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Abstract
We consider the isomorphism problem for hypergraphs taking as input two hypergraphs over the
same set of vertices V and a permutation group Γ over domain V , and asking whether there is
a permutation γ ∈ Γ that proves the two hypergraphs to be isomorphic. We show that for input
groups, all of whose composition factors are isomorphic to a subgroup of the symmetric group on
d points, this problem can be solved in time (n+m)O((log d)c) for some absolute constant c where
n denotes the number of vertices and m the number of hyperedges. In particular, this gives the
currently fastest isomorphism test for hypergraphs in general. The previous best algorithm for the
above problem due to Schweitzer and Wiebking (STOC 2019) runs in time nO(d)mO(1).

As an application of this result, we obtain, for example, an algorithm testing isomorphism of
graphs excluding K3,h as a minor in time nO((log h)c). In particular, this gives an isomorphism test
for graphs of Euler genus at most g running in time nO((log g)c).
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1 Introduction

Luks’s algorithm [21] is an important cornerstone of the algorithmic theory of the Graph
Isomorphism Problem. With some additional improvements given later [6], it tests in time
nO(d/ log d) whether two given n-vertex graphs of maximum degree d are isomorphic. In
the last four decades, Luks’s algorithm has developed to a central building block for many
algorithms tackling the isomorphism problem. Indeed, Luks’s algorithmic framework has
been used as a subroutine to design, for example, isomorphism tests for graphs of bounded
genus [27], graphs of bounded tree-width [15], graphs excluding some fixed graph as a minor
[31], and even graph classes that exclude some fixed graph as a topological minor [13].
Further examples include color-t-bounded graphs [4], defined by Babai et al. in the context
of isomorphism testing of strongly regular graphs, unit square graphs [28], and graphs of
bounded rank-width [17]. Moreover, Luks’s algorithm has also played a role in the area of
computational group theory for example for computing normalizers for certain groups [23].

Additionally, Luks’s algorithm also forms the basis for Babai’s recent quasipolynomial
isomorphism test [1] as well as the corresponding canonization algorithm [2]. Indeed, Babai’s
algorithm follows the recursive framework of Luks’s algorithm and attacks the obstacle cases
where the recursion performed by Luks’s algorithm does not lead to the desired running
time. Hence, a natural question to ask is whether it is possible extend the group-theoretic
methods added in Babai’s algorithm to the setting of bounded degree graphs in order to
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obtain improved algorithms also for the isomorphism problem for graphs of small degree.
This question was answered in the affirmative by Grohe, Schweitzer and the author of this
paper in [14] providing an isomorphism test for graphs of maximum degree d running in time
nO((log d)c) for some constant c.

With the large number of applications of Luks’s algorithmic framework [21] over the last
decades it is natural to ask for improvements of other algorithms that exploit Luks’s methods
as a subroutine. However, up to this point, the only application of the improved isomorphism
test for graphs of small degree is a faster fixed-parameter tractable isomorphism test for
graphs of bounded tree-width [15]. The reason for this mainly lies in the fact that most of
the algorithms exploiting Luks’s framework as a subroutine actually use this framework to
solve more general problems than Luks’s original algorithm.

To be more precise, Luks’s original algorithm [21] attacks the String Isomorphism Problem.
The input to the String Isomorphism Problem are two strings x, y : Ω → Σ, where Ω is a
finite set and Σ a finite alphabet, and a permutation group Γ ≤ Sym(Ω) (given by a set
of generators). The task of the String Isomorphism Problem is to decide whether there
exists some γ ∈ Γ that transforms x into y. In order to solve the isomorphism problem for
graphs of bounded degree, Luks [21] provides a polynomial-time algorithm solving the String
Isomorphism Problem for all input groups Γ in the class Γ̂d1, the class of groups all of whose
composition factors are isomorphic to a subgroup of Sd (the symmetric group on d points).
To give a faster isomorphism test for graph of small degree, Grohe et al. [14] follow the same
route of considering the String Isomorphism Problem and provide an algorithm solving the
problem in time nO((log d)c) for the class of Γ̂d-groups.

On the other hand, many algorithms exploiting the methods of Luks do so by solving more
general problems. Indeed, a common extension is the Hypergraph Isomorphism Problem
for Γ̂d-groups. Here, the input consists of two hypergraphs H1 = (V, E1) and H2 = (V, E2)
over the same set of vertices and a Γ̂d-group Γ ≤ Sym(V ), and the task is to decide whether
there is some γ ∈ Γ that transforms H1 into H2. As observed by Miller [26], with some small
modifications, Luks’s algorithm for the String Isomorphism Problem immediately extends to
the Hypergraph Isomorphism Problem. To be more precise, by an extension of the arguments
of Luks [21], the Hypergraph Isomorphism Problem for Γ̂d-groups can be solved in time
(m+ n)O(d) where n denotes the number of vertices and m the number of edges. This fact
is exploited by several of the algorithms mentioned above. For example, this includes the
isomorphism tests for graphs of bounded genus [27], graphs excluding some fixed graph as a
(topological) minor [31], color-t-bounded graphs [4], and unit square graphs [28]. Recently,
an improved algorithm for the Hypergraph Isomorphism Problem for Γ̂d-groups running in
time nO(d)mO(1) was presented by Schweitzer and Wiebking [34]. While the algorithm of
Schweitzer and Wiebking significantly improves the running for large numbers of hyperedges,
this is irrelevant for the applications described above where the number of hyperedges is
typically linearly bounded in the number of vertices of the original input graph.

The main contribution of this paper is to provide an algorithm for the Hypergraph
Isomorphism Problem for Γ̂d-groups running in time (n + m)O((log d)c) for some absolute
constant c. Besides its potential applications outlined above, the Hypergraph Isomorphism
Problem is of course also interesting in its own right. Indeed, there is also a long history
of studying the Hypergraph Isomorphism Problem in itself. One of the first results in this
direction was an algorithm testing isomorphism of hypergraphs in time 2O(n) [22] where

1 In [21] this class is denoted by Γd. However, in the more recent literature, Γd often refers to a more
general class of groups.
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n denotes the number of vertices. Assuming the hyperedges are not too large, this result
was improved by Babai and Codenotti in [5] to a running of nÕ(k2·

√
n) where Õ(·) hides

polylogarithmic factors and k denotes the maximal size of a hyperedge. Again assuming
small hyperedges, another improvement follows from the work of Grohe et al. [14] resulting
in an isomorphism test for hypergraphs running in time nO(k·(logn)c) for a constant c.

Results. The main result of this paper is a faster algorithm for the Hypergraph Isomorphism
Problem for Γ̂d-groups.

I Theorem 1. The Hypergraph Isomorphism Problem for Γ̂d-groups can be solved in time
(n+m)O((log d)c) for some absolute constant c where n denotes the number of vertices and m
the number of edges of the input hypergraphs.

An immediate consequence of this result is the fastest algorithm for testing isomorphism
of hypergraphs in general (assuming the number of hyperedges is moderately exponentially
bounded in the number of vertices, i.e., m = 2O(n1−ε) for some ε > 0).

I Corollary 2. The Hypergraph Isomorphism Problem can be solved in time (n+m)O((logn)c)

for some absolute constant c where n denotes the number of vertices and m the number of
edges of the input hypergraphs.

