , . . . ,x

T
n). A structure function of a Lin/(r, s)/(m,n):F system, denoted

by ϕRS(xT
1 ,x

T
2 , . . . ,x

T
n), is given by

ϕRS(xT
1 ,x

T
2 , . . . ,x

T
n) = 1−

m−r+1∏
k=1

n−s+1∏
l=1

(
1−

k+r−1∏
u=k

l+s−1∏
v=l

xuv

)
, (3.11)

where aT is the transpose of row vector a, and ϕRS(xT
1 ,x

T
2 , . . . ,x

T
n) takes 0 if the system

works and 1 otherwise. Letting αz((r, s), (m,n)) denote the number of path sets of a

Lin/(r, s)/(m,n):F system with exactly z failed components, then we have

αz((r, s), (m,n)) =

∣∣∣∣∣
{

(xT
1 , . . . ,x

T
n) ϕRS(xT

1 , . . . ,x
T
n) = 0 and

n∑
a=1

N(xa) = z

}∣∣∣∣∣ .
(3.12)

3.2.2 Proposal of a Computational Method

In this subsection, we derive a recursive equation for obtaining αz((r, s), (m,n)) by

utilizing the event decomposition approach [22] in order to compute the system sig-

nature. Let g be an (m − r + 1)-dimensional vector (g1, g2, . . . , gm−r+1), where

gk ∈ {0, 1, . . . , s − 1} for k = 1, 2, . . . ,m − r + 1. The elements of g represents the

length of a rectangle in which all the components fail. For j = 1, 2, . . . , n, we define the
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following indicator variable:

Aj(g) =
m−r+1∏
k=1

((
k+r−1∏
u=k

j∏
v=j−gk+1

xuv

)
×

(
1−

k+r−1∏
u=k

xu,j−gk

))
, (3.13)

where
∏b

i=a xi = 1 for a > b. Here, Aj(g) takes 1 if “all the components fail in an r×gk

rectangle with four corners (k, j−gk+1), (k, j), (k+r−1, j), and (k+r−1, j−gk+1)”

and “at least one component works in components (k, j−gk), (k+1, j−gk), . . . , (k+r−
1, j − gk),” and 0 otherwise for all k = 1, 2, . . . ,m− r+ 1. Figure 3.1 illustrates Aj(g).

The element of g represents the width of a rectangle in which all components fail, as

shown in Fig. 3.1. Let α(j; z; g) be the number of path sets of a Lin/(r, s)/(m, j):F

system with exactly z failed components and the additional condition given by g, and

it is defined as

α(j; z; g) =

∣∣∣∣∣
{

(xT
1 , . . . ,x

T
j ) ϕRS(xT

1 , . . . ,x
T
j ) = 0,

j∑
a=1

N(xa) = z, and Aj(g) = 1

}∣∣∣∣∣ .
(3.14)

In other words, α(j; z; g) is the number of path sets of a Lin/(r, s)/(m, j):F system that

satisfies the following two conditions:

(a) The system has exactly z failed components.

(b) The system fulfills the additional condition, namely, Aj(g) = 1.

Figure 3.2 illustrates a Lin/(2, 2)/(3, j):F system with exactly z failed components and

the additional condition given by g = (1, 0).

From Eqs. (3.12) and (3.14), for z = 0, 1, . . . ,mn, we obtain

αz((r, s), (m,n)) =
∑
g∈S

α(n; z; g), (3.15)

where

S =

{
g

m−r+1∏
k=1

X (gk < s) = 1

}
, (3.16)

and X (G) is the indicator function which takes 1 if argument G is true and 0 otherwise.
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Figure 3.2: Lin/(2, 2)/(3, j):F system with exactly z failed components and the addi-
tional condition given by g = (1, 0).

Equation (3.15) shows that the number of path sets of a Lin/(r, s)/(m,n):F system with

exactly z failed components can be obtained by summing up α(n; z; g)s for all g ∈ S.

However, some gs are impossible to exist. For example, suppose r = 2, m = 4, and

g = (g1, g2, g3) = (1, 0, 1). g1 = 1 and g3 = 1 state that the components (1, j), (2, j),

(3, j), and (4, j) have failed, whereas g2 = 0 states that the component (2, j) or (3, j)

is working, which is obviously impossible. For convenience, if g is impossible to exist,

we define α(j; z; g) = 0 for any j = 1, 2, . . . , n and z = 0, 1, . . . ,mn. Yamamoto and

Akiba [62] proved that gs are impossible for g ∈ E, where

E =

{
g ∈ S gi > gi+1 and gi+u < gi+u+1 for some i ∈ {1, 2, . . . ,m− r − 1}

and some u ∈ {1, 2, . . . , r − 1}

}
.

(3.17)

Hence, for g ∈ E, it follows that

α(j; z; g) = 0,

for any j = 1, 2, . . . , n and z = 0, 1, . . . ,mn. Accordingly, by eliminating g ∈ E from

the set S, we can obtain αz((r, s), (m,n)) efficiently from Eq. (3.15).

Using the above notation, we can compute the system signature of a

Lin/(r, s)/(m,n):F system by utilizing the following theorem.
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Theorem 3.1. (a) For j = 1, 2, . . . , n, z = 0, 1, . . . ,mn, and g ∈ S,

α(j; z; g) =



(
mj
z

)
, if 0 ≤ z ≤ r − 1 and g = (0, . . . , 0),∑

y∈U(g)

∑
g′∈Θ(g)

α(j − 1; z −N(y); g′), if r ≤ z ≤ mj and g /∈ E,

0, otherwise,

(3.18)

where y = (y1, y2, . . . , ym) (yi ∈ {0, 1} for i = 1, 2, . . . ,m), g′ = (g′1, g
′
2, . . . , g

′
m−r+1)

(g′k ∈ {0, 1, . . . , s− 1} for k = 1, 2, . . . ,m− r + 1),

U(g) =

 y
k+r−1∏
u=k

yu = X (gk ≥ 1), for k = 1, 2, . . . ,m− r + 1,

and yi ∈ {0, 1} for i = 1, 2, . . . ,m

 , (3.19)

Θ(g) =

{
g′ g′k ∈ {gk − 1}, if gk ≥ 1,

g′k ∈ {0, 1, . . . , s− 1}, if gk = 0,

}
, (3.20)

and S and E are given by Eqs. (3.16) and (3.17), respectively. The boundary condition

is given, for z = 0, 1, . . . ,mn and g ∈ S, by

α(0; z; g) =

1, if z = 0 and g = (0, . . . , 0),

0, otherwise.
(3.21)

(b) For z = 0, 1, . . . ,mn,

αz((r, s), (m,n)) =
∑

g∈S\E

α(n; z; g). (3.22)

(c) For i = 1, 2, . . . ,mn,

si(mn) =
αi−1((r, s), (m,n))(

mn
i−1

) − αi((r, s), (m,n))(
mn
i

) . (3.23)

The proof is in Appendix.
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3.2.3 Algorithm and Illustrative Example

In this subsection, we discuss an algorithm based on Theorem 3.1 for efficiently com-

puting the system signature of the Lin/(r, s)/(m,n):F system. Basically, the algorithm

involves the following steps:

Step 1: Enumerate all elements in S and E by Eqs. (3.16) and (3.17), respectively.

Set j = 0 and α(0; z; g) by Eq. (3.21) for z = 0, 1, . . . ,mn and g ∈ S.

Step 2: Set j = j + 1, and compute α(j; z; g) for z = 0, 1, . . . ,mn and g ∈ S from

Eq. (3.18). Repeat this step until j = n.

Step 3: Compute αz((r, s), (m,n)) for z = 0, 1, 2, . . . ,mn from Eq. (3.22).

Step 4: Obtain si(mn) for i = 1, 2, . . . ,mn by Eq. (3.23).

Next, we demonstrate how this algorithm obtains the system signature of a

Lin/(r, s)/(m,n):F system. For instance, let us consider a Lin/(2, 2)/(3, 3):F system.

Step 1: We enumerate all the elements in S and E as follows:

S = {(0, 0), (0, 1), (1, 0), (1, 1)} ,

E = ∅,

and, for z = 0, 1, 2, . . . , 9, we have

α(0; z; g) =

1, if z = 0 and g = (0, 0),

0, otherwise.
(3.24)

Step 2: First, we consider the j = 1 case. If 0 ≤ z ≤ 1 and g = (0, 0), then we can

easily compute α(1; z; g) as follows:

α(1; 0; (0, 0)) =

(
3

0

)
= 1,

α(1; 1; (0, 0)) =

(
3

1

)
= 3.
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Table 3.1: α(1; z; g) of the Lin/(2, 2)/(3, 3):F system.

z 0 1 2 3 4 5 6 7 8 9

g = (0, 0) 1 3 1 0 0 0 0 0 0 0

g = (0, 1) 0 0 1 0 0 0 0 0 0 0

g = (1, 0) 0 0 1 0 0 0 0 0 0 0

g = (1, 1) 0 0 0 1 0 0 0 0 0 0

Otherwise, α(1; z; g) is computed recursively; for example, if z = 2 and g = (0, 1),

α(1; 2; (0, 1)) =
∑

y∈U((0,1))

∑
g′∈Θ((0,1))

α(0; 2−N(y); g′).

From Eqs. (3.19) and (3.20), since

U((0, 1)) = {(0, 1, 1)},

Θ((0, 1)) = {(0, 0), (1, 0)},

we can get

α(1; 2; (0, 1)) = α(0; 2−N((0, 1, 1)); (0, 0)) + α(0; 2−N((0, 1, 1)); (0, 1)),

= α(0; 0; (0, 0)) + α(0; 0; (0, 1)),

= 1 + 0 = 1. (from Eq. (3.24))

Also, if z = 2 and g = (1, 0), we have

α(1; 2; (1, 0)) = α(0; 0; (0, 0)) + α(0; 0; (1, 0)),

= 1 + 0 = 1. (from Eq. (3.24))

Table 3.1 lists all the α(1; z; g)s, which can be computed following a similar way.

Next, we consider the j = 2 case. If 0 ≤ z ≤ 1 and g = (0, 0), then we can easily
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Table 3.2: α(2; z; g) of the Lin/(2, 2)/(3, 3):F system.

z 0 1 2 3 4 5 6 7 8 9

g = (0, 0) 1 6 13 13 6 1 0 0 0 0

g = (0, 1) 0 0 1 3 2 0 0 0 0 0

g = (1, 0) 0 0 1 3 2 0 0 0 0 0

g = (1, 1) 0 0 0 1 3 1 0 0 0 0

compute α(2; z; g) as follows:

α(2; 0; (0, 0)) =

(
6

0

)
= 1,

α(2; 1; (0, 0)) =

(
6

1

)
= 6.

Otherwise, α(2; z; g) is computed recursively; for example, if z = 4 and g = (1, 0), since

U((1, 0)) = {(1, 1, 0)},

Θ((1, 0)) = {(0, 0), (0, 1)},

we have

α(2; 4; (1, 0)) =
∑

y∈U((0,1))

∑
g′∈Θ((0,1))

α(1; 4−N(y); g′),

= α(1; 4−N((0, 1, 1)); (0, 0)) + α(1; 4−N((0, 1, 1)); (0, 1)),

= α(1; 2; (0, 0)) + α(1; 2; (0, 1)),

= 1 + 1 = 2. (from Table 3.1)

Table 3.2 lists all the α(2; z; g)s, which can be computed following a similar way.

Finally, we consider the j = 3 case. All the α(3; z; g)s are listed in Table 3.3.

Step 3: We compute αz((2, 2), (3, 3)) for z = 0, 1, 2, . . . , 9 from Eq. (3.22); for example,
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Table 3.3: α(3; z; g) of the Lin/(2, 2)/(3, 3):F system.

z 0 1 2 3 4 5 6 7 8 9

g = (0, 0) 1 9 34 71 88 61 19 2 0 0

g = (0, 1) 0 0 1 6 14 16 8 1 0 0

g = (1, 0) 0 0 1 6 14 16 8 1 0 0

g = (1, 1) 0 0 0 1 6 13 13 6 1 0

when z = 0, we have

α0((2, 2), (3, 3)) =
∑

g∈S\E

α(3; 0; g),

= α(3; 0; (0, 0)) + α(3; 0; (0, 1)) + α(3; 0; (1, 0)) + α(3; 0; (1, 1)),

= 1 + 0 + 0 + 0 = 1. (from Table 3.3)

Also, when z = 4, we have

α4((2, 2), (3, 3)) =
∑

g∈S\E

α(3; 4; g),

= α(3; 4; (0, 0)) + α(3; 4; (0, 1)) + α(3; 4; (1, 0)) + α(3; 4; (1, 1)),

= 88 + 14 + 14 + 6 = 122. (from Table 3.3)

Similarly, we can compute all the αz((2, 2), (3, 3))s as follows:

α0((2, 2), (3, 3)) = 1, α1((2, 2), (3, 3)) = 9,

α2((2, 2), (3, 3)) = 36, α3((2, 2), (3, 3)) = 84,

α4((2, 2), (3, 3)) = 122, α5((2, 2), (3, 3)) = 106,

α6((2, 2), (3, 3)) = 48, α7((2, 2), (3, 3)) = 10,

α8((2, 2), (3, 3)) = 1, α9((2, 2), (3, 3)) = 0.

Step 4: We obtain si(9) for i = 1, 2, . . . , 9 by Eq. (3.23); for example, when i = 7, we
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have

s7(9) =
α6((2, 2), (3, 3))(

9
6

) − α7((2, 2), (3, 3))(
9
7

) ,

=
48

84
− 10

36
=

37

126
.

Eventually, we can obtain the system signature of the Lin/(2, 2)/(3, 3):F system as

follows:

s(9) =

(
0, 0, 0,

2

63
,
8

63
,
17

63
,
37

126
,
1

6
,
1

9

)
.

Some obtained system signatures are listed in Table 3.4.
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3.2.4 Efficiency Investigation

In this subsection, we investigate the efficiency of the proposed method based on Theo-

rem 3.1. The system signature of a Lin/(r, s)/(m,n):F system can be computed based

on the proposed method, an enumeration method based on Eq. (3.4), and Da’s [114]

method, which is available because the minimal cut sets of Lin/(r, s)/(m,n):F systems

can be easily obtained. Here, we explain an enumeration method based on Eq. (3.4).

Let us consider a system with N components. This method enumerates 2N possible

system states that depend on the states of N components. These 2N system states are

identified for being a working or failed state of the system, and we count the number of

the failed components in the working system. After checking all the system states, the

number of path sets of the system with exactly i failed components (i = 0, 1, . . . , N)

can be obtained. From Eq. (3.4), eventually, we can get the system signature. Each

method was programmed in MATLAB R2018a and implemented in a computer running

on Microsoft Windows 10 with Intel Core i5 3.20 GHz and 8.0 GB memory. Compu-

tation time plays an essential role in the measure of the computational efficiency of

different methods; thus, we compare the efficiency of the above-mentioned methods in

terms of the required computation time.

First, we confirmed that these methods provided the same system signatures. Ta-

ble 3.5 compares the computation time required for each case, where N/A indicates

that the method failed to obtain a system signature in 12 hours. Table 3.5 indicates

that the enumeration method requires longer computation time. For example, for

the Lin/(2, 2)/(6, 6):F system, the proposed method took only 0.341 seconds, whereas

the enumeration method did not obtain the system signature within the time limit of

12 hours. The main reason for this is that the enumeration method needs to generate

2mn states of mn components for counting the path sets of a certain size, making it

time-consuming, especially for the systems with a large number of components. Da’s

method [114] performs well when the number of minimal cut sets ((m−r+1)×(n−s+1))

is small, but its computation time increases exponentially with the number of minimal

cut sets. More specifically, this method cannot obtain the system signatures within the

time limit of 12 h when (m− r + 1)× (n− s+ 1) ≥ 25.

On the other hand, the proposed method obtains the system signatures in a rela-

tively shorter time. These results indicate that the proposed method is more efficient

than the Da’s method [114] in computing the system signature when the number of
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Table 3.5: Comparison of computation times for system signatures of the
Lin/(r, s)/(m,n):F systems (sec.).

