3,907 research outputs found

    Hypergraph Isomorphism for Groups with Restricted Composition Factors

    Get PDF
    We consider the isomorphism problem for hypergraphs taking as input two hypergraphs over the same set of vertices V and a permutation group ? over domain V, and asking whether there is a permutation ? ? ? that proves the two hypergraphs to be isomorphic. We show that for input groups, all of whose composition factors are isomorphic to a subgroup of the symmetric group on d points, this problem can be solved in time (n+m)^O((log d)^c) for some absolute constant c where n denotes the number of vertices and m the number of hyperedges. In particular, this gives the currently fastest isomorphism test for hypergraphs in general. The previous best algorithm for the above problem due to Schweitzer and Wiebking (STOC 2019) runs in time n^O(d)m^O(1). As an application of this result, we obtain, for example, an algorithm testing isomorphism of graphs excluding K_{3,h} as a minor in time n^O((log h)^c). In particular, this gives an isomorphism test for graphs of Euler genus at most g running in time n^O((log g)^c)

    A Spectral Assignment Approach for the Graph Isomorphism Problem

    Full text link
    In this paper, we propose algorithms for the graph isomorphism (GI) problem that are based on the eigendecompositions of the adjacency matrices. The eigenvalues of isomorphic graphs are identical. However, two graphs GA G_A and GB G_B can be isospectral but non-isomorphic. We first construct a graph isomorphism testing algorithm for friendly graphs and then extend it to unambiguous graphs. We show that isomorphisms can be detected by solving a linear assignment problem. If the graphs possess repeated eigenvalues, which typically correspond to graph symmetries, finding isomorphisms is much harder. By repeatedly perturbing the adjacency matrices and by using properties of eigenpolytopes, it is possible to break symmetries of the graphs and iteratively assign vertices of GA G_A to vertices of GB G_B , provided that an admissible assignment exists. This heuristic approach can be used to construct a permutation which transforms GA G_A into GB G_B if the graphs are isomorphic. The methods will be illustrated with several guiding examples

    On the equivalence between graph isomorphism testing and function approximation with GNNs

    Full text link
    Graph neural networks (GNNs) have achieved lots of success on graph-structured data. In the light of this, there has been increasing interest in studying their representation power. One line of work focuses on the universal approximation of permutation-invariant functions by certain classes of GNNs, and another demonstrates the limitation of GNNs via graph isomorphism tests. Our work connects these two perspectives and proves their equivalence. We further develop a framework of the representation power of GNNs with the language of sigma-algebra, which incorporates both viewpoints. Using this framework, we compare the expressive power of different classes of GNNs as well as other methods on graphs. In particular, we prove that order-2 Graph G-invariant networks fail to distinguish non-isomorphic regular graphs with the same degree. We then extend them to a new architecture, Ring-GNNs, which succeeds on distinguishing these graphs and provides improvements on real-world social network datasets
    • …
    corecore