In particular, this result removes the dependence on k, the maximal size of a hyperedge,
in the running time. Observe that this improvement is significant if k is large and m is small
compared to

(
n
k

)
(which is typical for many applications). Also, the last theorem generalizes

the corresponding result for the String Isomorphism Problem for Γ̂d-groups obtained in [14].
For the algorithm, we take a similar route than the algorithm from [14] first normalizing

the input to ensure a suitable variant of Babai’s Unaffected Stabilizers Theorem [1]. Based on
this variant, Grohe et al. are able to extend the Local Certificates Routine, a key subroutine
of Babai’s quasipolynomial-time algorithm [1], to the setting of Γ̂d-groups. Unfortunately,
when going from strings to hypergraphs, there is no simple extension of the Local Certificates
Routine even in the normalized setting from [14]. Intuitively speaking, the reason is that the
Local Certificates Routine crucially exploits that positions in disjoint sets can be permuted
independently of each other which is not the case for hypergraphs.

To circumvent this problem we introduce a novel simplification routine which is repeatedly
executed during the Local Certificates Routine. The idea for the simplification is based on
the following observation. Suppose that all hyperedges are identical on a window W ⊆ V

(i.e., E1 ∩W = E2 ∩W for all hyperedges E1, E2 ∈ E). In this case each permutation in
Γ(V \W ) (the subgroup that fixes each position outside of W ) is an automorphism as required
by the Local Certificates Routine since there are no additional dependencies between W

and V \W coming from the hyperedges. The main idea is to always reduce to this simple
case. Intuitively speaking, this is achieved as follows. Two hyperedges E1, E2 ⊆ V are
W -equivalent if E1 ∩W = E2 ∩W . The algorithm creates, for each equivalence class, a
copy of the vertex set and associates all hyperedges from the equivalence class with this
copy. After this modification, each copy satisfies the requirement that all hyperedges are
W -equivalent (actually, to realize this modification, we shall consider a more general problem).
This enables us to implement a Local Certificates Routine for hypergraphs which builds the
central subroutine of our isomorphism test. Unfortunately, while this settles the original
problem, it also creates several additional issues that need to be addressed and which require
various extensions of existing techniques making the entire algorithm quite complicated.

ICALP 2020
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With the Hypergraph Isomorphism Problem for Γ̂d-groups being used as a subroutine in
a number of algorithms, it is natural to ask for the implications of this result. One of the first
examples in this direction is Miller’s algorithm for testing isomorphism of graphs of bounded
genus [27]. However, Miller’s algorithm reduces the isomorphism problem for graphs of genus
g to the Hypergraph Isomorphism Problem where the input group is a Γd-tower rather than
a Γ̂d-group where d = O(g). The class of Γd-towers extends the class Γ̂d by, intuitively
speaking, allowing to combine groups that are “almost” Γ̂d-groups along a specified partition
of the domain.

Since it is already completely unclear how to extend the algorithm of Grohe et al. [14]
to Γd-towers it is not possible to use Miller’s algorithm directly. To still obtain a faster
isomorphism test for graphs of small genus, we strengthen Miller’s result and develop a
reduction from the isomorphism problem for graphs of genus g to the Hypergraph Isomorphism
Problem for Γ̂d-groups where d := 4g + 2. Actually, our reduction works for any graph class
that excludes K3,h as a minor (graphs of genus g exclude K3,4g+3 as a minor [32, 18]).

To build the reduction, we introduce t-CR-bounded graphs which extend the notion of
color-t-bounded graphs introduced in [4]. Intuitively speaking, a vertex-colored graph is
t-CR-bounded if the vertex-coloring of the graph can be turned into a discrete coloring
(i.e., each vertex has its own color) by repeatedly applying the standard Color Refinement
algorithm (see, e.g., [10, 19]) and by splitting color classes of size at most t. We show that the
isomorphism problem for t-CR-bounded graphs can be solved in time nO((log t)c) by providing
a reduction to the Hypergraph Isomorphism Problem for Γ̂t-groups. While this result may
already be interesting in its own right, the main purpose of the isomorphism problem for
t-CR-bounded graphs in this paper is to serve as an intermediate problem.

We continue to prove that the isomorphism problem for graph classes that exclude K3,h
as a minor is polynomial-time reducible to testing isomorphism of t-CR-bounded graphs
where t := h− 1. This implies the following theorem.

I Theorem 3. The Graph Isomorphism Problem for graphs that exclude K3,h as a minor
can be solved in time nO((logh)c) for some absolute constant c where n denotes the number of
vertices of the input graphs.

The previous best algorithm for this setting is due to Ponomarenko [31] who provided a
polynomial-time isomorphism test for graph classes that exclude an arbitrary minor. While
Ponomarenko does not provide a precise analysis on the running time of his algorithm,
the exponent depends at least linearly on h when excluding Kh as a minor. Hence, in the
case of excluding K3,h as a minor, the above theorem significantly improves on all previous
algorithms.

Finally, exploiting the fact that K3,h has Euler genus linear in h [32, 18], we obtain the
following corollary.

I Corollary 4. The Graph Isomorphism Problem for graphs of Euler genus at most g can
be solved in time nO((log g)c) for some absolute constant c where n denotes the number of
vertices of the input graphs.

While the isomorphism problem for graphs of bounded genus is also fixed-parameter
tractable [20] (again, the author does not analyze the dependence of the running time on g),
the algorithm from the previous corollary is guaranteed to be faster as soon as the genus
passes a threshold that is polylogarithmic in the number of vertices. Also, I remark that the
isomorphism problem for graphs of bounded genus can be solved in logarithmic space [12].
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As a another application of the isomorphism problem for t-CR-bounded graphs, we
consider the isomorphism problem for hereditarily finite sets (see also [34]). Intuitively
speaking, a hereditarily finite set over ground set V is any type of combinatorial object that
can be built by iteratively taking sets and tuples over previously created objects. In particular,
hereditarily finite sets include graphs, vertex- and arc-colored graphs, hypergraphs and
relational structures. We further extend our previous result on the Hypergraph Isomorphism
Problem for Γ̂d-groups and show that isomorphism for any pair of hereditarily finite sets with
a Γ̂d-group can be tested in time (n+m)O((log d)c) where n denotes the size of the ground
set and m the size of the hereditarily finite sets. In case m is only moderately exponential
in n (i.e., m = 2O(n1−ε) for some fixed ε > 0) this improves over a previous algorithm of
Schweitzer and Wiebking [34] (although it should be noted that Schweitzer and Wiebking
actually solve a slightly more general problem).

Related Work. Another extension of Babai’s quasipolynomial-time algorithm has been
independently proposed by Daniel Wiebking [37] providing another proof that the isomorphism
problem for arbitrary hereditarily finite sets can be solved in quasipolynomial time. However,
Wiebking not only solves the isomorphism problem for hereditarily finite sets as defined in
this paper, but actually provides an algorithm for an extended setting where also implicitly
represented labeling cosets are allowed as atomic objects for the hereditarily finite sets. Also,
Wiebking gives a canonization algorithm which extends Babai’s recent canonization algorithm
for graphs [2].

But on the other hand, the algorithmic framework of Wiebking [37] is not able to exploit
any restrictions on the input group. Hence, the two results are incomparable with respect to
the power of the algorithms obtained.

This is also highlighted by the applications. While the results of this paper allow the
design of an algorithm solving the isomorphism problem for graphs of Euler genus at most g
running in time nO((log g)c), Wiebking utilizes his algorithm to build an isomorphism test for
graphs of tree-width at most k running in time nO((log k)c).