(r, s) (m,n) Enumeration method Da’s method [114] Proposed method

(2, 2) (4, 4) 0.190 0.398 0.041

(3, 3) (4, 4) 0.208 0.065 0.041

(2, 2) (6, 6) N/A N/A 0.341

(3, 3) (6, 6) N/A 8.865 0.299

(4, 4) (6, 6) N/A 0.160 0.253

(5, 5) (6, 6) N/A 0.064 0.130

(2, 2) (8, 8) N/A N/A 4.131

(3, 3) (8, 8) N/A N/A 11.421

(4, 4) (8, 8) N/A N/A 15.178

(5, 5) (8, 8) N/A 71.982 12.531

(6, 6) (8, 8) N/A 1.318 5.121

(7, 7) (8, 8) N/A 0.067 1.508

(2, 2) (10, 10) N/A N/A 98.246

(3, 3) (10, 10) N/A N/A 503.051

(4, 4) (10, 10) N/A N/A 754.212

(5, 5) (10, 10) N/A N/A 950.535

(6, 6) (10, 10) N/A N/A 729.464

(7, 7) (10, 10) N/A 421.830 332.592

(8, 8) (10, 10) N/A 5.380 87.540

(9, 9) (10, 10) N/A 0.161 17.423

minimal cut sets is not very small.

In summary, these results imply that the proposed method outperforms the other

methods in terms of obtaining the system signature of a Lin/(r, s)/(m,n):F system. The

proposed method is more computationally efficient than Da’s method [114] for those

systems with not less than nine minimal cut sets within the scope of the experiment.

Therefore, we can conclude that the proposed algorithm would be definitely applicable

to a Lin/(r, s)/(m,n):F system with up to around 100 components.
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3.3 System Signature of a Lin/(1, 2)-or-(2, 1)/(m,n):F

System

In this section, we compute the system signature of a Lin/(1, 2)-or-(2, 1)/(m,n):F sys-

tem.

3.3.1 Proposal of a Computational Method

First, we define some notations. A structure function of a Lin/(1, 2)-or-(2, 1)/(m,n):F

system, denoted by ϕOR(xT
1 ,x

T
2 , . . . ,x

T
n), is given by

ϕOR(xT
1 ,x

T
2 , . . . ,x

T
n) = 1−

m∏
i=1

n∏
j=2

(1− xi,j−1xij)×
m∏
i=2

n∏
j=1

(1− xi−1,jxij) , (3.25)

where ϕOR(xT
1 ,x

T
2 , . . . ,x

T
n) takes 0 if the system works and 1 otherwise. Letting

βz(m,n) denote the number of path sets of a Lin/(1, 2)-or-(2, 1)/(m,n):F system with

exactly z failed components, then we have

βz(m,n) =

∣∣∣∣∣
{

(xT
1 , . . . ,x

T
n) ϕOR(xT

1 , . . . ,x
T
n) = 0 and

n∑
a=1

N(xa) = z

}∣∣∣∣∣ . (3.26)

We define β(j; z;y) as

β(j; z;y) =

∣∣∣∣∣∣∣
 (xT

1 , . . . ,x
T
j ) ϕOR(xT

1 , . . . ,x
T
j ) = 0,

j∑
a=1

N(xa) = z,

and xij = yi, (i = 1, 2, . . . ,m)


∣∣∣∣∣∣∣ . (3.27)

In other words, β(j; z;y) is the number of path sets of a Lin/(1, 2)-or-(2, 1)/(m, j):F

system that satisfies the following two conditions:

(a) The system has exactly z failed components.

(b) The states of the m components in the jth column are given by a vector y.

Figure 3.3 illustrates a Lin/(1, 2)-or-(2, 1)/(3, j):F system with exactly z failed compo-

nents and states of the m components in the jth column are given by y = (1, 0, 1).

Using the above notation, we can compute the system signature of a Lin/(1, 2)-or-

(2, 1)/(m,n):F system by utilizing the following theorem:
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Figure 3.3: Lin/(1, 2)-or-(2, 1)/(3, j):F system with exactly z failed components and
states of the m components in the jth column are given by y = (1, 0, 1).

Theorem 3.2. (a) For j = 1, 2, . . . , n, z = 0, 1, . . . ,mn, and y ∈ {0, 1}m,

β(j; z;y) =



∑
x∈Ω(y)

β(j − 1; z −N(y);x), if N(y) ≤ z ≤ N(y) +
⌈
m(j−1)

2

⌉
and y ∈ W,

0, otherwise,

(3.28)

where ⌈a⌉ denotes the smallest integer greater than or equal to a, and x =

(x1, x2, . . . , xm),y = (y1, y2, . . . , ym) (xi, yi ∈ {0, 1} for i = 1, 2, . . . ,m),

W =

{
y

m∑
i=2

yi−1yi = 0

}
, (3.29)

and

Ω(y) =

{
x ∈ W

m∑
i=1

xiyi = 0

}
. (3.30)

The boundary condition is given, for z = 0, 1, . . . ,mn and y ∈ {0, 1}m, by

β(0; z;y) =

1, if z = 0 and y = (0, . . . , 0),

0, otherwise.
(3.31)
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(b) For z = 0, 1, . . . ,mn,

βz(m,n) =
∑
y∈W

β(n; z;y). (3.32)

(c) For i = 1, 2, . . . ,mn,

si(mn) =
βi−1(m,n)(

mn
i−1

) − βi(m,n)(
mn
i

) . (3.33)

We provide a proof of Theorem 3.2 in Appendix.

3.3.2 Algorithm and Illustrative Example

In this subsection, we provide the detailed steps of an algorithm based on Theorem 3.2

for efficiently computing the system signature of a Lin/(1, 2)-or-(2, 1)/(m,n):F system.

Basically, the algorithm is executed in the following steps:

Step 1: Enumerate all the elements in W by Eq. (3.29), and set j = 0 and β(0; z;y)

for z = 0, 1, . . . ,mn and y ∈ {0, 1}m from Eq. (3.31).

Step 2: Set j = j + 1, and compute β(j; z;y) for z = 0, 1, . . . ,mn and y ∈ {0, 1}m

from Eq. (3.28). Repeat this step until j = n.

Step 3: Compute βz(m,n) for z = 0, 1, 2, . . . ,mn from Eq. (3.32).

Step 4: Obtain si(mn) for i = 1, 2, . . . ,mn by Eq. (3.33).

Next, we demonstrate how this algorithm obtains the system signature of a

Lin/(1, 2)-or-(2, 1)/(m,n):F system. For instance, let us consider a Lin/(1, 2)-or-

(2, 1)/(3, 3):F system.

Step 1: We enumerate all the elements in W as follows:

W = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 0, 1)} ,

and, for z = 0, 1, . . . , 9, we have

β(0; z;y) =

1, if z = 0 and y = (0, 0, 0),

0, otherwise.
(3.34)
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Table 3.6: β(1; z;y) of the Lin/(1, 2)-or-(2, 1)/(3, 3):F system.

z 0 1 2 3 4 5 6 7 8 9

y = (0, 0, 0) 1 0 0 0 0 0 0 0 0 0

y = (0, 0, 1) 0 1 0 0 0 0 0 0 0 0

y = (0, 1, 0) 0 1 0 0 0 0 0 0 0 0

y = (1, 0, 0) 0 1 0 0 0 0 0 0 0 0

y = (1, 0, 1) 0 0 1 0 0 0 0 0 0 0

Step 2: First, we consider the j = 1 case. We compute β(1; z;y) recursively; for

example, if z = 1 and g = (0, 0, 1),

β(1; 1; (0, 0, 1)) =
∑

x∈Ω((0,0,1))

β(0; 1−N((0, 0, 1));x).

Since

Ω((0, 0, 1)) = {(0, 0, 0), (0, 1, 0), (1, 0, 0)} ,

we can get

β(1; 1; (0, 0, 1)) = β(0; 0; (0, 0, 0)) + β(0; 0; (0, 1, 0)) + β(0; 0; (1, 0, 0)),

= 1 + 0 + 0 = 1. (from Eq. (3.34))

Table 3.6 lists all the β(1; z;y)s, which can be computed following a similar way.

Next, we consider the j = 2 case. β(2; z;y) is computed recursively; for example, if

z = 2 and y = (0, 1, 0), since

Ω((0, 1, 0)) = {(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1)} ,
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Table 3.7: β(2; z;y) of the Lin/(1, 2)-or-(2, 1)/(3, 3):F system.

z 0 1 2 3 4 5 6 7 8 9

y = (0, 0, 0) 1 3 1 0 0 0 0 0 0 0

y = (0, 0, 1) 0 1 2 0 0 0 0 0 0 0

y = (0, 1, 0) 0 1 2 1 0 0 0 0 0 0

y = (1, 0, 0) 0 1 2 0 0 0 0 0 0 0

y = (1, 0, 1) 0 0 1 1 0 0 0 0 0 0

Table 3.8: β(3; z;y) of the Lin/(1, 2)-or-(2, 1)/(3, 3):F system.

z 0 1 2 3 4 5 6 7 8 9

y = (0, 0, 0) 1 6 8 2 0 0 0 0 0 0

y = (0, 0, 1) 0 1 5 5 1 0 0 0 0 0

y = (0, 1, 0) 0 1 5 6 1 0 0 0 0 0

y = (1, 0, 0) 0 1 5 5 1 0 0 0 0 0

y = (1, 0, 1) 0 0 1 4 3 1 0 0 0 0

we have

β(2; 2; (0, 1, 0)) =
∑

x∈Ω((0,1,0))

β(1; 2−N((0, 1, 0));x),

=β(1; 1; (0, 0, 0)) + β(1; 1; (0, 0, 1)) + β(1; 1; (1, 0, 0)) + β(1; 1; (1, 0, 1)),

=0 + 1 + 1 + 0 = 2. (from Table 3.6)

Table 3.7 lists all the β(2; z;y)s, which can be computed following a similar way.

Finally, we consider the j = 3 case. All the β(3; z;y)s are listed in Table 3.8.

Step 3: We compute βz(3, 3) for z = 0, 1, 2, . . . , 9 from Eq. (3.32); for example, when

z = 2, we have

β2(3, 3) =
∑
y∈W

β(3; 2;y),

=β(3; 2; (0, 0, 0)) + β(3; 2; (0, 0, 1)) + β(3; 2; (0, 1, 0))

+ β(3; 2; (1, 0, 0)) + β(3; 2; (1, 0, 1)),

=8 + 5 + 5 + 5 + 1 = 24. (from Table 3.8)
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Similarly, we can compute all the βz(3, 3)s as follows:

β0(3, 3) = 1, β1(3, 3) = 9,

β2(3, 3) = 24, β3(3, 3) = 22,

β4(3, 3) = 6, β5(3, 3) = 1,

β6(3, 3) = 0, β7(3, 3) = 0,

β8(3, 3) = 0, β9(3, 3) = 0.

Step 4: We obtain si(9) for i = 1, 2, . . . , 9 by Eq. (3.33); for example, when i = 5, we

have

s5(9) =
β4(3, 3)(

9
4

) − β5(3, 3)(
9
5

) ,

=
6

126
− 1

126
=

5

126
.

Eventually, we can obtain the system signature of the Lin/(1, 2)-or-(2, 1)/(3, 3):F system

as follows:

s(9) =

(
0,

1

3
,
17

42
,
3

14
,

5

126
,

1

126
, 0, 0, 0

)
.

Some obtained system signatures are listed in Table 3.9.
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3.3.3 Efficiency Investigation

In this subsection, we investigate the efficiency of the proposed method based on The-

orem 3.2. The system signature of a Lin/(1, 2)-or-(2, 1)/(m,n):F system can be com-

puted by the proposed method, Eqs. (3.5) and (3.7), an enumeration method based on

Eq. (3.4), and Da’s method [114]. The enumeration method, Eqs. (3.5) and (3.7) were

selected for comparison with the proposed method here. Since the result in Subsec-

tion 3.2.4 shows that Da’s method [114] is inefficient in dealing with a system with a

large number of minimal cut sets, we do not compare the proposed method with Da’s

method [114]. Each method was programmed in MATLAB R2018a and was imple-

mented on a computer with Intel Core i5 3.20 GHz CPU, 8.0 GB memory, Microsoft

Windows 10 OS. We compare the efficiency of the above methods in terms of the re-

quired computation time.

First of all, we confirmed that these methods provided the same system signatures.

Table 3.10 shows the comparison of the computation time required for each case, where

N/A means that the method failed to obtain a system signature in 12 hours. Note

that Eqs. (3.5) and (3.7) can be applied only for the cases of m = 2 and 3 (or n = 2

and 3), and thus, the cases where we cannot obtain a system signature are shown

as a symbol “—”. When comparing the proposed method and Eqs. (3.5) and (3.7),

we see in Table 3.10 that Eqs. (3.5) and (3.7) can obtain the system signature in a

shorter time. However, the computation times required for the proposed algorithm

are sufficiently short. Additionally, Eqs. (3.5) and (3.7) are available for the cases of

m = 2 and 3, whereas the proposed method can obtain the system signature general

Lin/(1, 2)-or-(2, 1)/(m,n):F systems at least in theory. Next, we compare the proposed

method and the enumeration method. Table 3.10 indicates that when the system size is

small, although the proposed method requires more computation time compared with

the enumeration method, their computation times are sufficiently short. On the other

hand, as the system size is larger, the enumeration method becomes time-consuming.

For example, for the Lin/(1, 2)-or-(2, 1)/(6, 6):F system, the proposed method took

only 0.035 seconds, whereas the enumeration method could not obtain the system sig-

nature within the time limit of 12 hours. Also, from Table 3.10, we confirmed that

the proposed method could provide the system signature of the larger Lin/(1, 2)-or-

(2, 1)/(m,n):F systems. Furthermore, from Table 3.10, we found that a computation

time for a Lin/(1, 2)-or-(2, 1)/(10, 15):F system (1.453 seconds) was shorter than that of
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Table 3.10: Comparison of computation times for system signatures of Lin/(1, 2)-or-
(2, 1)/(m,n):F systems (sec.).

(m,n) Proposed method Enumeration method Eq. (3.5) Eq. (3.7)

(2,2) 0.019 0.013 0.003 —

(2,3) 0.023 0.013 0.006 0.002

(3,3) 0.023 0.013 — 0.005

(3,4) 0.023 0.016 — 0.006

(4,4) 0.025 0.164 — —

(4,5) 0.028 1.573 — —

(5,5) 0.031 48.279 — —

(5,6) 0.031 2023.453 — —

(6,6) 0.035 N/A — —

(10,5) 0.500 N/A — —

(10,10) 1.328 N/A — —

(10,15) 1.453 N/A — —

(10,20) 1.625 N/A — —

(15,5) 2.922 N/A — —

(15,10) 6.766 N/A — —

(15,15) 13.016 N/A — —

(15,20) 22.688 N/A — —

a Lin/(1, 2)-or-(2, 1)/(15, 10):F system (6.766 seconds). Note that we can get the same

results even if we interchange parameters m and n because of system symmetry. Thus,

in order to compute a system signature in a shorter time, the parameter m should be

the smaller value of the row or column.

In summary, the proposed method is more computationally efficient than the enu-

meration method for those systems with not less than 16 components within the scope of

the experiment. Also, Eqs. (3.5) and (3.7) can obtain the system signature in a shorter

time, but the computation times required for the proposed algorithm are sufficiently

short. Therefore, we can conclude that the proposed algorithm would be definitely

applicable to a Lin/(1, 2)-or-(2, 1)/(m,n):F system with up to around 300 components.
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3.4 Stochastic Comparisons of the Connected-X-

out-of-(m,n):F Lattice Systems

In this section, we compare the lifetimes of Lin/(r, s)/(m,n):F systems based on the

system signatures. By comparing the system signatures, we can compare the lifetimes

of the systems and determine the system that works properly for a longer time. The

concept of stochastic order is a useful tool in comparing system lifetimes [120]. Many

types of stochastic relationships are commonly used, such as the usual stochastic order,

the hazard rate order, the likelihood ratio order, and the stochastic precedence [121].

In this section, we focus on the usual stochastic order and the stochastic precedence.

Although the hazard rate order and the likelihood ratio order are omitted in this thesis,

they can be used similarly to the usual stochastic order.

Let TA and TB be the lifetimes of two systems. TA is said to be smaller than TB in

the usual stochastic order (denoted by TA ≤st TB) if and only if the following inequality

holds.

Pr{TA > t} ≤ Pr{TB > t}, (3.35)

for all t ∈ (0,∞). Kochar et al. [108] used a system signature to make a stochastic

comparison between various systems.

Proposition 3.1 (Kochar et al. [108]). Let sA(N) = (sA,1(N), sA,2(N), . . . , sA,N(N))

and sB(N) = (sB,1(N), sB,2(N), . . . , sB,N(N)) be the system signatures of two systems

with N IID components, and let TA and TB be the lifetimes of the two systems. If

N∑
j=i

sA,j(N) ≤
N∑
j=i

sB,j(N), (3.36)

holds for all i = 1, 2, . . . , N , then TA ≤st TB.

