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Abstract— Network lifetime maximization of Wireless Heterogeneous Wireless Sensor Networks (HWSNs) is a difficult problem. Though 

many methods have been introduced and developed in the recent works to solve network lifetime maximization. However, in HWSNs, the 

energy efficiency of sensor nodes becomes also a very difficult issue.  On the other hand target coverage problem have been also becoming most 

important and difficult problem. In this paper, new Markov Chain Monte Carlo (MCMC) is introduced which solves the energy efficiency of 

sensor nodes in HWSN. At initially graph model is modeled to represent HWSNs with each vertex representing the assignment of a sensor nodes 

in a subset. At the same time, Trapezoidal Fuzzy Membership Genetic Algorithm (TFMGA) is proposed to maximize the number of Disjoint 

Connected Covers (DCC) and K-Coverage (KC) known as TFMGA-MDCCKC. Based on gene and chromosome information from the TFMGA, 

the gene seeks an optimal path on the construction graph model that maximizes the MDCCKC. In TFMGA gene thus focuses on finding one 

more connected covers and avoids creating subsets particularly. A local search procedure is designed to TFMGA thus increases the search 

efficiency. The proposed TFMGA-MDCCKC approach has been applied to a variety of HWSNs. The results show that the TFMGA-MDCCKC 

approach is efficient and successful in finding optimal results for maximizing the lifetime of HWSNs.  Experimental results show that proposed 

TFMGA-MDCCKC approach performs better than Bacteria Foraging Optimization (BFO) based approach, Ant Colony Optimization (ACO) 

method and the performance of the TFMGA-MDCCKC approach is closer to the energy-conserving strategy. 

Keywords- Heterogeneous Wireless Sensor Networks (HWSN), K coverage problem, Trapezoidal Fuzzy Membership Genetic Algorithm 

(TFMGA), Markov Chain Monte Carlo (MCMC), Disjoint Connected Coverage (DCC) and K Coverage (KC) nodes, network lifetime 

maximization. 

__________________________________________________*****_________________________________________________  

I. INTRODUCTION 

Wireless Sensor Network (WSN) is a self-organized network 

which includes of many sensors nodes are deployed in a 

sensing field in an arranged manner. With the development of 

wireless communication technologies , real-time monitoring 

applications such as battlefield surveillance [1], environment 

supervision [2], and traffic control [3], has turn into more 

important in the recent work. Applying these applications to 

general WSN have been becomes difficult task. So 

Heterogeneous Wireless Sensor Network (HWSN) have been 

focused and used in many applications.  

However HWSN is a sub-type of WSNs in which each sensor 

might have diverse abilities such as different transmission 

ability, varied number of sensing units, varied battery life etc 

[4-5]. HWSN is worked based on the multiple sensing units 

and each sensor in the network might be operational by means 

of more than one sensing unit, and the attribute with the 

purpose of each sensing unit can sense also be different. Since, 

sensors are operational by means of multiple sensing units are 

extremely frequent in various commercial products. For 

example, every MICA2 mote [6] is equipped with many 

sensing units used for temperature, humidity, brightness, 

noise, vibration, etc.  

However HWSN with multiple sensing units is cost-efficient 

and power-efficient. Alternatively, if many sensing units are 

equipped in a sensor, thus increases the energy consumption.  

In the research study target coverage problem have been 

becomes also most important and difficult problem in HWSN. 

The target coverage problem is stated as the discovering an 

optimal scheduling for sensors to increase network lifetime. 

Though, the target coverage problem has been demonstrated to 

be NP complete [7] problem.  

In general these problems have been classified into two major 

types: 1) field coverage, where the entire network field is 

covered with all sensors and no coverage hole is able to be 

standard at any time, and 2) target coverage, where each target 

is continuously monitored with as a minimum of one sensor 

[8]. Commonly, coverage problems additionally organize 

sensors in the direction of cover the sensing area entirely [9], 

or assure with the purpose of the entire sensing area is covered 

by 1-coverage and k-coverage [10-11] which is strongly 

position sensor networks within the cover of entire sensing 

area [12–13]. 

There have been many of works have been introduced and 

developed in the recent work for solving target coverage 

problem for WSN, however most of the works focused on 

homogeneous WSN with single sensing unit relying on 

centralized strategy. Subsequently energy efficient based 

scheduling is proposed for solving k-coverage problem in 

homogeneous WSN [14]. Cardei proposed a heuristic 

algorithm which solves the target problem and maximal set 

cover problem in homogeneous WSN with single sensing unit 

relying on centralized strategy [15]. As presented in [16], 

solves a flexible range set cover problem to maximize network 

lifetime in the flexible sensing ranges WSN. However they 

introduce and developed a new method which doesn‘t focus on 

the multiple sensing units for range set cover problem. The 

estimate algorithm for solving K-coverage problem was 

introduced and developed in [17-18] without consideration of 

multiple sensing units. 