2 Preliminaries

Graphs. A graph is a pair G = (V (G), E(G)) with vertex set V (G) and edge set E(G).
Unless stated otherwise, all graphs are undirected and simple graphs, i.e., there are no
loops or multiedges. In this setting an edge is denoted as vw where v, w ∈ V (G). The
neighborhood of a vertex v is denoted NG(v) := {w ∈ V (G) | vw ∈ E(G)}. The degree of a
vertex v ∈ V (G), denoted degG(v), is the size of its neighborhood. Also, for a set of vertices
X ⊆ V (G), the neighborhood of X is defined as NG(X) :=

(⋃
v∈X NG(v)

)
\X. Usually, we

omit the index G if it is clear from the context and simply write N(v), N(X) and deg(v).
For X ⊆ V (G) the induced subgraph on X is G[X] := (X, {vw | v, w ∈ X, vw ∈ E(G)}).
Also, G−X := G[V (G) \X] denotes the induced subgraph on the complement of X.

Two graphs G and H are isomorphic if there is a bijection ϕ : V (G)→ V (H) such that
vw ∈ E(G) if and only if ϕ(v)ϕ(w) ∈ E(H). In this case ϕ is an isomorphism from G

to H, which is also denoted by ϕ : G ∼= H. Moreover, Iso(G,H) denotes the set of all
isomorphisms from G to H. The automorphism group of G is Aut(G) := Iso(G,G). Observe
that, if Iso(G,H) 6= ∅, it holds that Iso(G,H) = Aut(G)ϕ := {γϕ | γ ∈ Aut(G)} for every
isomorphism ϕ ∈ Iso(G,H). The Graph Isomorphism Problem takes as input two graphs G
and H and asks whether they are isomorphic.

ICALP 2020
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A (vertex-)colored graph is a tuple G = (V (G), E(G), χV ) where χV : V (G) → C is a
mapping and C is some finite set of colors. A vertex- and arc-colored graph is a tuple
G = (V (G), E(G), χV , χE) where χV : V (G)→ C is a vertex-coloring and χE : {(v, w) | vw ∈
E(G)} → C is an arc-coloring, where C is again some finite set of colors. Note that an
uncolored graph can be interpreted as a vertex- and arc-colored graph where each vertex is
assigned the same color as well as each (directed) edge is assigned the same color. The vertex
color classes of a (colored) graph are the sets χ−1

V (c) where c ∈ C. A vertex-coloring χV is
discrete if all color classes are singletons, i.e., χV (v) 6= χV (w) for all distinct v, w ∈ V (G).

Permutation Groups. Next, we establish the basic notation for permutation groups required
for this work. For a general background on group theory I refer to [33] whereas background
on permutation groups can be found in [11].

A permutation group acting on a set Ω is a subgroup Γ ≤ Sym(Ω) of the symmetric group.
The size of the permutation domain Ω is called the degree of Γ and, throughout this work,
is denoted by n = |Ω|. If Ω = [n] then we also write Sn instead of Sym(Ω). Also, Alt(Ω)
denotes the alternating group on the set Ω and, similar to the symmetric group, we write An
instead of Alt(Ω) if Ω = [n]. For γ ∈ Γ and α ∈ Ω we denote by αγ the image of α under the
permutation γ. The set αΓ := {αγ | γ ∈ Γ} is the orbit of α. The group Γ is transitive if
αΓ = Ω for some (and therefore every) α ∈ Ω.

For α ∈ Ω the group Γα := {γ ∈ Γ | αγ = α} ≤ Γ is the stabilizer of α in Γ. The
group Γ is semi-regular if Γα = {id} for all α ∈ Ω (id denotes the identity element of the
group). For A ⊆ Ω and γ ∈ Γ let Aγ := {αγ | α ∈ A}. The pointwise stabilizer of A is the
subgroup Γ(A) := {γ ∈ Γ | ∀α ∈ A : αγ = α}. The setwise stabilizer of A is the subgroup
ΓA := {γ ∈ Γ | Aγ = A}. For a Γ-invariant set A ⊆ Ω we denote by Γ[A] the induced natural
action of Γ on A (i.e., restricting every permutation to the set A).

In order to perform computational tasks for permutation groups efficiently it is infeasible
to list all elements of a permutation group. Instead, permutation groups are represented by
generating sets of small size. A set S ⊆ Γ, where Γ ≤ Sym(Ω), is a generating set for Γ if
every γ ∈ Γ can be written as a product γ = s1s2 . . . sk of elements s1, . . . , sk ∈ S. Indeed,
most algorithms for permutation groups are based on so-called strong generating sets, which
can be chosen of size quadratic in the degree of the group and can be computed in polynomial
time given an arbitrary generating set (see, e.g., [35]). This enables the design of efficient
algorithms for many basic computational problems for permutation groups (e.g., membership
tests, computing the order of a group, the orbits of a group, and generating sets for pointwise
stabilizers). For detailed background on algorithms for permutation groups I refer to [35].

Groups with Restricted Composition Factors. In this work we shall be interested in a
particular subclass of permutation groups, namely groups with restricted composition factors.
Let Γ be a group. A subnormal series is a sequence of subgroups Γ = Γ0 D Γ1 D · · · D
Γk = {id}. The length of the series is k and the groups Γi−1/Γi are the factor groups of
the series, i ∈ [k]. A composition series is a strictly decreasing subnormal series of maximal
length. For every finite group Γ all composition series have the same family of factor groups
considered as a multi-set (cf. [33]). A composition factor of a finite group Γ is a factor group
of a composition series of Γ.

I Definition 5. For d ≥ 2 let Γ̂d denote the class of all groups Γ for which every composition
factor of Γ is isomorphic to a subgroup of Sd.
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We want to stress the fact there are two similar classes of groups both typically denoted
by Γd in the literature. One is the class we define as Γ̂d introduced by Luks [21] while the
other one used in [3] in particular allows simple groups of Lie type of bounded dimension as
composition factors.

3 Isomorphism for Hypergraphs

In the following we provide a very high-level sketch of the algorithm solving the Hypergraph
Isomorphism Problem for Γ̂d-groups. For all details I refer to the full version of this paper [30].

3.1 The Generalized String Isomorphism Problem

For the purpose of building a recursive algorithm, we consider a slightly different problem
that crucially allows us to modify instances in a certain way exploited later on.

Let Γ ≤ Sym(Ω) be a group and let P be a partition of the set Ω. The partition P is
Γ-invariant if Pγ = P for all γ ∈ Γ where Pγ := {P γ | P ∈ P}. A P-string is a pair (P, x)
where P ∈ P and x : P → Σ is a string over a finite alphabet Σ. For σ ∈ Sym(Ω) the string
xσ is defined by xσ : Pσ → Σ: α 7→ x(ασ−1). A permutation σ ∈ Sym(Ω) is a Γ-isomorphism
from (P, x) to a second P-string (Q, y) if σ ∈ Γ and (Pσ, xσ) = (Q, y).

I Definition 6. The Generalized String Isomorphism Problem takes as input a permutation
group Γ ≤ Sym(Ω), a Γ-invariant partition P of the set Ω, and P-strings (P1, x1), . . . , (Pm, xm)
and (Q1, y1), . . . , (Qm, ym), and asks whether there is some γ ∈ Γ such that

{(P γ1 , x
γ
1), . . . , (P γm, xγm)} = {(Q1, y1), . . . , (Qm, ym)}.