Proposition 3.1 [108] cannot be employed directly to compare the lifetimes of the

systems with different sizes. Thus, Navarro et al. [122] suggested “converting” the

smaller of two systems into a system of the same size as the larger one by adding ir-

relevant components to the smaller system. Note that both systems have the same

lifetime distribution because irrelevant components are added. Consequently, the life-

times of the systems can be compared based on the system signature. According to
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Navarro et al. [122], two systems with common IID component lifetimes are said to be

“equivalent” if the distributions of the lifetimes of the systems are identical.

Proposition 3.2 (Navarro et al. [122]). Let s(N) be the system signatures of a system

withN IID components. Then, for any positive integer v, the system signature s∗(N+v)

of an equivalent system with N + v components is given by

s∗k(N + v) =
N

N + v

1(
N+v−1
k−1

) × min(k,N)∑
i=max(1,k−v)

(
N − 1

i− 1

)(
v

k − i

)
si(N), (3.37)

for k = 1, 2, . . . , N + v.

When we compare the lifetimes of systems with different sizes, Proposition 3.2 [122]

enables us to find an equivalent system with the same size. As a result, we can use

Proposition 3.1 [108] to compare the lifetimes of systems.

Although the usual stochastic order is useful when it is applicable, there exist sys-

tems that cannot be ordered in the usual stochastic order. Arcones et al. [121] intro-

duced the concept of the stochastic precedence, which is an alternative approach to make

a stochastic comparison between random variables. TA is said to be smaller than TB in

the stochastic precedence (denoted by TA ≤sp TB) if and only if Pr{TA ≤ TB} ≥ 0.5.

Hollander and Samaniego [123] used the stochastic precedence to compare the lifetimes

of the systems.

Proposition 3.3 (Hollander and Samaniego [123]). Let sA(N) = (sA,1(N), sA,2(N),

. . . , sA,N(N)) and sB(M) = (sB,1(M), sB,2(M), . . . , sB,M(M)) be the system signatures

of two systems with N and M IID components, respectively, and let TA and TB be the

lifetimes of two systems. If Pr{TA ≤ TB} ≥ 0.5, then TA ≤sp TB, where

Pr{TA ≤ TB} =
N∑
i=1

M∑
j=1

sA,i(N)sB,j(M)×
N∑
k=i

[(
N
k

)(
M
j

)(
N+M
k+j

) ]( j

k + j

)
. (3.38)

The main advantage of the stochastic precedence is that we can present orderings

such that TA stochastically precedes TB or vice versa, even for systems that cannot be

ordered in the usual stochastic order. The relationship between the usual stochastic

order (TA ≤st TB) and the stochastic precedence (TA ≤sp TB) is given by [121],

TA ≤st TB ⇒ TA ≤sp TB. (3.39)

110



Table 3.11: Orderings in the usual stochastic order among some Lin/(r, s)/(m,n):F
systems.

(r, s) (2, 2) (2, 3) (3, 3) (2, 2) (2, 3) (3, 3) (3, 3) (3, 4) (4, 4) (3, 3) (3, 4) (4, 4)

(m,n) (4, 5) (4, 5) (4, 5) (5, 5) (5, 5) (5, 5) (5, 6) (5, 6) (5, 6) (6, 6) (6, 6) (6, 6)

(2, 2) (4, 5) =st ≤st ≤st ≥st ≤st ≤st ≤st ≤st ≤st ≤st ≤st ≤st

(2, 3) (4, 5) =st ≤st ≥st ≥st ≤st ≤st ≤st ≤st N/C ≤st ≤st

(3, 3) (4, 5) =st ≥st ≥st ≥st ≥st ≤st ≤st ≥st N/C ≤st

(2, 2) (5, 5) =st ≤st ≤st ≤st ≤st ≤st ≤st ≤st ≤st

(2, 3) (5, 5) =st ≤st ≤st ≤st ≤st N/C ≤st ≤st

(3, 3) (5, 5) =st ≥st ≤st ≤st ≥st N/C ≤st

(3, 3) (5, 6) =st ≤st ≤st ≥st ≤st ≤st

(3, 4) (5, 6) =st ≤st ≥st ≥st ≤st

(4, 4) (5, 6) =st ≥st ≥st ≥st

(3, 3) (6, 6) =st ≤st ≤st

(3, 4) (6, 6) =st ≤st

(4, 4) (6, 6) =st

For illustration, we present the stochastic orderings among some Lin/(r, s)/(m,n):F

systems using the system signatures obtained by the proposed method based on The-

orem 3.1. Table 3.11 shows the orderings in the usual stochastic order among some

Lin/(r, s)/(m,n):F systems. Let T(r,s)(m,n) be the lifetime of a Lin/(r, s)/(m,n):F sys-

tem, and the inequality sign ≤st in the 3rd row and 4th column of Table 3.11 indicates

the stochastic ordering T(2,2)(4,5) ≤st T(2,3)(4,5). As shown in Table 3.11, we identified the

stochastic orderings in 62 pairs out of the 66 possible pairwise. Because the orderings

of the remaining four pairs cannot be presented in the usual stochastic order, they are

represented by “N/C.” However, we can use the stochastic precedence to compare the

lifetimes of the systems. By Proposition 3.3 [123], we have,

Pr{T(2,3)(4,5) ≤ T(3,3)(6,6)} = 0.607401733,

Pr{T(3,3)(4,5) ≤ T(3,4)(6,6)} = 0.494663828,

Pr{T(2,3)(5,5) ≤ T(3,3)(6,6)} = 0.679896023,

Pr{T(3,3)(5,5) ≤ T(3,4)(6,6)} = 0.577954080,
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Thus, we can obtain the stochastic precedence orderings as follows:

T(2,3)(4,5) ≤sp T(3,3)(6,6),

T(3,3)(4,5) ≥sp T(3,4)(6,6),

T(2,3)(5,5) ≤sp T(3,3)(6,6),

T(3,3)(5,5) ≤sp T(3,4)(6,6).

3.5 Summary

This chapter dealt with the system signature of a Lin/(r, s)/(m,n):F system and a

Lin/(1, 2)-or-(2, 1)/(m,n):F system. The system signature is connected to many other

well-known reliability concepts and has various theoretical applications. For example,

the system signature is used to establish stochastic comparisons among some systems.

Also, the reliability polynomial can be easily expressed in terms of the system signa-

ture, which means that once a system signature is obtained, various reliability indices

such as the reliability polynomial, failure rate, and mean time to failure are easy to de-

rive. However, its practical applications have generally been limited to relatively small

systems because of the difficulties of its computation. Thus, this chapter computed

the system signature of a Lin/(r, s)/(m,n):F system and a Lin/(1, 2)-or-(2, 1)/(m,n):F

system. The main contribution lies in the derivation of the number of path sets for

these systems with exactly z failed components, which can be used to compute the sys-

tem signature. We conducted numerical experiments to investigate the efficiency of the

proposed method and then found that the proposed methods were efficient. Also, we

presented the stochastic orderings of some connected-X-out-of-(m,n):F lattice systems,

and the orderings could determine the system that works properly for a longer time.

From the discussions provided in this chapter, it concludes that the system signature

could have a certain degree of utility in the context of the comparisons of the systems.
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Chapter 4

Component Assignment Problem

The aim of this chapter is to develop algorithms for finding an optimal arrangement of

a Lin/(r, s)/(m,n):F system. Section 4.1 introduces the notation used throughout this

chapter and provides a detailed description of the CAP in a Lin/(r, s)/(m,n):F system.

Section 4.2 develops an algorithm for finding the optimal arrangement. Section 4.3

proposes an algorithm that specializes to the case of r = m − 1 and s = n − 1.

In Section 4.4, to investigate the efficiency of the proposed algorithms, we compare

these algorithms with the existing algorithm through numerical experiment. Finally,

Section 4.5 summarizes the contributions of the chapter.

4.1 CAP in a Lin/(r, s)/(m,n):F System

4.1.1 Formulation of the CAP

First, we describe the CAP in a Lin/(r, s)/(m,n):F system. Throughout this chapter,

we assume that, not only

(a) each component and the system can have only two states: either working or failed,

(b) all components are mutually statistically independent,

(c) all components reliabilities are given,

but also

(d) the components are functionally exchangeable.
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Assumption (d) means that a component can be assigned to any position.

Next, we define some notation. For i = 1, 2, . . . ,m and j = 1, 2, . . . , n, let (i, j) be a

position at the ith row and the jth column in a system. The symbol π(i, j) represents an

index of a component assigned to position (i, j) for i = 1, 2, . . . ,m and j = 1, 2, . . . , n,

where π(i, j) ∈ {1, 2, . . . ,mn}. In this chapter, a set of positions is called “area.” In

addition, an arrangement of mn components in which component π(i, j) is assigned to

position (i, j) is given by

Π = (π(i, j))1≤i≤m,1≤j≤n . (4.1)

For τ ∈ {1, 2, . . . ,mn}, let τ be an index of the component, and the reliability of

component τ is denoted by pτ , where p1 < p2 < · · · < pmn without loss of generality.

In other words, pτ represents the reliability of the τth least reliable component. The

vector p represents an mn-vector of the component reliabilities (p1, p2, . . . , pmn). We

denote the reliability of the Lin/(r, s)/(m,n):F system under an arrangement Π with

component reliabilities p by RL((r, s), (m,n),p; Π).

Under the assumption that the components are functionally exchangeable, the sys-

tem reliability may be improved by appropriately assigning components. The CAP is

to find an arrangement that maximizes the reliability of the Lin/(r, s)/(m,n):F system

(Π∗), that is,

Π∗ = arg max
Π∈Ω

RL((r, s), (m,n),p; Π), (4.2)

where Ω is a set of all arrangements.

4.1.2 Properties of the CAP in the Lin/(r, s)/(m,n):F System

In this subsection, we review the properties of the CAP in Lin/(r, s)/(m,n):F system.

Recall that we should perform the pruning as many times as possible to enhance the

speed of the B&B method. In the CAP, basically, there are three kinds of the pruning

as follows [88]:

(a) pruning based on the necessary condition that the optimal arrangement must

satisfy;

(b) pruning for eliminating the equivalent arrangement;
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(c) pruning based on system reliability.

A component arrangement that does not satisfy the necessary conditions will not

be optimal. Thus, we need to evaluate only the arrangements that satisfy all of the

necessary conditions. By reducing the solution space according to the necessary con-

ditions, it reduces the computational effort of finding the optimal arrangement. It is

noteworthy that the magnitude of component reliabilities determines whether or not

the necessary conditions are satisfied even if the exact component reliabilities are not

known. This means that we do not need any computations of the system reliability at

the time when we check whether or not the necessary conditions are satisfied. After

that, to find the optimal arrangement, only the arrangements that satisfy all of the

necessary conditions need to be evaluated.

Also, when we solve the CAP in a Lin/(r, s)/(m,n):F system, several equivalent

arrangements exist. We now introduce the concept of equivalent arrangements.

Definition 4.1. Two component arrangements, denoted by ΠA, ΠB, with component

reliabilities p are said to be equivalent if

RL((r, s), (m,n),p; ΠA) = RL((r, s), (m,n),p; ΠB), (4.3)

holds for any p.

Once one of the equivalent arrangements is enumerated, we do not need to enumer-

ate the others when we find an optimal arrangement. By eliminating the equivalent

assignment, the solution space can be reduced, and consequently, we can find the opti-

mal arrangement efficiently.

Next, we provide the existing necessary conditions that the optimal arrangement

must satisfy. Koutras et al. [90] established the necessary conditions for the optimal

arrangement as follows:

Lemma 4.1 (Koutras et al. [90]). The optimal arrangement of the Lin/(r, s)/(m,n):F

system satisfies the following conditions.

(a) If 2 ≤ j ≤ min{s, n− s+ 1}, for i = 1, 2, . . . ,m, π(i, j − 1) < π(i, j).

(b) If max{n− s+ 2, s+ 1} ≤ j ≤ n, for i = 1, 2, . . . ,m, π(i, j − 1) > π(i, j).

(c) If 2 ≤ i ≤ min{r,m− r + 1}, for j = 1, 2, . . . , n, π(i− 1, j) < π(i, j).
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Figure 4.1: Explanation of Lemma 4.1.

(d) If max{m− r + 2, r + 1} ≤ i ≤ m, for j = 1, 2, . . . , n, π(i− 1, j) > π(i, j).

Note that π(i, j − 1) < π(i, j) implies pπ(i,j−1) < pπ(i,j). Figure 4.1 explains

Lemma 4.1, where the symbol “< (>)” means the magnitude of the component re-

liabilities. Hence, Lemma 4.1 (a) means that, if a component arrangement is optimal,

for 2 ≤ j ≤ min{s, n− s + 1}, a component assigned to position (i, j) is more reliable

than that assigned to position (i, j − 1). Broadly speaking, Lemma 4.1 states that

the nearer to the center a component is located, the more reliable component should

be assigned. Lemma 4.1 can be proved with the permutation importance [124, 125],

where the definition of the permutation importance is given in the Appendix. Because

Koutras et al. [90] did not provide the details of the proof, the Appendix provides the

proof.

Omura et al. [93] gave the areas where exchanging any two components does not

change the system reliability as follows:

Lemma 4.2 (Omura et al. [93]). Exchanging any two components in the following

areas does not change the system reliability.

(a) If 2r > m, for j = 1, 2, . . . , n, Aj = {(i, j) | m− r + 1 ≤ i ≤ r}.

(b) If 2s > n, for i = 1, 2, . . . ,m, Bi = {(i, j) | n− s+ 1 ≤ j ≤ s}.

Since Lemma 4.2 was provided without the details of the proof in Omura et al. [93],

the proof is presented in Appendix. Figure 4.2 explains Lemma 4.2. It is clear from
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Figure 4.2: Explanation of Lemma 4.2.

Lemma 4.2 that one arrangement and an arrangement obtainable by swapping two

components in area Aj or Bi are equivalent. Thus, by fixing the magnitude of the com-

ponent reliabilities in each area, we delete all but one of the equivalent arrangements.

Hence, we provide the following lemma.

Lemma 4.3. We enumerate the arrangements satisfying the following conditions in

order to delete all but one of the equivalent arrangements.

(a) If 2r > m and m− r + 2 ≤ i ≤ r, π(i, j − 1) < π(i, j) for j = 1, 2, . . . , n.

(b) If 2s > n and n− s+ 2 ≤ j ≤ s, π(i− 1, j) < π(i, j) for i = 1, 2, . . . ,m.

Furthermore, Omura et al. [93] provided the following proposition.

Proposition 4.1 (Omura et al. [93]). The optimal arrangement of a Lin/(r, s)/(m,n):F

system satisfies the following conditions. If 2r > m and 2s > n, then the (2r−m)(2s−n)

most reliable components are assigned to area C, where

C = {(i, j) | m− r + 1 ≤ i ≤ r, n− s+ 1 ≤ j ≤ s}.

Combining Lemmas 4.1 and 4.2 gives Proposition 4.1 straightforward. Figure 4.3

explains Proposition 4.1.

Finally, we explain the equivalent arrangements due to symmetry. When the compo-

nent reliabilities are given, the reliability of a Lin/(r, s)/(m,n):F system is determined

by the relative arrangements of components. Hence, the arrangements obtainable by
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Figure 4.3: Explanation of Proposition 4.1.

flipping the left and right ends or the top and bottom of the arrangement or by ro-

tating 180 degrees clockwise are equivalent. To delete all but one of the equivalent

arrangements, we enumerate the arrangements that satisfy the following conditions.

(a) If m ̸= n or r ̸= s, then

π(1, 1) = min{π(1, 1), π(m, 1), π(1, n), π(m,n)}, (4.4)

(b) If m = n and r = s, then Eq. (4.4) and

π(m, 1) < π(1, n). (4.5)

Equation (4.4) means that the least reliable component in positions (1, 1), (m, 1), (1, n),

and (m,n) should be assigned to position (1, 1). In this chapter, an arrangement that

satisfies the above conditions is called an “arrangement with symmetry eliminated.”

Let us consider a situation that we assign the components in order of positions

(1, 1), (2, 1), . . . , (m, 1), (1, 2), . . . , (m, 2), (1, 3), . . . , (m,n). Yamamoto et al. [126] pro-

vided a condition for enumerating the only arrangements with symmetry eliminated.

