7,248 research outputs found

    On Target Coverage in Wireless Heterogeneous Sensor Networks with Multiple Sensing Units

    Get PDF
    [[abstract]]The paper considers the target coverage problem in wireless heterogeneous sensor networks (WHSNs) with multiple sensing units. The paper reduces the problem to a set cover problem and further formulates it as integer programming (IP) constraints. Moreover, two heuristic but distributed schemes, remaining energy first scheme (REFS) and energy efficient first scheme (EEFS), are proposed to solve the target coverage problem. Simulation results show that REFS and EEFS effectively prolong the network lifetime. In addition, EEFS outperforms REFS in network lifetime.[[conferencetype]]國際[[conferencedate]]20070701~20070704[[iscallforpapers]]Y[[conferencelocation]]Aveiro, Portuga

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    A Trapezoidal Fuzzy Membership Genetic Algorithm (TFMGA) for Energy and Network Lifetime Maximization under Coverage Constrained Problems in Heterogeneous Wireless Sensor Networks

    Get PDF
    Network lifetime maximization of Wireless Heterogeneous Wireless Sensor Networks (HWSNs) is a difficult problem. Though many methods have been introduced and developed in the recent works to solve network lifetime maximization. However, in HWSNs, the energy efficiency of sensor nodes becomes also a very difficult issue. On the other hand target coverage problem have been also becoming most important and difficult problem. In this paper, new Markov Chain Monte Carlo (MCMC) is introduced which solves the energy efficiency of sensor nodes in HWSN. At initially graph model is modeled to represent HWSNs with each vertex representing the assignment of a sensor nodes in a subset. At the same time, Trapezoidal Fuzzy Membership Genetic Algorithm (TFMGA) is proposed to maximize the number of Disjoint Connected Covers (DCC) and K-Coverage (KC) known as TFMGA-MDCCKC. Based on gene and chromosome information from the TFMGA, the gene seeks an optimal path on the construction graph model that maximizes the MDCCKC. In TFMGA gene thus focuses on finding one more connected covers and avoids creating subsets particularly. A local search procedure is designed to TFMGA thus increases the search efficiency. The proposed TFMGA-MDCCKC approach has been applied to a variety of HWSNs. The results show that the TFMGA-MDCCKC approach is efficient and successful in finding optimal results for maximizing the lifetime of HWSNs. Experimental results show that proposed TFMGA-MDCCKC approach performs better than Bacteria Foraging Optimization (BFO) based approach, Ant Colony Optimization (ACO) method and the performance of the TFMGA-MDCCKC approach is closer to the energy-conserving strategy

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    On Connected Target Coverage for Wireless Heterogeneous Sensor Networks with Multiple Sensing Units

    Get PDF
    The paper considers the connected target coverage (CTC) problem in wireless heterogeneous sensor networks (WHSNs) with multiple sensing units, termed MU-CTC problem. MU-CTC problem can be reduced to a connected set cover problem and further formulated as an integer linear programming (ILP) problem. However, the ILP problem is an NP-complete problem. Therefore, two distributed heuristic schemes, REFS (remaining energy first scheme) and EEFS (energy efficiency first scheme), are proposed. In REFS, each sensor considers its remaining energy and its neighbors’ decisions to enable its sensing units and communication unit such that all targets can be covered for the required attributes and the sensed data can be delivered to the sink. The advantages of REFS are its simplicity and reduced communication overhead. However, to utilize sensors’ energy efficiently, EEFS is proposed. A sensor in EEFS considers its contribution to the coverage and the connectivity to make a better decision. To our best knowledge, this paper is the first to consider target coverage and connectivity jointly for WHSNs with multiple sensing units. Simulation results show that REFS and EEFS can both prolong the network lifetime effectively. EEFS outperforms REFS in network lifetime, but REFS is simpler

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    corecore