We usually denote X = {(P1, x1), . . . , (Pm, xm)} and Y = {(Q1, y1), . . . , (Qm, ym)}. Also,
IsoΓ(X,Y) denotes the set of Γ-isomorphisms from X to Y and AutΓ(X) := IsoΓ(X,X).

It is easy to see that the Hypergraph Isomorphism Problem can be reduced to the
Generalized String Isomorphism Problem choosing P to be the trivial partition consisting of
one block and adding strings xE : V → {0, 1} for each hyperedge E where xE(v) = 1 if and
only if v ∈ E.

For the rest of this section we denote by n := |Ω| the size of the domain, and m denotes
the size of X and Y (we always assume |X| = |Y|, otherwise the problem is trivial). The
goal of this section is to provide an algorithm solving the Generalized String Isomorphism
Problem for Γ̂d-groups in time (n+m)O((log d)c) for some absolute constant c.

We start by introducing some additional notation. For every P ∈ P define X[[P ]] :=
{x : P → Σ | (P, x) ∈ X} and also let mX(P ) := |X[[P]]|. We say that X is completely occupied
if mX(P ) ≥ 1 for every P ∈ P. Also, we say that X is simple if mX(P ) ≤ 1 for every P ∈ P.

We will assume throughout this work that all sets of P-strings encountered are completely
occupied, also if not explicitly stated. Note that an instance, which is not completely occupied,
can be easily turned into one, that is completely occupied, by introducing additional P-strings.
Also, for a set A ⊆ Ω and a set of P-strings X define

X[A] := {(P ∩A, x[A ∩ P ]) | (P, x) ∈ X, P ∩A 6= ∅}

to be the subinstance induced by A where x[A ∩ P ] denotes the substring induced by A ∩ P .

ICALP 2020
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3.2 Normalization of the Group Action
The main hurdle to build the algorithm for the Generalized String Isomorphism Problem is
an extension of the Local Certificates Routine introduced by Babai for his quasipolynomial
time isomorphism test [1]. Similar to [14], our algorithm exploits a variant of the Unaffected
Stabilizers Theorem for Γ̂d-group which builds the theoretical foundation for the Local
Certificates algorithm.

However, this variant of the Unaffected Stabilizers Theorem for Γ̂d-groups additionally
requires the input group to have an almost d-ary sequence of partitions.

For a partition B of the set Ω and S ⊆ Ω let B[S] := {B ∩ S | B ∈ B, B ∩ S 6= ∅} denote
the induced subpartition of B on the set S. Let B′ be a second partition of Ω. We say that
B′ refines B, denoted B′ � B, if for every B′ ∈ B′ there is some B ∈ B such that B′ ⊆ B.
If additionally B′ 6= B the partition B′ strictly refines B which is denoted B′ ≺ B. Also,
for a group Γ ≤ Sym(Ω) such that B and B′ are Γ-invariant, let ΓB[B′[B]] ≤ Sym(B′[B])
denote the induced natural action of ΓB on B′[B] for every B ∈ B. Finally, recall that a
group Γ ≤ Sym(Ω) is semi-regular if the only element with fixed points is the identity.

I Definition 7 (Almost d-ary Sequences of Partitions). Let Γ ≤ Sym(Ω) be a group and let
{Ω} = B0 � · · · � Bk = {{α} | α ∈ Ω} be a sequence of Γ-invariant partitions. The sequence
B0 � · · · � Bk is almost d-ary if for every i ∈ [k] and B ∈ Bi−1 it holds that
1. |Bi[B]| ≤ d, or
2. ΓB [Bi[B]] is semi-regular.

Since not every Γ̂d-group Γ ≤ Sym(Ω) has an almost d-ary sequence of partitions, the
first step of the algorithm is to normalize the input group. By a simple adaption of the
arguments from [14] (see also [29]) we can obtain the following theorem normalizing the
input to the Generalized String Isomorphism Problem.

I Theorem 8. Let (Γ,P,X,Y) be an instance of the Generalized String Isomorphism Problem
where Γ ≤ Sym(Ω) is a Γ̂d-group.

Then there is a set Ω∗, a monomorphism ϕ : Γ→ Sym(Ω∗), an almost d-ary sequence of
partitions B∗0 � B∗1 � · · · � B∗` for Γϕ, and an instance (Γϕ,P∗,X∗,Y∗) of the Generalized
String Isomorphism Problem such that the following properties are satisfied:
1. |Ω∗| ≤ nfnorm(d)+1 where fnorm(d) = O(log d),
2. there is some i ∈ [k] such that P∗ = B∗i , and
3. γ ∈ IsoΓ(X,Y) if and only if ϕ(γ) ∈ IsoΓϕ(X∗,Y∗) for every γ ∈ Γ.
Moreover, given Γ ≤ Sym(Ω), there is an algorithm computing the desired objects in time
polynomial in the input size and the size of Ω∗.

Hence, in the following we restrict ourselves to the case where the input group has an
almost d-ary sequence of partitions. In particular, this allows us to use the variant of the
Unaffected Stabilizers Theorem proved in [14].

3.3 Creating Global Automorphisms from Local Information
The variant of the Unaffected Stabilizers Theorem from [14] provides us with the group-
theoretic foundation to extend Babai’s Local Certificates Routine [1] to the setting of
hypergraphs. However, there is a second problem in generalizing the Local Certificates
Routine that needs to be addressed.

Let Γ ≤ Sym(Ω) be a Γ̂d-group, P a Γ-invariant partition of Ω, and X,Y two sets of P-
strings. In a nutshell, the Local Certificates Routine considers a Γ-invariant window W ⊆ Ω
such that Γ[W ] ≤ Aut(X[W ]) (i.e., the group Γ respects X restricted to the window W ) and
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aims at creating automorphisms of the entire structure X (from the local information that Γ
respects X on the window W ). In order to create these automorphisms the Local Certificates
Routine considers the group Γ(Ω\W ) fixing every point outside of W . Intuitively speaking,
the Unaffected Stabilizers Theorem (resp. the variant suitable for Γ̂d-groups) guarantees
that the group Γ(Ω\W ) is large. For the String Isomorphism Problem it is easy to see Γ(Ω\W )
consists only of automorphisms of the input string since there are no dependencies between
the positions within the window W and outside of W . However, for the Generalized String
Isomorphism Problem, this is not true anymore. In other words, in order to compute Aut(X),
it is not possible to consider X[W ] and X[Ω \W ] independently.

Our solution to this problem is guided by the following simple observation. Suppose that
X[W ] is simple, i.e., mX[W ](P ) = 1 for all P ∈ P[W ]. In this case it is possible to consider
X[W ] and X[Ω \W ] independently as the next lemma indicates.

I Lemma 9. Let Γ ≤ Sym(Ω) be a permutation group, let P be a Γ-invariant partition of Ω
and X a set of P-strings. Also suppose W ⊆ Ω is a Γ-invariant window such that X[W ] is
simple and Γ[W ] ≤ Aut(X[W ]). Then Γ(Ω\W ) ≤ Aut(X).

Proof. Let γ ∈ Γ(Ω\W ) and (P, x) ∈ X. It suffices to show that (P γ , xγ) ∈ X. First suppose
P ⊆W . Then (P, x) ∈ X[W ] and (P γ , xγ) ∈ X[W ]. Moreover, P γ ⊆W sinceW is Γ-invariant.
Hence, (P γ , xγ) ∈ X.