Now, we define the following notation. For i = 1, 2, . . . ,m and j = 1, 2, . . . , n, we have

w = i+ (j − 1)m, (4.6)

where w ∈ {1, 2, . . . ,mn}. Let Lw denote a set of the components that have not been

assigned when the wth component is assigned, and let max(z)(Lw) denote the index of

the zth most reliable component in the set Lw. Yamamoto et al. [126] gave the following
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proposition for enumerating the only arrangements with symmetry eliminated.

Proposition 4.2 (Yamamoto et al. [126]). When we assign the components in order of

positions (1, 1), (2, 1), . . . , (m, 1), (1, 2), . . . , (m, 2), (1, 3), . . . , (m,n), the arrangements

with symmetry eliminated satisfy the following condition:

(1) If m ̸= n or r ̸= s, then

(a) for w = 1, π(1, 1) < mn− 3.

(b) for 1 < w < m, max(3)(Lw) > π(1, 1).

(c) for w = m, π(1, 1) < π(m, 1).

(d) for m < w < mn−m+ 1, max(2)(Lw) > π(1, 1).

(e) for w = mn−m+ 1, π(1, 1) < π(1, n).

(f) for mn−m+ 1 < w < mn, max(1)(Lw) > π(1, 1).

(g) for w = mn, π(1, 1) < π(m,n).

(2) If m = n and r = s, then the above conditions (a), (b), (f), and (g) and

(c’) for w = m, π(1, 1) < π(m, 1) ≤ mn− 1.

(d’) for m < w < mn−m+ 1, max(2)(Lw) > π(1, 1) and max(1)(Lw) > π(m, 1).

(e’) for w = mn−m+ 1, π(m, 1) < π(1, n).

Proposition 4.2 (a) implies that the index of the component that assigned to position

(1, 1) is smaller than (mn−3). This proposition enables us to keep only one arrangement

and removes the other arrangements that are equivalent to the arrangement. Note that,

although Yamamoto et al. [126] gave the above condition to the facility layout problem,

it is also applicable to the CAP in the Lin/(r, s)/(m,n):F system.

4.2 Algorithm for Solving the CAP in the General

Case

4.2.1 Conditions for the Pruning

In our proposed algorithm, when enumerating all possible candidates for the

optimal arrangement, we assign the components in the order of positions
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(1, 1), (2, 1), . . . , (m, 1), (1, 2), . . . , (m, 2), (1, 3), . . . , (m,n) in the depth-first search

(DFS) tree. To enhance the speed of the algorithm, we should perform the prun-

ing as many times as possible in the DFS tree. Thus, we derive three conditions for

the pruning of the DFS tree, and they are based on Lemmas 4.1, 4.3, Propositions 4.1,

and 4.2.

First, we provide the following condition.

Condition 1. When a component is assigned to position (i, j), if the following condition

is not satisfied, then we perform the pruning.

(i) If 2 ≤ j ≤ s, π(i, j − 1) < π(i, j) for i = 1, 2, . . . ,m.

(ii) If max{n− s+ 2, s+ 1} ≤ j ≤ n, π(i, j − 1) > π(i, j) for i = 1, 2, . . . ,m.

(iii) If 2 ≤ i ≤ r, π(i− 1, j) < π(i, j) for j = 1, 2, . . . , n.

(iv) If max{m− r + 2, r + 1} ≤ i ≤ m, π(i− 1, j) > π(i, j) for j = 1, 2, . . . , n.

The proof follows directly from Lemmas 4.1 and 4.3.

Next, we provide a condition, which restricts the components assigned to position

(1, 1).

Condition 2. When a component is assigned to position (1, 1), if the following condi-

tion is not satisfied, then we perform the pruning.

(i) If 2r ≥ m and 2s ≥ n, then π(1, 1) = 1.

(ii) If 2r ≥ m and 2s < n, then π(1, 1) ≤ mn− 2sm+ 1.

(iii) If 2r < m and 2s ≥ n, then π(1, 1) ≤ mn− 2rn+ 1.

(iv) If 2r < m and 2s < n, then π(1, 1) ≤ mn− 4rs+ 1.

Recall that component τ means the τth least reliable component (τ ∈
{1, 2, . . . ,mn}). For example, Condition 2 states that, if 2r ≥ m and 2s < n, then

the τth least reliable component (1 ≤ τ ≤ mn − 2sm + 1) should be assigned to

position (1, 1) in the optimal arrangement. This condition restricts the components

assigned to position (1, 1), and consequently, the number of candidates for the optimal

arrangement can be reduced. Condition 2 can be easily established from Lemmas 4.1

and 4.3.
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Conditions 1 and 2 can reduce the small number of the possible solutions, and subse-

quently, the remaining possible solutions are evaluated by the system reliability. When

finding the optimal arrangement, we compute the system reliability again and again,

and thus, the efficient computations can be very critical. In the proposed algorithm,

we use the recursive equation [58].

We define some additional notation to provide the recursive equation. A vector

x = (x1, x2, . . . , xm) represents the states of the m components assigned on the jth

column, where xi = 0 if the ith component works; otherwise xi = 1 for i = 1, 2, . . . ,m.

Also, we introduce an (m−r+1)-dimensional 0-1 binary vector d = (d1, d2, . . . , dm−r+1),

and the element dk is defined, for k = 1, 2, . . . ,m− r + 1, as

dk =
k+r−1∏
u=k

xu. (4.7)

In words, dk = 1 if all the components π(k, j), π(k + 1, j), . . . , π(k + r − 1, j) fail;

otherwise dk = 0. Moreover, for j = 1, 2, . . . , n and d ∈ {0, 1}m−r+1, a probability

Fj(d) is defined as

Fj(d) =
∑

x∈U(d)

m∏
i=1

pπ(i,j)
1−xi(1− pπ(i,j))

xi , (4.8)

where

U(d) =

{
x ∈ {0, 1}m−r+1

k+r−1∏
u=k

xu = dk, (k = 1, 2, . . . ,m− r + 1)

}
. (4.9)

Let g be an (m−r+1)-dimensional vector (g1, g2, . . . , gm−r+1), where gk ∈ {0, 1, . . . , s−
1} for k = 1, 2, . . . ,m − r + 1. For j = 1, 2, . . . , n, we define the following indicator

variable:

Aj(g) =
m−r+1∏
k=1

((
k+r−1∏
u=k

j∏
v=j−gk+1

Zuv

)
×

(
1−

k+r−1∏
u=k

Zu,j−gk

))
, (4.10)

where
∏b

i=a xi = 1 for a > b. Here, the event {Aj(g) = 1} means that “all the

components fail in an r×gk rectangle with four corners (k, j−gk+1), (k, j), (k+r−1, j),

and (k+r−1, j−gk+1)” and “at least one component works in components (k, j−gk),

121



(k + 1, j − gk), . . . , (k + r − 1, j − gk),” and 0 otherwise for all k = 1, 2, . . . ,m− r + 1.

Besides, the set S is defined as

S =

{
g

m−r+1∏
k=1

X (gk < s) = 1

}
, (4.11)

where X (G) is an indicator function which takes 1 if argument G is true; 0 otherwise.

Moreover, Yamamoto and Akiba [62] proved that gs are impossible for g ∈ E, where

E =

{
g ∈ S gk > gk+1 and gk+x < gk+x+1 for some k ∈ {1, 2, . . . ,m− r − 1}

and some x ∈ {1, 2, . . . , r − 1}

}
.

(4.12)

For j = 1, 2, . . . , n and g ∈ S, the reliability of the Lin/(r, s)/(m, j):F sys-

tem in which the states of the components on the end are given by g, denoted by

RL((r, s), (m, j),p; Π(j); g), is defined by

RL((r, s), (m, j),p; Π(j); g) = Pr

{
m−r+1∩
k=1

j−s+1∩
l=1

{
k+r−1∏
u=k

l+s−1∏
v=l

Zuv = 0

}∩
Aj(g)

}
.

(4.13)

Here, Π(j) is an arrangement where the components have been assigned from the 1st

column to the jth column for j = 1, 2, . . . , n. Note that Π(j) = Π if j = n. Furthermore,

let g′ be an (m − r + 1)-dimensional integer vector (g′1, g
′
2, . . . , g

′
m−r+1), where g′k ∈

{0, 1, . . . , s − 1} for k = 1, 2, . . . ,m − r + 1. The states of the components on the end

of a Lin/(r, s)/(m, j − 1):F system are given by g′.

We can compute the reliability by using the following recursive equation.

Proposition 4.3 (Yamamoto and Miyakawa [58]). (a) For j = 1, 2, . . . , n and g ∈ S,

RL((r, s), (m, j),p; Π(j); g) =



0, min
1≤k≤m−r+1

{gk} ≤ 0 or g ∈ E.

Fj(d)
∑

g′∈Θ(g)

RL((r, s), (m, j − 1),p; Π(j−1); g′),

otherwise,

(4.14)
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where

Θ(g) =

{
g′ g′l ∈ {0, 1, . . . , s− 1}, if gk = 0,

g′l ∈ {gl − 1}, if gk > 0

}
, (4.15)

and for k = 1, 2, . . . ,m− r + 1,

dk =

{
0, if gk = 0,

1, if gk > 0.

As the boundary condition, for j = 0,

RL((r, s), (m, j),p; Π(j); g) =

{
1, if g = (0, . . . , 0),

0, otherwise.
(4.16)

(b)

RL((r, s), (m,n),p; Π) =
∑

g∈S\E

RL((r, s), (m,n),p; Π(n); g), (4.17)

where the sets S and E are given by Eqs. (4.11) and (4.12).

In solving the CAP, Proposition 4.3 is very useful in terms of computing the system

reliability. The reasons are as follows. When solving an optimal arrangement problem,

we require iterative computations of the system reliability. If R((r, s), (m, j),p; Π(j); g)s

are memorized for g ∈ S in each j in the DFS tree, R((r, s), (m, j),p; Π(j); g)s do

not need to be computed again because we can utilize the memorized values, which

enables us to avoid redundant computations. Therefore, the proposed algorithm can be

accelerated with the help of the recursive equation [58]. An example of this computation

of the system reliability is given later.

Finally, an algorithm can be accelerated with the help of the upper bound of the

system reliability. It is evident from Proposition 4.3 that the system reliability is

non-increasing in the number of components. To put it differently, even if further

components are assigned to the arrangement, a solution is not as good as the current

best solution. Thus, we can eliminate unnecessary arrangements by computing the

upper bound of the system reliability under a partial arrangement and then comparing

it with the maximum system reliability obtained so far. More precisely, if the system
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reliability under a partial arrangement is lower than the maximum system reliability,

then we perform the pruning. Thus, we derive the following condition.

Condition 3. When a component is assigned to position (m, j) for j = 1, 2, . . . , n, if

the following condition is not satisfied, then we perform the pruning.

Rmax ≤
∑

g∈{1,2,...,s}m−r+1

R((r, s), (m, j),p; Π(j); g), (4.18)

where Rmax is the maximum system reliability obtained so far.

4.2.2 Algorithm and Illustrative Example

In this subsection, we propose an algorithm based on the B&B method to search for

finding the optimal arrangement of the Lin/(r, s)/(m,n):F system. The algorithm first

begins by setting parameters: r, s,m, n, and p, and then, we set Rmax to be 0. Next,

Proposition 4.1 is used in a preprocessing step. To be precise, if 2r > m and 2s > n,

then we assign the (2r−m)(2s−n) most reliable components to area C. It is notewor-

thy that the components assigned to area C are determined according to the magnitude

of component reliabilities but not their actual values, and hence, we can identify the

components without any computations of the system reliability. Proposition 4.1 is

attractive, especially when 2r−m and 2s−n are large. After that, we assign the com-

ponents in order of positions (1, 1), (2, 1), . . . , (m, 1), (1, 2), . . . , (m, 2), (1, 3), . . . , (m,n)

in the DFS tree. Note that if a component has already assigned to the position by

Proposition 4.1, we skip assigning a component at the position. Letting α be the

number of assigned components, then we get

α =

mn− (2r −m)(2s− n), if 2r > m and 2s > n,

mn, otherwise.
(4.19)

As an example, Fig. 4.4 shows the assignment order of α (= 20) components in

the Lin/(3, 4)/(4, 6):F system. In this figure, a black cell means a position where a

component has been assigned to advance, and a number in a cell means the assignment

order of components in the proposed algorithm.

Next, let USED(τ) denote an index function that takes 1 if component τ has been

assigned; otherwise, 0 for τ = 1, 2, . . . ,mn. When we assign the components in order
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1 5 9 11 13 17

2 6 14 18

3 7 15 19

4 8 10 12 16 20

Figure 4.4: Example of assignment order of components in the proposed algorithm.

of positions (1, 1), (2, 1), . . . , (m, 1), (1, 2), . . . , (m, 2), (1, 3), . . . , (m,n) in the DFS tree,

DFS(k) is denoted by a routine to assign a component to the kth position for k =

1, 2, . . . , α. Figure 4.5 shows a flow chart of DFS(k). The procedure of DFS(k) is given

in the following steps.

STEP 0: Set τ = 0.

STEP 1: Update τ = τ + 1. If τ > α, then stop DFS(k).

STEP 2: If component τ is used already, that is, USED(τ) = 1, then go back to

STEP 1.

STEP 3: If Condition 1, 2, or Proposition 4.2 is not satisfied, then we perform the

pruning, that is, go back to STEP 1.

STEP 4: If a component is assigned to position (m, j), for j = 1, 2, . . . , n, then we

compute the system reliability under a partial arrangement by Proposition 4.3;

otherwise, go to STEP 7.

STEP 5: If Condition 3 is not satisfied, then we perform the pruning, that is, go back

to STEP 1.

STEP 6: If all the components have been assigned, then memorize the arrangement

and update Rmax, and then, stop DFS(k); otherwise, go to STEP 7.

STEP 7: Go to DFS(k + 1).

After enumerating all arrangements, an arrangement with Rmax becomes the optimal

arrangement.

We give an example to illustrate how to implement the proposed algorithm for find-

ing the optimal arrangement to make the proposed algorithm more understandable. As
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Condition 1

Condition 2

Proposition 4.2

yes

satisfy

satisfy

END

no

yes Compute the system reliability by 
Proposition 4.3

Condition 3

Memorize the arrangement and 
update

no

satisfy

not satisfy

no

not satisfy

not satisfy

not satisfy

Have all the 
components 

been 
assigned ?

satisfy

yes

(*)

(*) Is a component assigned at 

position $(m,j)$, for $j=1,2,¥dots,n$ ? 

Figure 4.5: Flow chart of DFS(k).
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an example, let us consider a Lin/(2, 3)/(3, 4):F system. First of all, as a preprocess-

ing step, components 11 and 12 are assigned to positions (2, 3) and (2, 4) according

to Proposition 4.1. A tree for enumerating arrangements of this system is shown in

Fig. 4.6. Note that a black cell means a position where a component has already been

assigned, and a number in a cell means the index of components. In the following, for

the sake of conciseness, we explain the procedure for each layer, although the actual

algorithm uses the DFS strategy.

In the first layer (DFS(1)), if component 1 is assigned to position (1, 1), go to

DFS(2). In contrast, if the other components are assigned to position (1, 1), we perform

the pruning according to Condition 2 because, in the case of 2r ≥ m and 2s ≥ n, these

arrangements do not satisfy Condition 2 (i) (π(1, 1) = 1). In the second layer (DFS(2)),

components 2, 3, . . . , 10 are assigned to position (2, 1). Here, we focus on the case where

component 6 is assigned.

In the third layer (DFS(3)), if components 2, . . . , 5 are assigned to position (3, 1), we

compute the reliability of the system with the partial arrangements by Proposition 2. In

contrast, if the other components are assigned to position (3, 1), we perform the pruning

according to Condition 1 because, these arrangements do not satisfy the Condition 1 (iii)

(π(2, 1) > π(3, 1)), namely, Lemma 4.1, and thus, go back to DFS(2).

In the seventh layer (DFS(7)), the first, third, and forth arrangements from the left

do not satisfy Condition 1 (i) (π(3, 2) < π(3, 3)). Thus, we perform the pruning and

then go back to DFS(6). In contrast, we compute the reliabilities of the systems with the

other arrangements by Proposition 2. We denote RL((2, 3), (3, j),p; Π(j); g) as Rj(g)

to simplify the expression. When computing the reliability of the Lin/(2, 3)/(3, 4):F

system, we use the following recursive equations. For j = 1, 2, 3, 4,

Rj((2, 2)) =(1− pπ(1,j)qπ(2,j)qπ(3,j) + qπ(1,j)qπ(2,j)pπ(3,j) + qπ(1,j)qπ(2,j)qπ(3,j))

× [Rj−1((2, 2)) +Rj−1((2, 1)) +Rj−1((1, 2)) +Rj−1((1, 1))],

Rj((2, 1)) =pπ(1,j)qπ(2,j)qπ(3,j)[Rj−1((2, 2)) +Rj−1((1, 2))],

Rj((1, 2)) =qπ(1,j)qπ(2,j)pπ(3,j)[Rj−1((2, 2)) +Rj−1((2, 1))],

Rj((1, 1)) =qπ(1,j)qπ(2,j)qπ(3,j)Rj−1((2, 2)),

which are obtained from Eq. (4.14). The above equations show that Rj(g)s are com-

puted from Rj−1(g)s for g ∈ {(2, 2), (2, 1), (1, 2), (1, 1)}.
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10th layer

(DFS (10))

9th layer

(DFS (9))

7th layer

(DFS (7))

3rd layer

(DFS (3))

2nd layer

(DFS (2))

1st layer

(DFS (1))

1

11 12

Components 11 and 12 are assigned according to Proposition 4.1

2

11 12

3

11 12

10

11 12

4

11 12

Condition 2 (i)

1

6 11 12

1

2 11 12

1

10 11 12

1 6 9 4

5 11 12 8

2 7 10 3

1 8 10 4

5 11 12 9

3 6 7 2

1 9 10 4

6 11 12 9

3 7 8 2

1 7 10 2

6 11 12 5

3 8 9 4

1 7 10 2

6 11 12 4

3 8 9 5

Proposition 4.3 & Condition 3

1 7 10 2

6 11 12 5

3 8 9

1 7 10 2

6 11 12 4

3 8 9

1

6 11 12

2

1

6 11 12

3

1

6 11 12

7

1

6 11 12

5

1

6 11 12

10

Condition 1 (iii)

Proposition 4.3 & Condition 3

1 7 9

6 11 12

3 8 2

1 7 10

6 11 12

3 8 2

1 7 10

6 11 12

3 8 5

1 7 9

6 11 12

3 8 10

1 7 10

6 11 12

3 8 9

Condition 1 (i)Condition 1 (i)

Proposition 2
&

Condition 3

Proposition 2
&

Condition 3

Figure 4.6: Tree for enumerating arrangements of the Lin/(2, 3)/(3, 4):F system.
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Here, we define the following partial arrangements Π
(3)
A and Π

(3)
B .

Π
(3)
A =

 1 7 9 ·
6 11 12 ·
3 8 10 ·

 , (4.20)

and

Π
(3)
B =

 1 7 10 ·
6 11 12 ·
3 8 9 ·

 , (4.21)

where “ · ” in the matrices means that a component has not been assigned to the posi-

tion. Note that Eqs. (4.20) and (4.21) correspond to the second and fifth arrangements

from the left in the seventh layer of Fig. 4.6, respectively. As shown in Eqs. (4.20)

and (4.21), both systems have common arrangement in the first and second columns.

When computing the reliability of the system with arrangement Π
(3)
A , we memorize

R2(g) for g ∈ {(2, 2), (2, 1), (1, 2), (1, 1)}. Then, when computing the reliability of the

system with Π
(3)
B , we utilize these memorized values. Consequently, we can avoid re-

dundant computations, which enables us to compute the reliability of the system with

a small amount of computation.

After that, the computed system reliabilities are compared with the maximum sys-

tem reliability obtained so far (that is, Rmax) according to Condition 3. If it is smaller

than Rmax, we perform the pruning, and then, go back to DFS(6), and otherwise go

to DFS(8).

In the tenth layer (DFS(10)), we compute the system reliability for each arrange-

ment. If the system reliability with an arrangement is higher than Rmax, we memorize

the arrangement and update Rmax. If all the arrangements have already been enu-

merated, eventually, the arrangement with Rmax becomes optimal, and otherwise, go

back to DFS(9).
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4.3 Algorithm for Solving the CAP in the Case of

r = m− 1 and s = n− 1

When we find the optimal arrangement of a large Lin/(r, s)/(m,n):F system, even if

we use the proposed algorithm, it may be time-consuming, sometimes impossible to

find the optimal arrangement. In this section, to enhance the efficiency, we develop an

algorithm for finding the optimal arrangement of a Lin/(r, s)/(m,n):F system, which is

specialized for the case of r = m− 1 and s = n− 1. This algorithm is based on a B&B

method, which is common to the algorithm proposed in Section 4.2, but the way of

assigning the components is completely different. As a result, the algorithm according

to the structure of the problem can make a considerable reduction in computational

efforts.

Recall that a set of positions is called “area” in this paper. As shown in Fig. 4.7, we

consider nine areas in a Lin/(m − 1, n − 1)/(m,n):F system. The areas are expressed

as

ATL = {(1, 1)}, BL = {(i, 1) | 2 ≤ i ≤ m− 1},

ABL = {(m, 1)}, BB = {(m, j) | 2 ≤ j ≤ n− 1},

ABR = {(m,n)}, BR = {(i, n) | 2 ≤ i ≤ m− 1},

ATR = {(1, n)}, BT = {(1, j) | 2 ≤ j ≤ n− 1},

C = {(i, j) | 2 ≤ i ≤ m− 1, 2 ≤ j ≤ n− 1}.

4.3.1 Conditions for the Pruning

From Proposition 4.1, the (m − 2)(n − 2) most reliable components are assigned

to area C. Also, from Condition 2, the optimal arrangement satisfies π(1, 1) = 1,

which means that the least reliable component is assigned to position (1, 1). Thus,

(m − 2)(n − 2) + 1 components have been assigned to the system in advance. After

that, we assign the remaining 2(m + n)− 5 components to areas ABL, ABR, ATR, BL,

BB, BR, and BT . In our proposed algorithm, when enumerating all possible candi-

dates for the optimal arrangement, we assign the components in the order of positions

(2, 1), (3, 1), . . . , (m, 1), (m, 2), . . . , (m,n), (m − 1, n), . . . , (1, n), (1, n − 1), . . . , (1, 2) in

the DFS tree as shown in Fig. 4.8. For efficiently finding the optimal arrangement, we
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Figure 4.7: System divided into nine areas.

Figure 4.8: Order for assigning components.

should perform the pruning as many times as possible. In this subsection, we derive

three conditions for the pruning of the DFS tree.

First, we provide the following condition.

Condition 4. When a component is assigned to position (i, j), if the following condition

is not satisfied, then we perform the pruning.
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(i) For i = 3, 4, . . . ,m− 1, π(i− 1, 1) < π(i, 1).

(ii) For j = 2, 3, . . . , n− 1, π(m, j − 1) < π(m, j).

(iii) For i = 2, 3, . . . ,m− 1, π(i+ 1, n) < π(i, n).

(iv) For j = 2, 3, . . . , n− 1, π(1, j + 1) < π(1, j).

This condition can be proved from Lemmas 4.1 and 4.3 directly.

From Lemma 4.1, the least reliable component in each minimal cut is assigned to

the corners in the optimal arrangement. Accordingly, we give Condition 5.

Condition 5. If the following condition is not satisfied, then we perform the pruning.

(i) When a component is assigned to position (m, 1), π(m, 1) < π(2, 1).

(ii) When a component is assigned to position (m,n), π(m,n) < π(m, 2).

(iii) When a component is assigned to position (1, n), π(1, n) < π(m− 1, n).

Next, we explain the equivalent arrangements due to symmetry. In Lin/(m− 1, n−
1)/(m,n):F systems, the relative relationship of component arrangements determines

the system reliability, and hence, there exist several equivalent arrangements. More

specifically, ifm = n, which means that the system is square, there exist eight equivalent

arrangements. To delete all but one of the equivalent arrangements, we enumerate the

arrangements that satisfy the following conditions.

Condition 6. Ifm = n, when a component is assigned to position (1, n), if the following

condition is not satisfied, then we perform the pruning.

π(m, 1) < π(1, n).

This condition can be straightforward derived from Eq. (4.5). Condition 6 eliminates

the arrangement obtained by rotating around the axis connecting positions (m, 1) and

(1, n) of an arrangement. Note that the other equivalent arrangement due to structural

symmetry has been eliminated because the least reliable component is assigned to

position (1, 1).
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We consider the reliability of a Lin/(m−1, n−1)/(m,n):F system, which is denoted

by RL((m− 1, n− 1), (m,n), P ). Then, we have

RL((m− 1, n− 1), (m,n), P ) = Pr

{
2∩

k=1

2∩
l=1

{
k+r−2∏
u=k

l+s−2∏
v=l

Zuv = 0

}}
. (4.22)

We define the following events:

C =

{
m−1∏
u=2

n−1∏
v=2

Zuv = 0

}
,

Z1 =

{
n−1∏
v=2

Z1v × Z1,1 ×
m−1∏
u=2

Zu1 = 0

}
,

Z2 =

{
m−1∏
u=2

Zu1 × Zm1 ×
n−1∏
v=2

Zmv = 0

}
,

Z3 =

{
n−1∏
v=2

Zmv × Zmn ×
m−1∏
u=2

Zun = 0

}
,

Z4 =

{
m−1∏
u=2

Zun × Z1n ×
n−1∏
v=2

Z1v = 0

}
.

Note that the event {Z1 ∪ C } means that at least one component works in the m −
1 × n − 1 rectangle with four corners (1, 1), (m − 1, 1), (m − 1, n − 1), and (1, n − 1).

Equation (4.22) can then be rewritten as follows:

RL((r, s), (m,n), P ) = Pr

{
4∩

i=1

{Zi ∪ C }

}
,

= Pr

{
4∩

i=1

{Zi ∩ C c} ∪ C

}
,

= Pr {C }+ Pr

{
4∩

i=1

{Zi}

}
(1− Pr {C }) , (4.23)

which states as follows: Because all the minimal cuts contain area C, if at least one

component in area C works, then the Lin/(m− 1, n− 1)/(m,n):F system works (with

probability 1). If all the components in area C fail, and all the components in

• BT ∪ ATL ∪BL,
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• BL ∪ ABL ∪BB ,

• BB ∪ ABR ∪BR, or

• BR ∪ ATR ∪BT

fail, then the Lin/(m− 1, n− 1)/(m,n):F system fails. Consequently, we can get

Pr {C } = 1−
∏

(i,j)∈C

(
1− pπ(i,j)

)
,

= 1−
mn∏

τ=2(m+n)−3

(1− pτ ) . (from Lemma 4.1) (4.24)

Since the components that are assigned to area C and position (1, 1) can be identified,

to find the optimal arrangement of a Lin/(m−1, n−1)/(m,n):F system, we only have to

find a component arrangement such that Pr
{∩4

i=1{Zi}
}
is maximized from Eq. (4.23).

In other words, the CAP of a Lin/(m− 1, n− 1)/(m,n):F system can be simplified to a

problem of finding a component arrangement such that Pr
{∩4

i=1{Zi}
}
is maximized,

which can be relatively easily handled.

Next, we provide a method for computing the probability Pr
{∩4

i=1{Zi}
}
. We first

regard the components contained in BL, BB, BR, and BT as one individual component.

As a result, a system obtained by eliminating the components in set C from a Lin/(m−
1, n− 1)/(m,n):F system can be reduced to a system with eight components, as shown

in Fig. 4.9. The individual components are numbered as components 0, 1, . . . , 7 (see

Fig. 4.9). For l = 0, 1, . . . , 7, the reliability of component l, denoted by Pl, is given as

follows:

P0 = pπ(1,1), P1 = 1−
∏

(i,j)∈BL

(
1− pπ(i,j)

)
,

P2 = pπ(m,1), P3 = 1−
∏

(i,j)∈BB

(
1− pπ(i,j)

)
,

P4 = pπ(m,n), P5 = 1−
∏

(i,j)∈BR

(
1− pπ(i,j)

)
,

P6 = pπ(1,n), P7 = 1−
∏

(i,j)∈BT

(
1− pπ(i,j)

)
.

Moreover, we define the unreliability of components l by Ql = 1−Pl for l = 0, 1, . . . , 7.
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Figure 4.9: Circular sub-system.

Also, this system with the eight components is called “circular sub-system” in this

chapter. Note that the circular sub-system has the minimal cuts {0,1,7}, {1,2,3},
{3,4,5}, and {5,6,7}.

We present a recursive method for efficiently computing the reliability of the circular

sub-system. First, we employ the event decomposition approach [22] to compute the

reliability. Applying this approach to the circular sub-system, we can decompose “the

event that the circular sub-system works” disjointly into

(α) the event that the circular sub-system works in which component 0 works,

(β) the event that the circular sub-system works in which component 0 fails and

component 1 works, and

(γ) the event that the circular sub-system works in which components 0 and 1 fail.

Because these events are disjoint, the summation of the probabilities of these events

becomes the probability of the event that the circular sub-system works, that is, the

reliability of the circular sub-system.

Next, we define the additional notation. For ϕ ∈ {α, β, γ}, k ∈ {0, 1, 2, 3} and

l = 1, 2, 3, . . . , 7, L(ϕ)(k, l) is defined as the probability that a circular sub-system

consisting of components 0, 1, . . . , l satisfies the following three conditions:

(a) the system is working.

(b)


component 0 works, if ϕ = α.

component 0 fails and component 1 works, if ϕ = β.

components 0 and 1 fail, if ϕ = γ.
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(c) components l− k+1, l− k+2, . . . , l fail. Note that if k = 0, component l works.

Using the above notation, we can compute the reliability of the circular sub-system

by the following theorem:

Theorem 4.1. (a) For ϕ ∈ {α, β, γ} and l = 2, 3, . . . , 7,

L(ϕ)(0, l) = Pl

 ∑
k∈{0,1,2,3}

L(ϕ)(k, l − 1)

 ,

L(ϕ)(1, l) = (1− Pl)L
(ϕ)(0, l − 1),

L(ϕ)(2, l) = (1− Pl)L
(ϕ)(1, l − 1),

L(ϕ)(3, l) =

0 if l ∈ {3, 5, 7},

(1− Pl)L
(ϕ)(2, l − 1) if l ∈ {2, 4, 6}.

(4.25)

As the boundary condition, for l = 1,

L(ϕ)(k, 1) =



P0P1, if ϕ = α and k = 0,

P0(1− P1), if ϕ = α and k = 1,

(1− P0)P1, if ϕ = β and k = 0,

(1− P0)(1− P1), if ϕ = γ and k = 2,

0, otherwise.

(4.26)

(b) The reliability of the circular sub-system is given by

Pr

{
4∩

i=1

{Zi}

}
=

∑
k∈{0,1,2},ϕ∈{α,β}

L(ϕ)(k, 7) + L(γ)(0, 7). (4.27)

Note that the minimal cut sets of the circular sub-system in the case of (γ) are

{1, 2, 3}, {3, 4, 5}, {7}. Because the failure of component 7 leads to the system failure,

we have

L(γ)(1, 7) = L(γ)(2, 7) = 0.

Recall that we assign the components in order of positions

(2, 1), (3, 1), . . . , (m, 1), (m, 2), . . . , (m,n), (m − 1, n), . . . , (1, n), (1, n − 1), . . . , (1, 2).

Let us consider two component arrangements in which we assign the same components
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different

same

Figure 4.10: Idea of computing the system reliability effectively.

to ATL, BL, ABL, BB , the different component to ABR, and no components to the

other areas as shown in Fig. 4.10. When we compute the reliabilities of two circular

sub-systems, areas ATL, BL, ABL, BB are common in both arrangements. Accordingly,

if we obtain the reliability of the system under the arrangement, then, by memorizing

L(ϕ)(k, 3) (ϕ ∈ {A,B,C} and k ∈ {0, 1, 2, 3}), we can easily obtain the reliability of the

circular sub-system under the other arrangements. Therefore, the proposed algorithm

can be accelerated with the help of Theorem 4.1. An example of this computation of

the system reliability is given later.

Finally, we derive a condition for the pruning based on system reliability. It is

evident from Theorem 4.1 that the system reliability is non-increasing in parameter l.

To put it differently, the system reliability under a partial arrangement becomes an

upper bound for the system reliability when the partial arrangement is fixed. Thus, we

can eliminate unnecessary arrangements by computing the upper bound of the system

reliability under a partial arrangement and then comparing it with the maximum system

reliability obtained so far. Thus, we derive the following condition.