Otherwise P∩(Ω\W ) 6= ∅. Since αγ = α for all α ∈ Ω\W it follows that P γ∩P 6= ∅. Using
the fact that P is Γ-invariant this implies that P γ = P . To complete the proof it is argued
that xγ = x. Let α ∈ P . If α /∈W then xγ(α) = xγ(αγ) = x(αγγ−1) = x(α). So assume α ∈W .
Since γ[W ] ∈ Aut(X[W ]) it holds that ((P∩W )γ , (x[P∩W ])γ) = (P∩W, (x[P∩W ])γ) ∈ X[W ].
But this means (x[P ∩W ])γ = x[P ∩W ] since X[W ] is simple. Hence xγ(α) = x(α). J

Let W ⊆ Ω be a Γ-invariant set such that X[W ] ≤ Aut(X[W ]) (this is the case during the
Local Certificates Routine). In order to solve the problem described above in general, the
basic idea is to modify the instance in such a way that X[W ] becomes simple. This allows us
to apply Lemma 9 and eventually, to extend the Local Certificates Routine to our setting.
This modification is one of the key conceptual contributions of this work.

Consider a set P ∈ P. In order to “simplify” the instance we define an equivalence
relation on the set X[[P ]] of all strings contained in P . Two P-strings (P, x1) and (P, x2)
are W -equivalent if they are identical on the window W , i.e., x1[W ] = x2[W ]. For each
equivalence class we create a new block P ′ containing exactly the strings from the equivalence
class. Since the group Γ respects the induced subinstance X[W ] it naturally acts on the
equivalence classes. This process is visualized in Figure 1 and formalized below.

Consider the natural homomorphism ψ : Γ → Sym(X[W ]). Now let Ω′ :=
⋃
P∈P P ×

{x[W ∩ P ] | (P, x) ∈ X} and P′ := {P × {x[W ∩ P ]} | (P, x) ∈ X}. Also define

X′ :=
{(
P × {x[W ∩ P ]}, x′ : P × {x[W ∩ P ]} → Σ: (α, x[W ∩ P ]) 7→ x(α)

) ∣∣∣ (P, x) ∈ X
}

and similarly define Y′ for the instance Y. Note that X′ and Y′ are sets of P′-strings.
Finally, the group Γ faithfully acts on the set Ω′ via (α, z)γ = (αγ , zγ) yielding an injective
homomorphism ψ : Γ → Sym(Ω′). Define Γ′ := Γψ. It can be easily checked that the
updated instance is equivalent to the original instance. Also, X′[W ′] is simple where
W ′ := {(α, z) ∈ Ω′ | α ∈W}.

While this simplification allows us to treat X′[W ′] and X′[W ′ \ Ω′] independently and
thus solves the above problem, it creates several additional issues that need to be addressed.
First, this modification may destroy the normalization property (i.e., the existence of an
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X

P1 P2

a b a a a b b a b

a a a b a b a a a

a a a b a a a b a

a b a a a b a b a

a a b b b b b a a

a b a a a a a b b

a b a a a b a a b

a b a a b a a b b

X′

P1 × {abaa} P1 × {aaab} P2 × {aba} P2 × {aab}

a b a a a b b a b a a a b a b a a a

a a a b a a a b aa b a a a b a b a

a a b b b b b a aa b a a a a a b b

a b a a a b a a b

a b a a b a a b b

Figure 1 A set X of P-strings is given in the top and the “simplified” instance X′ is given below.
The window W is marked in gray. Note that X′[W ′] is simple where W ′ denotes the window marked
in gray in the bottom part of the figure.

almost d-ary sequence of partitions). As a result, the Local Certificates Routine constantly
needs to renormalize the input instances which requires a precise analysis of the increase in
size occurring from the renormalization (see Theorem 8). In order to be able to still analyze
the progress made by the recursion, we introduce the notion of a virtual size of an instance.

I Definition 10. Let P be a partition of Ω and suppose X is a set of P-strings. The d-virtual
size of X is defined by s :=

∑
P∈P |P | · (mX(P ))fnorm(d)+1.

Here, fnorm(d) = O(log d) refers to the normalization cost defined in Theorem 8. Hence,
the d-virtual size s of X is bounded by (m+ n)O(log d) and it suffices to analyze the running
time of all subroutines in terms of the virtual size of the input instances. Intuitively speaking,
the idea of the virtual size is to take into account the cost of all potential renormalization
steps which means that, when the algorithm renormalizes an instance, while its actual size
might grow significantly, its virtual size does not. This allows us to measure the progress
made by the recursive algorithm although instances might grow significantly.

The renormalization of instances also creates another problem. In the aggregation of
local certificates, the outputs of the Local Certificates Routine are compared with each other
requiring the outputs to be isomorphism-invariant. However, the renormalization procedure
is not isomorphism-invariant. Our solution to this problem is to run the Local Certificates
Routine in parallel on all pairs of test sets compared later on. This way, we can ensure that
all instances are normalized in the same way.

This simplification procedure is formalized by the next technical theorem which combines
all the requirements outlined above, including the renormalization steps, into a single
statement.

I Theorem 11. Let Γ ≤ Sym(Ω) be a Γ̂d-group and P be a Γ-invariant partition of Ω. Also
suppose {Ω} = B0 � B1 � · · · � B` = {{α} | α ∈ Ω} forms an almost d-ary sequence of
Γ-invariant partitions such that P = Bi for some i ∈ [`]. Let (Xi)i∈[p] be a list of sets of
P-strings. Also let W ⊆ Ω be a Γ-invariant set such that Γ[W ] ≤ Aut(Xi[W ]) for all i ∈ [p].
Moreover, assume that Xi[W ] = Xj [W ] for all i, j ∈ [p].

Then there is an equivalence relation ∼ on the set [p] such that Xi ∼=Γ Xj implies i ∼ j
for all i, j ∈ [p], and for each equivalence class A ⊆ [p], we get the following:
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A set Ω∗, a group Γ∗ ≤ Sym(Ω), elements λi ∈ Γ for all i ∈ A, a monomorphism
ϕ : Γ∗ → Γ, a window W ∗ ⊆ Ω∗, a sequence of partitions {Ω∗} = B∗0 � B∗1 � · · · � B∗k =
{{α} | α ∈ Ω∗}, and a list of P∗-strings (X∗i )i∈A, such that the following properties are
satisfied:
(A) the sequence B∗0 � · · · � B∗k forms an almost d-ary sequence of Γ∗-invariant partitions,
(B) W ∗ is Γ∗-invariant and Γ∗[W ∗] ≤ Aut(X∗i [W ∗]) for all i ∈ A,
(C) there is some i ∈ [k] such that P∗ = B∗i ,
(D) IsoΓ(Xi,Xj) = λ−1

i (IsoΓ∗(X∗i ,X∗j ))ϕλj for all i, j ∈ A,
(E) X∗i [W ∗] is simple for all i ∈ A,
(F) for s the virtual size of Xi and s∗ the virtual size of X∗i it holds that s∗ ≤ s, and
(G) for s the virtual size of Xi[Ω \W ] and s∗ the virtual size of X∗i [Ω∗ \W ∗] it holds that

s∗ ≤ s.
Moreover, there is an algorithm computing the desired objects in time p2 · (n+m)O((log d)c)

for some absolute constant c.

3.4 The Local Certificates Routine
In this subsection the Local Certificates Routine originally introduced in [1] is lifted to
the Generalized String Isomorphism Problem for Γ̂d-group which builds the crucial step of
extending the group-theoretic techniques of Babai’s quasipolynomial time isomorphism test
to the setting of this paper.