Condition 7. When a component is assigned to position (m, j) for j = 1, 2, . . . , n, if

the following condition is not satisfied, then we perform the pruning.

Rmax ≤
∑

k∈{0,1,2},ϕ∈{A,B}

L(ϕ)(k, l), (4.28)

where Rmax is the maximum system reliability obtained so far.
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Theorem 4.1
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components 
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not satisfy

no

not satisfy

not satisfy

not satisfy

(*) Is a component assigned at 

position $(i,j)$, for $(i,j)¥in W$ ? 

no

Figure 4.11: Flow chart of DFS(k).
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4.3.2 Algorithm and Illustrative Example

In this subsection, we propose an algorithm based on the B&B method to search for

finding the optimal arrangement of the Lin/(m − 1, n − 1)/(m,n):F system. The al-

gorithm first begins by setting parameters: m,n, and p, and then, we set Rmax

to be 0. Next, from Proposition 4.1, the (m − 2)(n − 2) most reliable components

are assigned to area C as a preprocessing step. As a result, the Lin/(m − 1, n −
1)/(m,n):F system can be regarded as a circular sub-system. Also, the least reli-

able component (component 1) is assigned to position (1, 1) from Condition 1 (i).

After that, we assign the other components to the other areas in order of posi-

tions (2, 1), (3, 1), . . . , (m, 1), (m, 2), . . . , (m,n), (m−1, n), . . . , (1, n), (1, n−1), . . . , (1, 2)

(counter-clockwise) in the DFS tree.

Next, let USED(τ) denote an index function that takes 1 if component τ has been

assigned; otherwise, 0 for τ = 1, 2, . . . , 2(m+n)−5. When we assign the components in

order of positions (2, 1), (3, 1), . . . , (m, 1), (m, 2), . . . , (m,n), (m−1, n), . . . , (1, n), (1, n−
1), . . . , (1, 2) in the DFS tree, DFS(k) is denoted by a routine to assign a component to

the kth position for k = 1, 2, . . . , 2(m+ n)− 5.

Figure 4.11 shows a flow chart of DFS(k). The procedure of DFS(k) is given in the

following steps.

STEP 0: Set τ = 0.

STEP 1: Update τ = τ + 1. If τ > 2(m+ n)− 5, then stop DFS(k).

STEP 2: If component τ is used already, that is, USED(τ) = 1, then go back to

STEP 1.

STEP 3: If Condition 4, 5, or 6 is not satisfied, then we perform the pruning, that is,

go back to STEP 1.

STEP 4: If a component is assigned to position (i, j), for (i, j) ∈ W , then we compute

the system reliability under a partial arrangement by Theorem 4.1; otherwise, go

to STEP 7, where

W = {(m− 1, 1), (m, 1), (m,n− 1), (m,n), (2, n), (1, n), (1, 2)}.
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STEP 5: If Condition 7 is not satisfied, then we perform the pruning, that is, go back

to STEP 1.

STEP 6: If all the components have been assigned, then memorize the arrangement

and update Rmax, and then, then stop DFS(k); otherwise, go to STEP 7.

STEP 7: Go to DFS(k + 1).

After enumerating all arrangements, an arrangement with Rmax becomes the optimal

arrangement.

We give an example to illustrate how to implement the proposed algorithm for

finding the optimal arrangement to make the proposed algorithm more understandable.

As an example, let us consider a Lin/(2, 3)/(3, 4):F system similarly to Subsection 3.2.

First of all, as a preprocessing step, components 11 and 12 are assigned to positions (2, 3)

and (2, 4) according to Proposition 4.1, and component 1 is assigned to position (1, 1)

according to Condition 1 (i). A tree for enumerating arrangements of this system is

shown in Fig. 4.12. Note that a black cell means a position where a component has

already been assigned, and a number in a cell means the index of components. In the

following, for the sake of conciseness, we explain the procedure for each layer, although

the actual algorithm uses the DFS strategy.

In the first layer (DFS(1)), if components 2, 3, . . . , 10 is assigned to position (2, 1), we

compute the reliability of the system with the partial arrangements by Theorem 4.1, and

then go to DFS(2). Here, we focus on the case where component 6 is assigned. In the

second layer (DFS(2)), components 2, 3, 4, 5, 7 . . . , 10 are assigned to position (3, 1). The

first and second arrangements from the right do not satisfy Condition 5 (i) (π(2, 1) <

π(3, 1)), and thus, go back to DFS(1). For the other arrangements, we compute the

reliability of the system with the partial arrangements by Theorem 4.1. Here, we focus

on the case where component 3 is assigned. In the third layer (DFS(3)), components

2, 4, 5, . . . , 10 are assigned to position (3, 2). The first arrangement from the left does

not satisfy Condition 4 (ii) (π(3, 1) < π(3, 2)), and thus, go back to DFS(2). In the fifth

layer (DFS(5)), components 2, 4, 5, 9, 10 are assigned to position (3, 4). The first and

second arrangements from the right do not satisfy Condition 5 (ii) (π(3, 2) < π(3, 4)),

and thus, go back to DFS(4). For the other arrangements, we compute the reliability

of the system with the partial arrangements by Theorem 4.1.

In the ninth layer (DFS(9)), we compute the system reliability for each arrangement.

If the system reliability with an arrangement is higher than Rmax, we memorize the
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Theorem 4.1 & Condition 7

Theorem 4.1 & Condition 7

Figure 4.12: Tree for enumerating arrangements of the Lin/(2, 3)/(3, 4):F system.
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arrangement and updateRmax. If all the arrangements have already been enumerated,

eventually, the arrangement with Rmax becomes optimal, and otherwise, go back to

DFS(8).

4.4 Efficiency Investigation

In this section, we investigate the efficiency of the proposed algorithms for finding

the optimal arrangement of Lin/(r, s)/(m,n):F systems. Computation time plays an

important role in the measure of the computational efficiency of different algorithms,

and thus, we compare the algorithms in terms of the computation time necessary to find

the optimal arrangement. All algorithms were programmed in Microsoft Visual C 2017

and were implemented on a computer with Intel Core i7 2.4 GHz CPU, 16.0 GB memory,

Microsoft Windows 8 OS.

As mentioned before, Omura et al. [93] developed an algorithm for the CAP

for Lin/(r, s)/(m,n):F systems. Here, we explain the algorithm developed by

Omura et al. [93], which is compared with the proposed algorithms to investigate their

efficiency. To find the optimal arrangement, we assign the components in order of posi-

tions (2, 1), (3, 1), . . . , (m, 1), (m, 2), . . . , (m,n), (m−1, n), . . . , (1, n), (1, n−1), . . . , (1, 2)

in the DFS tree. Finally, we compute the system reliability after all the components

are assigned by the recursive equation [58]. We can find the optimal arrangement after

enumerating all the arrangements. Although this algorithm is specialized for the case

of r = m−1 and 2s > n, it can be extended to be applied to general Lin/(r, s)/(m,n):F

systems with some modifications. The algorithm proposed in Section 4.2 that does not

incorporate Condition 2, preprocessing step based on Lemma 4.1, “eliminating redun-

dant computations” and Condition 3 becomes the algorithm of Omura et al. [93].

In this section, three numerical experiments, Ex 1, Ex 2, and Ex 3, are carried out

to aid in investigating the efficiency of the proposed algorithms. In Ex 1, we com-

pare the efficiency of the proposed algorithms with that of the existing algorithm [93].

In Ex 2, we investigate the efficiency of the preprocessing step based on Lemma 4.1,

Conditions 1 and 2 in the algorithm in Section 4.2. In Ex 3, we investigate the effi-

ciency of “eliminating redundant computations” and “Condition 3” in the algorithm in

Section 4.2.

First, we compare the efficiency of the algorithm proposed in Section 4.2 (PA (a)),

the algorithm proposed in Section 4.3 (PA (b)) the existing algorithm [93] (EA). Ta-
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1 13 12 9 3

5 15 16 17 7

8 18 19 20 6

2 10 11 14 4

1 9 12 13 3

5 15 16 17 6

8 18 19 20 7

2 10 11 14 4

1 9 12 13 3

5 15 16 17 6

8 18 19 20 7

2 10 11 14 4

Figure 4.13: Optimal arrangements of Lin/(3, 4)/(4, 5):F system when the component
reliabilities are generated from a uniform distribution on [0.10, 0.50].

1 7 9 13 15 16 18 2

6 19 20 21 22 23 24 5

3 8 10 11 12 14 17 4

1 8 9 10 14 16 17 2

6 19 20 21 22 23 24 5

3 7 11 12 13 15 18 4

Figure 4.14: Optimal arrangements of the Lin/(2, 7)/(3, 8):F systems when the com-
ponent reliabilities are generated from a uniform distribution on [0.25, 0.35] and
[0.10, 0.50].

ble 4.1 shows the computation time required for each algorithm to find the optimal

arrangement when the component reliabilities are generated from a uniform distri-

bution on, for example, [0.10, 0.50] and [0.10, 0.30], and Fig. 4.13 shows the optimal

arrangements of the Lin/(3, 4)/(4, 5):F system. As can be seen from Fig. 4.13, PA (a)

and EA provided the same optimal arrangement. Meanwhile, PA (a) and PA (b) pro-

vided different optimal arrangements, where the values denoted in boldface in Fig. 4.13

mean the difference between PA (a) (EA) and PA (b). However, even if we exchange

components π(1, 2) and π(1, 4), the system reliability does not change, which is proved

immediately from Lemma 4.2. Hence, the reliabilities of the optimal arrangements ob-

tained by PA (a) (EA) and PA (b) are the same, and thus, these optimal arrangements

are essentially the same. For the other systems, we confirmed that each algorithm

provided the same optimal arrangements in the numerical experiment. When compar-
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ing PA (a) and EA, we found from Table 4.1 that PA (a) was more efficient than EA

because its computation times were shorter than those of EA. For example, for the

Lin/(4, 4)/(5, 5):F system, PA (a) took 40.839 seconds, whereas EA could not find the

optimal arrangement within the time limit of one day (86,400 seconds). If r ̸= m−1 or

s ̸= n − 1, then PA (b) is inapplicable for finding the optimal arrangement. However,

if a Lin/(r, s)/(m,n):F system satisfies r = m − 1 and s = n − 1, PA (b) outperforms

PA (a) in terms of the computation time. Accordingly, PA (b), which depends on the

special structure of the system, can make a considerable reduction in computational

efforts for finding the optimal arrangement. The main reason for PA (b) to be efficient

is that the method in Theorem 4.1 can compute the system reliability efficiently. In

summary, compared with EA, we conclude that PA (a) and PA (b) are more practical

when considering relatively large systems.

Second, we investigate the efficiency of the preprocessing step based on Proposi-

tion 4.1, Conditions 1 and 2 in PA (a). Table 4.2 gives the results of the numerical

experiment when the component reliabilities are generated from a uniform distribution

on [0.10, 0.50]. Recall that if 2r > m and 2s > n, Proposition 4.1 can reduce the number

of the components that we should assign. Table 4.2 shows that the computation times

are constant for the case of 2r ≤ m or 2s ≤ n even if we do not apply the preprocessing

step. However, for the case of 2r > m and 2s > n, as m − r and n − s are small, the

preprocessing step reduces the number of the components that we should assign, and

as a result, the computation times also decrease. Moreover, it is obvious from Table 4.2

that Condition 1 reduces the computation time because we can reduce the number of

candidates for the optimal arrangement by the pruning according to Condition 1. As

can be seen from Table 4.2, we found that Condition 2 also reduced the computation

time. We experimentally demonstrated that the preprocessing step based on Propo-

sition 4.1, Conditions 1 and 2 reduced the number of enumerated arrangements, and

consequently, the performance of the proposed algorithm was significantly enhanced.

Finally, we investigate the efficiency of “eliminating redundant computations” and

“Condition 3.” Table 4.3 shows the required computation time and the number of

enumerated arrangements for finding the optimal arrangement. The symbol (a) in

the table means the proposed algorithm, which eliminates redundant computations

by memorizing some values and performs the pruning according to Condition 3; the

symbol (b) means an algorithm in which “the system reliability is computed after

all the components are assigned” and “Condition 3 is not used.” It is obvious from
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Table 4.3 that the computation times of (a) are shorter than those of (b). From the

result, we found that memorizing the specific values and utilizing them were useful in

terms of computing the system reliability efficiently. Table 4.3 indicated that when

the component reliabilities are generated from a uniform distribution on [0.25, 0.35],

(a) enumerated the same number of arrangements as (a), and thus, we found that

the pruning according to Condition 3 was not performed. On the other hand, we can

observe that when the component reliabilities are generated from a uniform distribution

on [0.10, 0.50], the number of arrangements that (b) enumerates is small compared with

the case of [0.25, 0.35], which means that the pruning according to Condition 3 were

performed. From the results, we found that the components with different reliabilities

affected the performance of the algorithm. Specifically, as the interval of component

reliabilities becomes larger, the number of enumerated arrangements decreases because

the number of pruning according to Condition 3 increases. Note that the interval of

component reliabilities generated from a uniform distribution on [0.10, 0.50] is larger

than the interval of component reliabilities generated from a uniform distribution on

[0.25, 0.35]. In conclusion, we see that memorizing the specific values and utilizing

them enhance the performance of the algorithm, and the performance depends on the

component reliabilities within the scope of the experiment.

Also, Fig. 4.14 shows the two optimal arrangements of Lin/(2, 7)/(3, 8):F systems

with the component reliabilities generated from uniform distributions on [0.25, 0.35] and

[0.10, 0.50]. From Fig. 4.14, it was found that these optimal arrangements are different.

Consequently, we confirmed that the optimal arrangement depended on the values of

the component reliabilities, that is, the variant optimal arrangement.

In summary, within the scope of the experiment, we obtained the following findings.

If r = m − 1 and s = n − 1, we suggest using the algorithm proposed in Section 4.3

to efficiently find the optimal arrangement. In contrast, if r ̸= m− 1 or s ̸= n− 1, we

suggest using the algorithm proposed in Section 4.2, which is more efficient than the

existing algorithm [93].
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4.5 Summary

This chapter addressed the CAP in a Lin/(r, s)/(m,n):F system. The main contribution

of this chapter is to develop two algorithms for efficiently finding the optimal arrange-

ment of a Lin/(r, s)/(m,n):F system. One algorithm is for a general Lin/(r, s)/(m,n):F

system. It is noteworthy that we developed the algorithm available for the general case

for the first time. The other algorithm specializes to the case of r = m−1 and s = n−1.

The main principle of these algorithms is the incorporation of the conditions for pruning

in the standard B&B framework to reduce the number of candidates for the optimal

arrangement. Besides, memorizing the specific values and utilizing them can enhance

the performance of the algorithm, which eliminates redundant computations. The algo-

rithm that specializes to the case of r = m−1 and s = n−1 was developed by the idea

that the CAP of a Lin/(m− 1, n− 1)/(m,n):F system can be simplified to a problem

of finding the optimal arrangement of a simple system. To investigate the efficiency of

the proposed algorithm, we performed a numerical experiment. The result showed that

the proposed algorithms were more efficient than the existing algorithm [93] in terms

of computation time. Also, we provided the guideline for appropriately selecting which

algorithm should be used. Specifically, if r = m−1 and s = n−1, we suggest using the

algorithm proposed in Section 4.3 to efficiently find the optimal arrangement, whereas

if r ̸= m− 1 or s ̸= n− 1, we suggest using the algorithm proposed in Section 4.2.
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Chapter 5

Conclusions

This chapter summarizes the main contributions of this thesis and describes various

future perspectives.

5.1 Summary of the Thesis

This thesis targeted the connected-X-out-of-(m,n):F lattice system, and we provided

the methods and algorithms for evaluating and increasing system reliability. The con-

tributions of this thesis are summarized as follows.

Chapter 2 focused on the system reliability evaluation, that is, to compute the

system reliability when the component reliabilities are given. The system reliability

evaluation is a fundamental step in all reliability studies. Most researches have been

devoted to the studies of the linear-type systems, whereas no study dealt with the

toroidal-type systems. Hence, we considered the computation of the reliability of the

Tor/(r, s)/(m,n):F system. First, we provided a recursive equation approach, and,

for efficiently computing the system reliability, we proposed two kinds of algorithms.

One algorithm was incorporated with the idea that the elements of a set are enumer-

ated beforehand and stored to increase efficiency. It was theoretically shown that the

algorithm with the above idea required extra memory space but had better time com-

plexity compared to the other one. Also, the numerical experiments have shown the

effectiveness and efficiency of the algorithm with the idea. Furthermore, we obtained

the B-importance for the Tor/(r, s)/(m,n):F system by the proposed algorithm as a

numerical example. Although this thesis dealt with the Tor/(r, s)/(m,n):F system, the
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research on this system is quite limited, and other problems for this system have not

been discussed. Therefore, the further study for the Tor/(r, s)/(m,n):F system would

be of value to the research field of reliability, e.g., solving the CAP and establishing the

stochastic comparison.

Two types of methods are common and popular for efficiently computing the reliabil-

ity of the consecutive-k systems: the recursive equation approach and the FMCIA. How-

ever, there were no studies comparing the efficiencies of the recursive equation approach

and the FMCIA. Hence, this thesis proposed both the recursive equation approach and

the FMCIA for computing the reliability of Lin, Cir, and Tor/(1, 2)-or-(2, 1)/(m,n):F

systems. Note that the recursive equation approach for a Lin/(1, 2)-or-(2, 1)/(m,n):F

system has already been proposed by Yamamoto et al. [64]. One of the contributions of

Chapter 2 was to describe them in a unified manner. Then, we compared the efficiency

of the recursive equation approach and the FMCIA, which is the first-ever attempt

to compare both methods. In conclusion, we found that their efficiency depended on

the situation. Specifically, for a Lin/(1, 2)-or-(2, 1)/(m,n):F system, in the INID case,

the recursive equation approach was more efficient. In the IID case, if the number of

columns was large, the FMCIA outperformed the recursive equation approach. On the

other hand, for a Tor/(1, 2)-or-(2, 1)/(m,n):F system, within the scope of the experi-

ment, we can conclude that the FMCIA outperforms the recursive equation approach.

This result enables us to select which exact method should be used for efficiently com-

puting the system reliability. A further study of a comprehensive comparison of the

efficiency of both methods for other consecutive-k systems should be conducted.

As the size of a system becomes large, it is cumbersome to obtain the exact system

reliability. Accordingly, it would be beneficial to use appropriate upper and lower

bounds if we do not need to obtain the exact system reliability. Hence, we derived

the upper and lower bounds for the reliability of a Lin/(1, 2)-or-(2, 1)/(m,n):F system

based on the idea of using the upper and lower bounds of the difference. Moreover,

we conducted numerical experiments to evaluate the derived bounds. From the results,

within the scope of the experiment, it was found that the derived bounds were tighter

than the best of the existing bounds although they required more computation time.

Therefore, we concluded that we obtained the tighter bounds at the expense of the

computational effort compared with the existing bounds.

Chapter 3 dealt with the system signature of a Lin/(r, s)/(m,n):F system and a

Lin/(1, 2)-or-(2, 1)/(m,n):F system. The system signature is connected to many other
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well-known reliability concepts and has various theoretical applications. For example,

the system signature is used to establish stochastic comparisons among some systems.

Also, the reliability polynomial can be easily expressed in terms of the system signature,

which means that once a system signature is obtained, various reliability indices are

easy to derive. Despite the fact that the system signatures of consecutive-k-out-of-n:F

systems have been studied, no study discussed the system signature of a connected-

X-out-of-(m,n):F lattice system. Thus, we developed the methods for computing the

system signatures of a Lin/(r, s)/(m,n):F system and a Lin/(1, 2)-or-(2, 1)/(m,n):F sys-

tem. The numerical experiments have shown the efficiency of the proposed algorithms.

Therefore, the proposed algorithms can be recommended for computing the system

signatures of a Lin/(r, s)/(m,n):F system and a Lin/(1, 2)-or-(2, 1)/(m,n):F system.

Also, we presented the stochastic orderings of some connected-X-out-of-(m,n):F lat-

tice systems, and the orderings could determine the system that works properly for a

longer time. The comparison results can find the optimal parameters, which would be

helpful for designing a system with high reliability. Therefore, the utility of the system

signature became evident in the context of the comparisons of competing systems.

Chapter 4 addressed the CAP in a Lin/(r, s)/(m,n):F system. Methods for solving

the CAP can be broadly classified into two approaches: the exact method and the ap-

proximate method (heuristic and meta-heuristic methods). Basically, the advantage of

approximate methods is that they usually provide good solutions in a relatively short

time, but the drawbacks are that they cannot guarantee global optimality. In contrast,

exact methods may be particularly advantageous when the system is not large. More

importantly, such methods can be used to measure the performance of approximate

methods. Thus, this thesis focused on getting the optimal arrangement by the ex-

act method. For a Lin/(r, s)/(m,n):F system, the existing studies developed the two

algorithms for finding the optimal arrangement, but these methods are limited to the

special cases. Hence, this thesis developed an algorithm for finding the optimal arrange-

ment of a general Lin/(r, s)/(m,n):F system. The main principle of this algorithm is

the incorporation of the conditions for pruning in the standard B&B framework to re-

duce the number of candidates for the optimal arrangement. Besides, memorizing the

specific values and utilizing them can enhance the performance of the algorithm. It

is noteworthy that we developed the algorithm available for the general case for the

first time. In addition, we also proposed an algorithm that specializes to the case of

r = m− 1 and s = n− 1. This algorithm is incorporated with the idea that the CAP
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of a Lin/(m − 1, n − 1)/(m,n):F system can be simplified to a problem of finding the

optimal arrangement of a simple system. To investigate the efficiency of the proposed

algorithms, we performed a numerical experiment. Also, we provided the guideline for

appropriately selecting which algorithm should be used.

In summary, this thesis provided the methods and the algorithms for the reliabil-

ity evaluation and the optimal design of connected-X-out-of-(m,n):F lattice systems.

These methods and algorithms can be used in “computing the reliability of a system

from the component reliabilities” and “optimizing reliability in the design phase” and

will be useful for appropriately evaluating and enhancing the reliability of practical sys-

tems that can be expressed as connected-X-out-of-(m,n):F lattice systems. We expect

that they lead to designing practical systems that satisfy the performance requirements

desired by customers. In addition, as mentioned in Chapter 1, the connected-X-out-

of-(m,n):F lattice system may be an oversimplification in some cases. However, this

system can be regarded as a special case of a general system. Thus, this study would

also be a clue for giving methods for appropriately evaluating and enhancing the system

reliability.

5.2 Future Work

This section describes various interesting topics for possible future developments and

research.

(A) Upper and lower bounds for the reliability of various connected-X-out-

of-(m,n):F lattice systems This thesis proposed the upper and lower bounds for

the system reliability, which leads to a notable reduction in the computational cost and

results in very tight bounds. The main idea of the bounds is, as mentioned before, to

employ the upper and lower bounds of the difference. Further studies will apply the

idea used in this thesis to various connected-X-out-of-(m,n):F lattice systems in order

to derive upper and lower bounds. Furthermore, this idea would be used to derive

bounds for the reliability of coherent systems.

(B) Stochastic comparison of systems with multiple types of components

This thesis considered the system signature of a connected-X-out-of-(m,n):F lattice

system in the IID case. In other words, the components are regarded as single types
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of components. However, in a practical situation, a system may consist of multiple

types of components. Coolen and Coolen-Maturi [127] extended the original system

signature to a survival signature, which is an appropriate tool in studying systems with

multiple types of components. Also, Eryilmaz [128] discussed the reliability of systems

with multiple types of components. The study for a connected-X-out-of-(m,n):F lattice

system with more than two types of components would be of value in the research field

of reliability. The methods proposed in this thesis could be extended to such systems,

and then, we will propose a method for efficiently computing the signature of such

systems. Then, the obtained signature can establish the stochastic comparison, which

makes adjustment of the system’s parameters more flexible.

(C) CAP for various consecutive-k systems This thesis addressed the CAP for

a Lin/(r, s)/(m,n):F system. Because a practical engineering system is expected to be

reliable and work satisfactorily for a long time, finding an optimal arrangement is very

important to design new systems economically. Thus, studies of developing an efficient

and systematic algorithm for the optimal arrangement is of vital importance. There

have been few reports about the CAP for a connected-X-out-of-(m,n):F lattice system

except for a Lin/(r, s)/(m,n):F system. In the future, we plan to develop efficient

algorithms for efficiently solving the CAP for other connected-X-out-of-(m,n):F lattice

system, which are based on the algorithm proposed in this thesis. For example, we will

develop an algorithm for a Lin/(1, 2)-or-(2, 1)/(m,n):F system if necessary conditions

that the optimal arrangement must satisfy can be derived. The research aimed at

developing such efficient algorithms would be quite worthwhile.

(D) Meta-heuristic methods for solving the CAP This thesis proposed the

algorithms for the CAP. A possible limitation of the algorithms is that it may not

be efficient enough for large systems, which is a common limitation for many exact

methods. Often, approximate methods can obtain near-optimal solutions at a relatively

low computational cost. As part of future work plans, we aim to develop meta-heuristic

methods, such as genetic algorithm, simulated annealing, and ant colony optimization,

for solving the CAP. The key idea of the algorithms proposed in this thesis is pruning

a branch of a DFS tree and efficient computation of the system reliability. Some of the

successful ideas in the exact methods can be incorporated into meta-heuristic methods.

As a result, we expect that a high-performance meta-heuristic method using the problem
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structure will be developed. In recent years, B-importance-based methods have received

great attention, which is explained in Chapter 1. The previous studies employed the

B-importance to guide for assigning components. To enhance the efficacy and efficiency,

we may incorporate the B-importance into a meta-heuristic method.

(E) Maintenance problem Another problem in the reliability area is the mainte-

nance problem. Maintenance involves preventive (planned) and corrective (unplanned)

actions carried out to retain a system in or restore it to an acceptable operating condi-

tion, and optimal maintenance policies aim to provide optimum system reliability and

safety performance at the lowest possible maintenance costs [129]. Frequent mainte-

nance will achieve a stable operation of a system, whereas too frequently maintenance

actions may cause high maintenance costs. Hence, the essential thing in the mainte-

nance problem is determining how and when to perform the maintenance. Readers

are referred to Yun and Endharta [15] for the details of the maintenance problem for

consecutive-k systems. The maintenance problem is also needed to be discussed in

more detail for connected-X-out-of-(m,n):F lattice systems. In the maintenance prob-

lem, the system signature and the survival signature may help to derive the maintenance

policy [130–132].

(F) Problem of combining the CAP and the maintenance problem Most

studies have been discussed the CAP and the maintenance problem, separately. How-

ever, combining the advantages of the CAP and the maintenance problem may improve

system reliability cost-effectively, and thus, we would be able to obtain better optimiza-

tion results. A few papers have attempted to study such a problem [18]. Motivated by

the above fact, we will address the problem of combining the CAP and the maintenance

problem, which will be is an important topic for later research.

There are still several promising directions worthy of future research.

Throughout this thesis, the components were assumed to be independent. Although

this assumption simplifies the computations, it is inevitable for components to be depen-

dent on each other because they are influenced by common production and operating

environment [25]. Accordingly, it remains a challenge for future research to discuss

connected-X-out-of-(m,n):F lattice systems with dependent components. For exam-

ple, the dependence might be modeled by copula functions, which are powerful tools
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for modeling dependence.

In many previous studies, both systems and components can only take two possible

states: the perfectly working to the complete failure. However, many practical systems

may take many other performance levels because of complicated system structures.

Such systems can be modeled by multi-state systems in which systems and/or compo-

nents can have more than two states: from the perfect working state to the complete

failure state. Because the complexity of practical engineering systems has increased,

this seems to be a very fruitful area for future research.

Finally, I would like to bridge the gap between theory and practice. In the area

of consecutive-k systems, most papers discussed the theoretical study, and the contri-

butions of this thesis are also mainly theoretical. As already mentioned in Chapter 1,

a connected-X-out-of-(m,n):F lattice system can be used, for example, to evaluate a

wireless sensor network, which is essential in the IoT society. Hence, reliability opti-

mization enables us to design a reliable wireless sensor network. Therefore, studies for

this system would be very valuable to fill the gap. I hope that the theoretical results

will provide useful insights into industrial manufacturing and contributes to the stable

operation of practical systems.
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Appendix

Proof of Theorem 2.1

Proof. First, from the definition of A(i, l;hl; gl) in Eq. (2.2), we can get

A(i, l;hl; gl) =



A(i− 1, l;hl; gl − 1) ∩ {Yil(1) = 1}, if 2 ≤ i ≤ hl and gl = i,

A(i− 1, l;hl; i− 1) ∩ {Yil(1) = 0}, if i = hl + 1 and gl = 0,

A(i− 1, l;hl; gl − 1) ∩ {Yil(1) = 1}, if i ≥ hl + 2 and gl > 0,{∪r−1
v=0A(i− 1, l;hl; v)

}
∩ {Yil(1) = 0}, if i ≥ hl + 2 and gl = 0,

∅, otherwise,

(A.1)

for i = 1, 2, . . . ,m and l = 1, 2, . . . , n. Also, from Eq. (2.3), the reliability of a

Cir/(r, s)/(i, n):F system in which the states of the component on both ends are given

by h and g can be rewritten as follows:

RC(m;h; g) =Pr

{
n∩

l=1

A(i, l;hl; gl)

}
,

=Pr

{
n∩

l=1

{ ∪
g′l∈L(hl,gl)

A(i− 1, l;hl; g
′
l)

}∩{
n∩

l=1

{Yil(1) = dl}

}}
, (A.2)

where

L(hl, gl) =


{gl − 1}, if (2 ≤ i ≤ hl and gl = i) or (i ≥ hl + 2 and gl > 0),

{hl}, if i = hl + 1 and gl = 0,

{0, 1, . . . , r − 1}, if i ≥ hl + 2 and gl = 0,

∅, otherwise,
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and for l = 1, 2, . . . , n,

dl =

{
0, if gl = 0,

1, if gl > 0.

Substituting Eq. (A.1) into Eq. (A.2) yields

RC(m;h; g) = Pr

 ∪
g′∈Θ(i;h;g)

{
n∩

l=1

A(i− 1, l;hl; g
′
l)

}∩{
n∩

l=1

{Yil(1) = dl}

} ,

= Pr

{
n∩

l=1

{Yil(1) = dl}

}
×

∑
g′∈Θ(i;h;g)

Pr

{
n∩

l=1

A(i− 1, l;hl; g
′
l)

}
,

= Fi(d)
∑

g′∈Θ(i;h;g)

RC(i− 1;h; g′). (A.3)

where Θ(i;h; g) is given in Eq. (2.15). Thus, Eq. (2.14) holds.

Also, the reliability of the Tor/(r, s)/(m,n):F system can be obtained by summing

up RC(m;h; g)s for h ∈ S \ Ch and g ∈ T (h) \ Cg because the events that the

Cir/(r, s)/(m,n):F systems work are disjoint. Thus, Eq. (2.18) holds, and the proof

of Theorem 2.1 is completed.

Proof of Theorem 2.4

Proof. Let us first consider the case of j ≥ 2 and x,y ∈ WL, and we will denote the

event

K(j) =

{
m∏
i=1

j∏
k=2

(
1− Y

(1,2)
ik

)
×

m∏
i=2

j∏
k=1

(
1− Y

(2,1)
ij

)
= 1

}
,

for simplicity. From Eq. (2.34), we have

RL(j;x;y) =Pr

{
K(j)

∩{
m∩
i=1

{Zi,1 = xi}

}∩{
m∩
i=1

{Zik = yi}

}}
,

=Pr

{ ∪
y′∈ΩL(y)

K(j − 1)
∩{

m∩
i=1

{Zi,1 = xi}

}∩{
m∩
i=1

{Zi,j−1 = yi}

}
∩{

m∩
i=1

{Zij = yi}

}}
. (A.4)
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Since the states of the 2m components in the (j−1)th and jth columns are given by y′

and y, respectively, if y′ ∈ ΩL(y), there exists no failure pattern (1, 2) in the (j − 1)th

and jth columns. Substituting Eqs. (2.34) and (2.22) into Eq. (A.4) yields

RL(j;x;y) = RL(j − 1;x;y′)×Gj(y). (A.5)

In the case of j = 1 and x,y ∈ WL, we have

RL(1;x;y) = G1(y), (A.6)

as the boundary condition.

In the case of x /∈ WL or y /∈ WL, there exist two or more consecutive failed

components, and thus, it follows that

RL(j;x;y) = 0, (A.7)

from the definition of RL(j;x;y) in Eq. (2.34). From Eqs. (A.4), (A.5), and (A.6), it

follows that Eq. (2.35).