Let Γ ≤ Sym(Ω) be a permutation group and let (Γ,P,X,Y) be an instance of the Gen-
eralized String Isomorphism Problem. Furthermore let ϕ : Γ→ Sk be a giant representation,
i.e., a homomorphism ϕ : Γ → Sk such that Γϕ ≥ Ak. For the description of the Local
Certificates Routine we extend the notation of set- and point-wise stabilizers for the group
Γ to the action on the set [k] defined via the giant representation ϕ. For a set T ⊆ [k] let
ΓT := ϕ−1((Γϕ)T ) and Γ(T ) := ϕ−1((Γϕ)(T )).

The basic approach of the Local Certificates Routine is to consider test sets T ⊆ [k] of
logarithmic size.

I Definition 12. A test set T ⊆ [k] is full if (AutΓT
(X))ϕ[T ] ≥ Alt(T ). A certificate of

fullness is a subgroup ∆ ≤ AutΓT
(X) such that ∆ϕ[T ] ≥ Alt(T ). A certificate of non-fullness

is a non-giant Λ ≤ Sym(T ) such that (AutΓT
(X))ϕ[T ] ≤ Λ.

The central part of the algorithm is to determine for each test set T ⊆ [k] (of size t
approximately logarithmic in d) whether T is full and, depending on the outcome, compute a
certificate of fullness or a certificate of non-fullness. Actually, in order to decide isomorphism,
non-fullness certificates are also required for pairs of test sets. All of this is achieved by the
following theorem.

I Theorem 13. Let P be a partition of Ω, X and Y two sets of P-strings. Let s be the
d-virtual size of X and Y. Also let Γ ≤ Sym(Ω) a Γ̂d-group that has an almost d-ary sequence
of partitions B0 � · · · � B` such that P = Bi for some i ∈ [`]. Furthermore suppose there
is a giant representation ϕ : Γ → Sk and let k ≥ t > max{8, 2 + log2 d}. Finally, define
T = {(X, T ), (Y, T ) | T ⊆ [k], |T | = t}. For every (Z1, T1), (Z2, T2) ∈ T one can compute
(i) if T1 is full with respect to Z1, a group ∆ := ∆(Z1, T1) ≤ AutΓT1

(Z1) such that
∆ϕ[T1] ≥ Alt(T1), or

(ii) if T1 is not full with respect to Z1, a non-giant group Λ := Λ(T1,Z1, T2,Z2) ≤ Sym(T1)
and a bijection λ := λ(T1,Z1, T2,Z2) : T1 → T2 such that{

γϕ|T1

∣∣∣ γ ∈ IsoΓ(Z1,Z2) ∧ T (γϕ)
1 = T2

}
⊆ Λλ.
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Moreover, the output is isomorphism-invariant, i.e., for every two pairs (Z1, T1), (Z2, T2) ∈ T
and (Z′1, T ′1), (Z′2, T ′2) ∈ T and isomorphisms γi ∈ IsoΓ((Zi, Ti), (Z′i, T ′i )), i ∈ {1, 2}, it holds
that
(a) if T1 is full with respect to Z1, then (∆(T1,Z1))γ1 = ∆(T ′1,Z′1), and
(b) if T1 is not full with respect to Z1, then

ϕ(γ−1
1 )Λ(T1,Z1, T2,Z2)λ(T1,Z1, T2,Z2)ϕ(γ2) = Λ(T ′1,Z′1, T ′2,Z′2)λ(T ′1,Z′1, T ′2,Z′2).

Moreover, there are numbers s1, . . . , sr ≤ s/2 such that
∑r
i=1 si ≤ 4k2t · t! · s and, for each

i ∈ [r] using a recursive call to the Generalized String Isomorphism Problem for instances of
d-virtual size at most si, and kO(t) · t! · (n+m)O((log d)c) additional computation steps, an
algorithm can compute all desired objects.

The algorithm is similar to the standard Local Certificates Routine implement in Babai’s
quasipolynomial-time isomorphism test [1]. A main difference is that, in each iteration, the
algorithm runs the subroutine implemented in Theorem 11 to “simplify” all instances as
described in the previous subsection. This guarantees that, throughout the execution of the
algorithm, the prerequisites of Lemma 9 are satisfied allowing for the construction of global
automorphisms from local information.

3.5 An Algorithm for the Generalized String Isomorphism Problem
With the Local Certificates Routine for sets of P-strings presented above it is possible to
provide an algorithm for the Hypergraph Isomorphism Problem assuming the input group
is equipped with an almost d-ary sequence of partitions. The algorithm mostly follows the
same patterns as in [14] giving the corresponding result for the String Isomorphism Problem
by replacing the Local Certificates Routine.

I Theorem 14. There is an algorithm that, given a partition P of Ω, a Γ̂d-group Γ ≤ Sym(Ω),
two sets of P-strings X,Y and an almost d-ary sequence of partitions B0 � · · · � B` for
Γ such that P = Bi for some i ∈ [`], computes a representation for IsoΓ(X,Y) in time
(n+m)O((log d)c), for an absolute constant c.

Combining Theorem 8 and 14 gives the main technical result of this work.

I Theorem 15. The Generalized String Isomorphism Problem for Γ̂d-groups can be solved
in time (n+m)O((log d)c) for some constant c.

As an immediate consequence we obtain one of the main results of this paper.

I Corollary 16 (Theorem 1 restated). The Hypergraph Isomorphism Problem for Γ̂d-groups
can be solved in time (n+m)O((log d)c) for some constant c.

4 Color Refinement and Small Color Classes

In the following two sections we present applications of the improvement obtained for the
Hypergraph Isomorphism Problem for Γ̂d-groups. Towards this end, we first introduce the
notion of t-CR-bounded graphs and present an isomorphism test for such graphs running
in time nO((log t)c). The notion of t-CR-bounded graphs generalizes color-t-bounded graphs
considered in [4] in the context of the isomorphism problem for strongly regular graphs.
But more importantly, the isomorphism problem for t-CR-bounded graphs can serve as an
intermediate problem for designing faster isomorphism tests for important classes of graphs.
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For example, there is a simple polynomial-time Turing reduction from the isomorphism
problem for graphs of maximum degree d to the isomorphism problem for d-CR-bounded
graphs. Hence, our results may be seen as a generalization to the isomorphism test for graphs
of small degree presented in [14]. Moreover, in the next section, we present a polynomial-
time Turing reduction from the isomorphism problem for graphs of genus at most g to the
isomorphism problem for (4g + 2)-CR-bounded graphs. As a result, isomorphism for graphs
of genus at most g can be tested in time nO((log g)c).

The definition of t-CR-bounded graphs builds on the Color Refinement algorithm, a
simple combinatorial algorithm that iteratively refines a vertex-coloring in an isomorphism-
invariant manner and which forms a fundamental algorithmic tool in the context of the
Graph Isomorphism Problem (see, e.g., [4, 7, 8, 24, 25, 36]). We start by formally defining
the outcome of the Color Refinement algorithm in the next subsection.

4.1 The Color Refinement Algorithm
Let G be a graph with vertex coloring χV : V (G)→ CV and arc coloring χE : {(v, w) | vw ∈
E(G)} → CE . The Color Refinement algorithm is a procedure that, given a vertex- and
arc-colored graph G, iteratively computes an isomorphism-invariant refinement χCR[G] of the
vertex-coloring χV .