By applying the event decomposition approach [22], the reliability of the Cir/(1, 2)-

or-(2, 1)/(m,n):F system can be obtained by summing up RL(n;x;y)s for x ∈ WL and

y ∈ ΩL(x). Thus, we can get Eq. (2.36), and this completes the proof.

Proof of Theorem 2.9

Proof. The main idea of the proposed approach is that we make a cut in a Tor/(1, 2)-

or-(2, 1)/(m,n):F system between the 1st circle and the mth circle and subsequently

bond the 1st circle and the mth circle. Consequently, the reliability of a Tor/(1, 2)-

or-(2, 1)/(m,n):F system can be obtained. Here, in order to bond the 1st circle and

the mth circle later, we virtually add components (0, 1), (0, 2), . . . , (0, n) as dummy

components in 0th circle.

First, we define C(m;h; g) to be the conditional probability that a Cir/(1, 2)-or-

(2, 1)/(m,n):F system in which the states of the n components in the mth circle are

given by g works given that the states of the n dummy components in the 0th circle
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are given by h. Note that h, g ∈ {0, 1}n. Then, we obtain C(m;h; g) as follows:

C(m;h; g) = π0(h)

(
m∏
i=1

MC(i)

)
πm(g)

T, (A.8)

where π0(h) is a |WC |-dimensional vector in which an element corresponding to h is

unity, and the others are zero; πm(g) is a |WC |-dimensional vector in which an element

corresponding to g is unity, and the others are zero. Note that

WC =

{
h

n∑
j=2

hj−1hj = 0

}
.

When we bond the 1st circle and the mth circle, the states of the n components

in the 0th circle should be coincident with the states of the n components in the mth

circle. Hence, we have

RT ((m,n), P ) =
∑

h∈{0,1}n
C(m;h;h),

=
∑

h∈WC

C(m;h;h),

=
∑

h∈WC

π0(h)

(
m∏
i=1

MC(i)

)
πm(h)

T, (from Eq. (A.8))

(A.9)

where the second equality is obtained by

C(m;h;h) = 0,

for h ∈ {0, 1}n \WC because there exist two consecutive failed components.

In Eq. (A.9), π0(h) and πm(h) are the same for h ∈ WC . This means that Eq. (A.9)

shows the summation of all the elements on the main diagonal (i.e., the diagonal from

the upper left to the lower right) of the matrix, which is so-called trace, is the reliability

of a Tor/(1, 2)-or-(2, 1)/(m,n):F system. Thus, we can get

RT ((m,n), P ) = Tr

(
m∏
i=1

MC(i)

)
.
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Theorem 2.9 has been proved.

Proof of Theorem 2.10

Proof. Letting UBdiff and LBdiff be the upper and lower bounds for Db([1,m], n), re-

spectively, then from Eq. (2.62), we obtain

LBD = RL((b, n), P[1,b])×RL((m− b, n), P[b+1,m])− UBdiff , (A.10)

and

UBD = RL((b, n), P[1,b])×RL((m− b, n), P[b+1,m])− LBdiff . (A.11)

Now, UBdiff and LBdiff can be computed by the following equations:

UBdiff = RL((l1 − 1, n), P[1,l1−1])×Db([l1, l2], n)×RL((m− l2, n), P[l2+1,m]), (A.12)

and

LBdiff = S(l1)((l1, n), P[1,l1])×Db([l1, l2], n)× S(l2)((m− l2 + 1, n), P[l2,m]), (A.13)

where Eq. (A.12) is established in a similar manner as Eq. (1.18), and Eq. (A.13) is

established in a similar manner as Eq. (1.17). Besides, Eq. (2.66) can be obtained

directly from Eq. (2.63) Thus, the proof is completed.

Proof of Theorem 3.1

Proof. If 0 ≤ z ≤ r− 1, a Lin/(r, s)/(m, j):F system does not have r consecutive failed

components in the jth column, and hence g = (0, . . . , 0). Thus, we obtain

α(j; z; g) =


(
mj
z

)
, if 0 ≤ z ≤ r − 1 and g = (0, . . . , 0),

0, otherwise,
(A.14)

for j = 1, 2, . . . , n and g ∈ S.
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If z > mj, by the definition of α(j; z; g) in Eq. (3.14), then we can get

α(j; z; g) = 0, (A.15)

for j = 1, 2, . . . , n and g ∈ S.

If r ≤ z ≤ mj for j = 1, 2, . . . , n, we obtain α(j; z; g) for g ∈ S \ E by using

the event decomposition approach [22]. Specifically, by enumerating of the states of

m components in the jth column of the Lin/(r, s)/(m, j):F system, α(j; z; g) can be

expressed as a summation of the number of path sets of the Lin/(r, s)/(m, j):F system

that satisfies the following conditions:

(a) The system has exactly z failed components.

(b) The system fulfills the additional condition, namely, Aj(g) = 1.

(c) The states of the m components in the jth column are given by a vector y,

where yi = 0 (1) means that the ith component in a column works (fails) for i =

1, 2, . . . ,m. That is,

α(j; z; g) =
∑

y∈{0,1}m
|h(j; z; g;y)| , (A.16)

where

h(j; z; g;y) =

 (xT
1 , . . . ,x

T
j ) ϕ(xT

1 , . . . ,x
T
j ) = 0,

j∑
a=1

N(xa) = z,

Aj(g) = 1, and xij = yi, (i = 1, 2, . . . ,m)

 .

From the definition of Aj(g) in Eq. (3.13), if gk ≥ 1, components (k, j), (k +

1, j), . . . , (k + r − 1, j) fail (that is,
∏k+r−1

u=k yu = 1); if gk = 0, at least one compo-

nent works in components (k, j), (k+1, j), . . . , (k+ r− 1, j) (that is,
∏k+r−1

u=k yu = 0) as

shown in Fig. A.1. Hence, there exists no Lin/(r, s)/(m, j):F system such that y does

not satisfy

k+r−1∏
u=k

yu =

1, if gk ≥ 1,

0, if gk = 0.
(A.17)
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Figure A.1: Relationship among g, g′, and y.

Thus, h(j; z; g;y) = 0, and then, we have

α(j; z; g) =
∑

y∈U(g)

|h(j; z; g;y)| , (A.18)

where U(g) is given in Eq. (3.19). Let g′ be an (m − r + 1)-dimensional vector

(g′1, g
′
2, . . . , g

′
m−r+1), where g′k ∈ {0, 1, . . . , s} for k = 1, 2, . . . ,m − r + 1. Also,

α(j − 1; z′; g′) denotes the number of path sets of a Lin/(r, s)/(m, j − 1):F system

with exactly z′ failed components and the additional condition given by g′. Then, if∏k+r−1
u=k yu = 1, then g′k can take only gk − 1 (see Fig. A.1 (a)); if

∏k+r−1
u=k yu = 0, then

g′k can take 0, 1, . . . , s − 1 (see Fig. A.1 (b)). Also, if the Lin/(r, s)/(m, j):F system

has exactly z failed components, and the states of “components in the jth column” are

given by a vector y, then the Lin/(r, s)/(m, j−1):F system has exactly z−N(y) failed

components. Thus, using Θ(g) in Eq. (3.20), we obtain

α(j; z; g) =
∑

y∈U(g)

∑
g′∈Θ(g)

∣∣∣∣∣∣∣∣∣∣


ϕRS(xT

1 , . . . ,x
T
j ) = 0,

(xT
1 , . . . ,x

T
j−1)

j−1∑
a=1

N(xa) = z −N(y),

and Aj−1(g
′) = 1



∣∣∣∣∣∣∣∣∣∣
,

=
∑

y∈U(g)

∑
g′∈Θ(g)

α(j − 1; z −N(y); g′). (A.19)

Therefore, Eq. (3.18) holds from the definition of α(j; z; g) in Eq. (3.14).

Next, from Eq. (3.15), αz((r, s), (m,n)) can be obtained by summing up α(n; z; g)s

for g ∈ S \E, and thus, Eq. (3.22) holds. Finally, from Eq. (3.4), we can get Eq. (3.23)

directly. The proof of Theorem 3.1 is completed.
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Proof of Theorem 3.2

Proof. If z < N(y) or z > N(y)+
⌈
m(j−1)

2

⌉
, by the definition of β(j; z;y) in Eq. (3.27),

then

β(j; z;y) = 0. (A.20)

If N(y) ≤ z ≤ N(y) +
⌈
m(j−1)

2

⌉
, then β(j; z;y) can be computed by summing up over

all x ∈ {0, 1}m, and thus,

β(j; z;y) =
∑

x∈{0,1}m
β(j − 1; z −N(y);x), (A.21)

holds. Now, using the definition of β(j; z;y), for all x ∈ {0, 1}m \ Ω(y),

β(j; z;y) = 0, (A.22)

holds because there exist two consecutive failed components on column j − 1 or the

rows of columns j − 1 and j, that is, ϕOR(xT
1 , . . . ,x

T
j ) = 0. Accordingly, we can get

β(j; z;y) =
∑

x∈Ω(y)

β(j − 1; z −N(y);x). (A.23)

This completes the proof.

Permutation Importance

To prove Lemmas 4.1 and 4.2, we first present the concept of permutation importance,

which was introduced by Boland et al. [124]. First, according to Kuo and Zhu [86],

we define the following notation. Let us consider a coherent system consisting of n

components. A state vector of this system is given by x = (x1, x2, . . . , xn), where

for i ∈ {1, 2, . . . , n}, xi = 0 if the ith component works, and xi = 1 if it fails. For

i ∈ {1, 2, . . . , n}, let pi be the reliability of the ith component and p = (p1, p2, . . . , pn).

Let R(p) denote the system reliability under component reliability vector p. For i, j ∈
{1, 2, . . . , n} (i ̸= j), the symbol (αi, βj,x

(ij)) denotes a state vector with xi = α and

xj = β and the other elements are given by x(ij), where α, β ∈ {0, 1} and x(ij) is a
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vector obtained by deleting xi and xj from x.

Boland et al. [124] defined the permutation importance as follows:

Definition A.1 (Boland et al. [124]). For i, j ∈ {1, 2, . . . , n} (i ̸= j), the ith compo-

nent is more permutation important than the jth component, denoted by i >pe j, for

structure function ϕ if

ϕ(0i, 1j,x
(ij)) ≥ ϕ(1i, 0j,x

(ij)), (A.24)

holds for all x(ij) and the strict inequality holds for some x(ij). If the equality holds

for all x(ij), the ith component and the jth component are said to be permutation

equivalent, denoted by i =pe j.

Several properties for the permutation importance were reported. Koutras et al. [90]

provided a transitivity property of the permutation importance as follows:

Lemma A.1 (Koutras et al. [90]). If i >pe j and j >pe k, then i >pe k.

For the proof of Lemma A.1, readers are referred to Koutras et al. [90].

Boland et al. [124] revealed the relationship between the permutation importance

and the system reliability as follows:

Lemma A.2 (Boland et al. [124]). For i, j ∈ {1, 2, . . . , n} (i ̸= j),

(a) i >pe j if and only if R(βi, αj,p
(ij)) ≥ R(αi, βj,p

(ij)) for all p(ij) and all 0 < α <

β < 1 with the strict inequality for some p(ij), α and β.

(b) i =pe j if and only if R(βi, αj,p
(ij)) = R(αi, βj,p

(ij)) for all p(ij) and all 0 < α <

β < 1.

For the proof of Lemma A.2, readers are referred to Boland et al. [124].

Note that (αi, βj,p
(ij)) is a vector with pi = α, pj = β and the other elements are

given by p(ij) for i, j ∈ {1, 2, . . . , n} (i ̸= j), where p(ij) is a vector obtained by deleting

pi and pj from p. Let consider a system with an arrangement such that pi < pj. If i >pe j

and the components assigned to positions i and j are exchanged, Lemma A.2 [124] (a)

states that the exchanged system is more reliable than the original system. Hence, to

improve the system reliability, we should assign a reliable component to not position

j but position i. Also, Lemma A.2 [124] (b) states that if i =pe j, even when the
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components assigned to positions i and j are exchanged, the system reliability does not

change.

In general, we have difficulty in identifying the permutation importance from Def-

inition A.1 due to the computational complexity. Boland et al. [124] and Meng [125]

provided a theorem for identifying the permutation importance from minimal cuts.

Lemma A.3 (Boland et al. [124], Meng [125]). For i, j ∈ {1, 2, . . . , n} (i ̸= j),

(a) If Cj is a proper subset of Ci (Cj ⊂ Ci), then i >pe j.

(b) If Cj = Ci, then i =pe j.

Note that, for i ∈ {1, 2, . . . , n}, Ci is a set of minimal cuts containing the ith

component. For the proof of Lemma A.3, readers are referred to Boland et al. [124]

and Meng [125].

Proof of Lemma 4.1

Using the permutation importance, we will now prove Lemma 4.1. Because it is easy

to find the minimal cuts of a Lin/(r, s)/(m,n):F system, we use Lemma A.3 [124, 125]

to identify the permutation importance. First, to indicate minimal cuts of the system,

we need some additional notation. A set of all components is denoted by

I =
{

(i, j) 1 ≤ i ≤ m and 1 ≤ j ≤ n
}
,

For u = 1, 2, . . . ,m− r + 1 and v = 1, 2, . . . , n− s+ 1, a minimal cut with component

π(u, v) at the upper left corner is given by

K(u,v) =
{

(i, j) ∈ I u ≤ i ≤ u+ r − 1 and v ≤ j ≤ v + s− 1
}
,

and the family of the system’s minimal cut set is

C =
{

K(u,v) 1 ≤ u ≤ m− r + 1 and 1 ≤ v ≤ n− s+ 1
}
.
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A set C(i,j) is also defined, i = 1, 2, . . . ,m and j = 1, 2, . . . , n, as

C(i,j) =

{
K(u,v) ∈ C max{1, i− r + 1} ≤ u ≤ min{m− r + 1, i} and

max{1, j − s+ 1} ≤ v ≤ min{n− s+ 1, j}

}
, (A.25)

which shows a set of minimal cuts including position (i, j).

Proof. Let us now give the proof of Lemma 4.1 (a). From 2 ≤ j ≤ min{s, n − s + 1},
we can get

j − s+ 1 ≥ 2− s+ 1 = 3− s.

From s ≥ 2, max{1, j − s+ 1} = 1. If s ≥ n− s+ 1, then 2 ≤ j ≤ n− s+ 1, and thus,

we have min{n− s+ 1, j} = j. Also, if s < n− s+ 1, then 2 ≤ j ≤ s < n− s+ 1, and

thus, we have min{n− s + 1, j} = j. If 2 ≤ j ≤ min{s, n− s + 1}, for i = 1, 2, . . . ,m,

from Eq. (A.25), we can get

C(i,j) =
{

K(u,v) ∈ C α ≤ u ≤ β and 1 ≤ v ≤ j
}
,

C(i,j−1) =
{

K(u,v) ∈ C α ≤ u ≤ β and 1 ≤ v ≤ j − 1
}
,

where α = max{1, i − r + 1} and β = min{m − r + 1, i}. Hence, C(i,j−1) ⊂ C(i,j), and

thus (i, j) >pe (i, j − 1) from Lemma A.3 [124,125] (a). Therefore, by Lemma A.1 [90]

and Lemma A.2 [124] (a), Lemma 4.1 (a) is completely proved.

The rest of Lemma 4.1 can also be proved in a similar way.

Proof of Lemma 4.2

Proof. We prove Lemma 4.2 (a). Since m− r + 1 ≤ i ≤ r, from

i− r + 1 ≥ r − r + 1 = r,

we can get max{1, i−r+1} = 1. Also, from i ≥ m−r+1, we can get min{m−r+1, i} =

m − r + 1. If 2r ≤ m, then there exists no i such that m − r + 1 ≤ i ≤ r. If 2r > m,

for j = 1, 2, . . . , n, a set is defined by

Aj = {(i, j) | m− r + 1 ≤ i ≤ r}.
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For (i1, j), (i2, j) ∈ Aj (j = 1, 2, . . . , n), from Eq. (A.25), we have

C(i1,j) = C(i2,j),

because max{1, i−r+1} = 1 and min{m−r+1, i} = m−r+1 for all i (m−r+1 ≤ i ≤ r).

Thus, (i1, j) =pe (i2, j) from Lemma A.2 [124] (b). Therefore, by Lemma A.1 [90] and

Lemma A.2 [124] (b), Lemma 4.2 (a) is completely proved.

Lemma 4.2 (b) can also be proved in a similar way.
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