Let χ1, χ2 : V → C be colorings of vertices where C is some finite set of colors. The
coloring χ1 refines χ2, denoted χ1 � χ2, if χ1(v) = χ1(w) implies χ2(v) = χ2(w) for all
v, w ∈ V . The colorings χ1 and χ2 are equivalent, denoted χ1 ≡ χ2, if χ1 � χ2 and χ2 � χ1.

Given a vertex- and arc-colored graph G, the Color Refinement algorithm computes an
isomorphism-invariant coloring χCR[G] as follows. The initial coloring for the algorithm is
defined as χ(0)[G] := χV , the vertex-coloring of the input graph. The initial coloring is
refined by iteratively computing colorings χ(i)[G] for i > 0. For i > 0 define χ(i)[G](v) :=
(χ(i−1)[G](v),Mi(v)) where

Mi(v) :=
{{(

χ(i−1)[G](w), χE(v, w), χE(w, v)
)
| w ∈ NG(v)

}}
.

From the definition of the colorings it is immediately clear that χ(i+1)[G] � χ(i)[G]. Now let
i ∈ N be the minimal number such that χ(i)[G] ≡ χ(i+1)[G]. For this i, the coloring χ(i)[G]
is called the stable coloring of G and is denoted by χCR[G].

The Color Refinement algorithm takes as input a (vertex- and arc-colored) graph G and
computes (a coloring that is equivalent to) χCR[G]. I remark that this can be implemented in
time almost linear in the number of vertices and edges (see, e.g., [9]).

4.2 Splitting Small Color Classes
Having defined the Color Refinement algorithm, we can now define the notion of t-CR-
bounded graphs. The basic idea behind t-CR-bounded graphs is the following. Suppose
(G,χ) is a vertex-colored graph. Then (G,χ) is t-CR-bounded if it is possible to transform χ

into a discrete coloring (i.e., a coloring where each vertex has its own color) by repeatedly
performing the following two operations: applying the Color Refinement algorithm and
completely splitting color classes of size at most t (i.e., assigning every vertex in such a color
class its own color).

For formal reasons, we actually define t-CR-bounded pairs where an additional set
S ⊆ V (G) is provided each vertex of which may also be individualized. The intuition behind
this is that we may already have good knowledge about the structure of the automorphism
group of (G,χ) on the set S which can be exploited for isomorphism testing.
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I Definition 17. A pair (G,S), where G = (V,E, χV , χE) is a vertex- and arc-colored graph
and S = χ−1

V (c) for some color c (not necessarily in the image of χV , i.e., S may be the
empty set), is t-CR-bounded if the sequence (χi)i≥0 reaches a discrete coloring where

χ0(v) :=
{

(v, 1) if v ∈ S
(χV (v), 0) if v /∈ S

,

χ2i+1 := χCR[V,E, χ2i, χE ] and

χ2i+2(v) :=
{

(v, 1) if |χ−1
2i+1(χ2i+1(v))| ≤ t

(χ2i+1(v), 0) otherwise

for all i ≥ 0. A graph G is t-CR-bounded if the pair (G, ∅) is t-CR-bounded.

I remark that the name “t-CR-bounded” is inspired by color-t-bounded graphs [4] defined
in a similar manner where the letters CR refer to the Color Refinement algorithm. Also, I
note that a similar notion of graphs has been exploited in [28] for designing a polynomial-time
isomorphism test for unit square graphs.

I Theorem 18. Let (G1, S1) and (G2, S2) be two t-CR-bounded pairs and also let Γ ≤
Sym(S1) be a Γ̂t-group and θ : S1 → S2 a bijection. Then a representation for the set

IsoΓθ((G1, S1), (G2, S2)) := {σ : G1 ∼= G2 | σ|S1 ∈ Γθ}

can be computed in time nO((log t)c) for some absolute constant c.

I Corollary 19. The Graph Isomorphism Problem for t-CR-bounded graphs can be solved in
time nO((log t)c) for some absolute constant c.

In particular, this includes color-t-bounded graphs considered in [4] in the context of the
isomorphism problem for strongly regular graphs.

The algorithm underlying Theorem 18 actually describes a polynomial-time Turing
reduction from the isomorphism problem for t-CR-bounded graphs to the Hypergraph
Isomorphism Problem for Γ̂t-groups. This result may be of independent interest.

I Lemma 20. There is a polynomial-time Turing reduction from the Graph Isomorphism
Problem for t-CR-bounded graphs to the Hypergraph Isomorphism Problem for Γ̂t-groups.

4.3 Hereditarily Finite Sets
As the first application to the isomorphism problem for t-CR-bounded pairs we consider
hereditarily finite sets. Intuitively speaking, a hereditarily finite set over ground set V is
any type of combinatorial object that can be build by iteratively taking sets and tuples over
previously created objects.

In this section we extend the algorithm for solving the Hypergraph Isomorphism Problem
for Γ̂d-groups to work on any type of hereditarily finite set.

Let V be finite set of elements (e.g., the vertex of a graph). The class of hereditarily finite
sets over universe (ground set) V is inductively defined as follows. Each v ∈ V is an atom
which in particular is a hereditarily finite set. Also, for hereditarily finite sets A1, . . . ,Ak
(over universe V ) the set {A1, . . . ,Ak} as well as the tuple (A1, . . . ,Ak) is a hereditarily finite
set (over universe V ). Examples of hereditarily finite sets include graphs, hypergraphs and
relational structures.
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In order to apply the isomorphism test for t-CR-bounded graphs, we can transform a
hereditarily finite set A over ground set V into a graph G(A) in the natural way so that the
pair (G(A), V ) is 0-CR-bounded.

I Corollary 21. Let A1 and A2 be two hereditarily finite sets over the universe V and let
Γ ≤ Sym(V ) be a Γ̂d-group. Then a representation for the set IsoΓ(A1,A2) := {γ ∈ Γ |
γ : A1 ∼= A2} can be computed in time (n+m)O((log d)c) for some absolute constant c where
n := |V | and m := |V (G(A1))|.

I Corollary 22. The isomorphism problem for hereditarily finite sets can be solved in time
(n+m)O((logn)c).

I remark that a variant of the previous corollary was independently obtained by Daniel
Wiebking [37] (see Related Work).

5 Isomorphism for Graphs of Bounded Genus

Next, we present a second, slightly more involved application of our results and give an
algorithm solving the isomorphism problem for graphs of Euler genus at most g in time
nO((log g)c) for some absolute constant c. Actually, we prove a more general result.

Recall that a graph H is a minor of another graph G if H can be obtained from G by
removing vertices as well as removing and contracting edges. Also define Km,n to be the
complete bipartite graph with m vertices on the left side and n vertices on the right side.
Let h ≥ 3 and define Ch to be the class of graphs that exclude K3,h as a minor.

We present a polynomial-time reduction from the isomorphism problem for the class
Ch to the isomorphism problem for t-CR-bounded graphs where t := h− 1. The following
lemma is the key tool for the reduction. Intuitively, it investigates the structure of certain
colorings that are stable with respect to the Color Refinement algorithm for graphs in the
class Ch. Recall that a graph G is 3-connected if there are no two vertices v, w ∈ V (G) such
that G− {v, w} is disconnected.

I Lemma 23. Let (G,χ) be a 3-connected, colored graph that excludes K3,h as a minor and
suppose V1 ] V2 = V (G) such that
1. each v ∈ V1 forms a singleton color class with respect to χ,
2. χ is stable with respect to the Color Refinement algorithm,
3. |V1| ≥ 3, and
4. N(V2) = V1.
Then there is a color class U ⊆ V2 with respect to χ of size |U | ≤ h− 1.

Proof. Let C := im(χ), C1 := χ(V1) and C2 := χ(V2). Also define H to be the graph with
vertex set V (H) := C and edge set

E(H) = {c1c2 | ∃v1 ∈ χ−1(c1), v2 ∈ χ−1(c2) : v1v2 ∈ E(G)}.

Let C ′ ⊆ C2 be the vertex set of a connected component of H[C2]. Then |NH(C ′)| ≥ 3 since
each v ∈ V1 forms a singleton color class with respect to χ and G is 3-connected.

Now let c1, c2, c3 ∈ NH(C ′) be distinct and also let vi ∈ χ−1(ci) for i ∈ [3]. Also let T
be a spanning tree of H[C ′ ∪ {c1, c2, c3}] such that c1, c2, c3 ∈ L(T ) where L(T ) denotes the
set of leaves of T . Moreover, let T ′ be the subtree of T obtained from repeatedly removing
all leaves c ∈ C ′. Hence, L(T ′) = {c1, c2, c3}. Then there is a unique color c such that
degT ′(c) = 3. Also, for i ∈ [3], define C ′i to be the set of internal vertices on the unique path
from ci to c in the tree T ′.
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Since |χ−1(ci)| = 1 and χ is stable with respect to the Color Refinement algorithm it
holds that

G
[
χ−1(C ′i ∪ {ci})

]
is connected. Let Ui := χ−1(C ′i∪{ci}), i ∈ [3]. Also let U = χ−1(c) and suppose that |U | ≥ h.
Then N(Ui) ∩ U 6= ∅ by the definition of the tree T . Moreover, this implies U ⊆ N(Ui)
since χ is stable with respect to the Color Refinement algorithm. Hence, G contains a minor
isomorphic to K3,h. J

I Corollary 24. Let (G,χV , χE) ∈ Ch be a 3-connected, vertex- and arc-colored graph and
let v1, v2, v3 ∈ V (G). Also define χ∗V (vi) := (i, 1) for i ∈ [3] and χ∗V (v) := (χV (v), 0) for all
v ∈ V (G) \ {v1, v2, v3}. Then (G,χ∗V , χE) is (h− 1)-CR-bounded.

Proof. Let (χi)i≥0 be the sequence of colorings obtained from the definition of (h− 1)-CR-
bounded graphs (Definition 17) for the graph (G,χ∗V , χE). Let χ∗ := χi for the minimal
i ≥ 0 such that χi ≡ χi+1.

Suppose towards a contradiction that χ∗ is not discrete (i.e., not every color class is
a singleton). Let V2 := {v ∈ V (G) | |(χ∗)−1(χ∗(v))| > 1} and let V1 := NG(V2). Then
|V1| ≥ 3 since |V (G) \ V2| ≥ 3 and G is 3-connected. Also note that χ∗|V1∪V2 is a stable
coloring for the graph G[V1 ∪ V2]. Hence, by Lemma 23, there is some color c such that
1 < |(χ∗)−1(c)| ≤ h− 1. But this contradicts the definition of the coloring χ∗ (cf. Definition
17). J

The last corollary gives some insights into the structure of the automorphism group of
graphs G ∈ Ch.

I Theorem 25. Let G ∈ Ch be a 3-connected graph and let v1, v2, v3 ∈ V (G) be distinct
vertices. Then (Aut(G))(v1,v2,v3) is a Γ̂h−1-group.

Also, the corollary can be used to design an isomorphism test for the class Ch.

I Corollary 26 (Theorem 3 restated). The Graph Isomorphism Problem for the class Ch can
be solved in time nO((logh)c) for some absolute constant c.

Proof. Let G1, G2 ∈ Ch. By standard decomposition techniques it suffices to consider the
case where G1 and G2 are (vertex- and arc-colored) 3-connected graphs.

Suppose G1 = (V1, E1, χ
1
V , χ

1
E) and G2 = (V2, E2, χ

2
V , χ

2
E). Let v1, v2, v3 ∈ V (G1) be

three arbitrary vertices. For every w1, w2, w3 ∈ V (G2) it is checked whether there is some
isomorphism ϕ : G1 ∼= G2 such that ϕ(vi) = wi for all i ∈ [3]. Towards this end, define
χ̂1
V (vi) = (i, 1) for i ∈ [3] and χ̂1

V (v) = (χ1
V (v), 0) for all v ∈ V (G1) \ {v1, v2, v3}. Similarly,

define χ̂2
V (wi) = (i, 1) for i ∈ [3] and χ̂2

V (w) = (χ2
V (w), 0) for all w ∈ V (G2) \ {w1, w2, w3}.

Hence, it needs to be checked whether Ĝ1 ∼= Ĝ2 where Ĝj := (Vj , Ej , χ̂jV , χ
j
E), j ∈ [2]. By

Corollary 24 the graphs Ĝ1 and Ĝ2 are (h− 1)-CR-bounded. Hence, isomorphism of the two
graphs can be tested within the desired time by Corollary 19. J

Note that the algorithm from the corollary describes a polynomial-time Turing reduction
from the Graph Isomorphism Problem for Ch to the Graph Isomorphism Problem for (h− 1)-
CR-bounded graphs. In combination with Lemma 20 this means the the Graph Isomorphism
Problem for Ch is polynomial-time Turing reducible to the Hypergraph Isomorphism Problem
for Γ̂h−1-groups.

Since the class of graphs of Euler genus at most g excludes K3,4g+3 as a minor [32, 18],
we obtain the following result.

I Corollary 27 (Corollary 4 restated). The Graph Isomorphism Problem for graphs of genus
at most g can be solved in time nO((log g)c) for some absolute constant c.
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6 Conclusion

We provided a faster algorithm for the Hypergraph Isomorphism Problem for Γ̂d-groups
running in time (n + m)O((log d)c) for some absolute constant c. As an application, we
obtained, for example, an algorithm testing isomorphism of graphs excluding K3,h as a minor
in time nO((logh)c). In particular, this gives an isomorphism test for graphs of Euler genus at
most g running in time nO((log g)c).

With the Hypergraph Isomorphism Problem for Γ̂d-groups being exploited as a subroutine
in a number of algorithms testing isomorphism, it seems plausible to hope for further
applications beyond the ones presented in this paper. Indeed, a very recent work by Grohe,
Wiebking and the present author [16] gives an isomorphism test running in time nO((logh)c)

for n-vertex graphs excluding an arbitrary h-vertex graph as a minor. This algorithm crucially
builds on the isomorphism test for hypergraphs as well as the notion of t-CR-bounded graphs.
Actually, extending the applicability of our techniques further, it might be possible to provide
an algorithm with a similar running time for all classes excluding only a topological minor
building on a decomposition theorem for such graph classes due to Grohe and Marx [13].

Another open question concerns the complexity of testing isomorphism of hypergraphs
for a given Γ̂d-group. The algorithm presented in this work is significantly faster than the
previous best algorithm [34] running in time nO(d)mO(1) only for small numbers of hyperedges.
Indeed, for large numbers of hyperedges m = nΩ(d), our algorithm becomes slower than the
algorithm due to Schweitzer and Wiebking [34]. Can the Hypergraph Isomorphism Problem
for Γ̂d-groups be solved in time nO((log d)c)mO(1) for some absolute constant c? Observe that
it is already completely unclear whether isomorphism of hypergraphs can be tested in time
nO((logn)c)mO(1) for some absolute constant c.
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