To increase the system performance, the Disjoint Connected 

Coverage (DCC) and K Coverage (KC) [19] problem is 

focused and solved in this research paper. K-coverage problem 

means with the purpose of each target must be covered by as 
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minimum of k sensors, and a property known as k-coverage, 

wherever the highest value of k is known as the coverage 

degree. In this research paper we focus on resolving target 

coverage problem under MDCCKC in HWSNs with the 

purpose of network lifetime maximization and energy 

efficiency [20]. The main principle behind TFMGA is to 

introduce the concept of sensor priority, which is obtained by 

integrating three parameters together, which are the Coverage, 

Routing constraint, and the remaining energy. The present 

framework of TFMGA-MDCCKC is able to be devoted 

toward solving discrete point coverage with suitable objective 

function. It is expected with the purpose of the implicit 

procedure of the TFMGA framework is able to be used for 

decreasing the computational time of TFMGA-MDCCKC 

when beginning with large-scale HWSN. 

 

II. RELATED WORK 

The problems of preserving sensing coverage and connectivity 

by maintaining a lesser number of sensor nodes in the dynamic 

manner in WSNs are introduced and solved in the recent work 

[21]. This work studies the connection among sensing 

coverage area and connectivity by solving two major sub-

problems which is discussed as follows. At initially prove with 

the purpose of the radio range is as a minimum twice the 

sensing range, absolute coverage of a convex area involves 

connectivity between the functioning set of nodes. Second 

derive an Optimal Geographical Density Control (OGDC) for 

densities manage in large scale HWSNs with radio range and 

the sensing range. From the network simulator (Ns-2) results, 

it demonstrated that OGDC performs better than that of 

existing density control algorithms in terms of network 

lifetime, coverage problem. 

Another research work also introduced in the recent work [22] 

to find the relationship among sensing coverage and network 

connectivity. This introduces a novel Stand Guard Algorithm 

(StanGA) for solving treating coverage and connectivity 

problem that promises network connectivity and sensing 

coverage.   

Battery-powered sensor nodes are functional providing they 

are able to communicate captured information to a processing 

node. This process consumes energy, so sufficient power 

management and scheduling is able to successfully expand 

network lifetime. To solve this problem in the recent work 

propose an energy efficient method [23] that enhances the 

network lifetime in WSNs. In WSN sensors into a maximal 

number of disjoint set covers with the purpose are activated 

consecutively. Simply the sensors from the existing active set 

are dependable for monitoring each and every one targets and 

for transmitting the collected information, at the same time as 

nodes from each and every one other set are in a low-energy 

sleep mode. 

Zhao and Gurusamy [24] proposed a Maximum Cover Tree 

(MCT) problem with the aim of increasing the network 

lifetime by means of scheduling sensors into multiple sets. 

This is able to keep together target coverage and connectivity 

among all the active sensors and the sink. Introduces and 

develops a new Communication Weighted Greedy Cover 

(CWGC) in a distributed manner. Simulation results shows 

that the proposed CWGC algorithm works better when 

compared to approximation algorithm in terms of the network 

lifetime and energy efficiency parameters respectively.  

Chamam and Pierre [25] solves energy efficiency problem by 

considering optimal scheduling of sensors states in cluster-

based WSNs. This design considers two major steps: At 

initially energy efficient problem is formulated as Integer 

Linear Programming model with the purpose of proves NP-

Complete problem. Then Tabu search heuristic algorithm is 

introduced to solve computation time problem. Simulation 

results demonstrate that the proposed algorithm provides 

maximized network lifetime and less computation time this 

algorithm is appropriate for large-sized WSNs. 

Mini et al [26] designed toward observe phase-transition 

behavior of enhancing network lifetime to solve target 

coverage problem in WSNs. To help the hardness 

examination, they introduced a new and efficient phase-

transition algorithm to solve coverage problem in the target 

area. This phase-transition algorithm has the different 

capability of differentiating hard problem instances. 

Zorbas et al [27] solves the problem of the smallest sampling 

value, where a result should be adequately distinguished by 

the greatest possible amount of time. The proposed localized 

algorithm gives up a measurement of the energy of the sensors 

through moving them to a new location in order to assure the 

preferred detection accurateness. It separates the monitoring 

procedure in rounds towards maximize the network lifetime, at 

the same time as it make sure network connectivity with the 

base station, but the closely covered areas with the purpose of 

are unsuccessfully covered. 

Deng et al [28] introduces a new energy-efficient and target K-

coverage algorithm which solves coverage area problem.  This 

algorithm converts the coverage area problem into the target 

coverage issue, and then attains full area coverage through 

covering each and every one the targets. This algorithm is able 

to increase the security and efficiency of the WSNs.  

Zhao et al [29] focus on the issue of scheduling sensors 

behavior towards network lifetime maximization at the same 

time as preserving both K-target coverage and network 

connectivity. In K-target coverage, it is important with the 

purpose of each target be supposed to be concurrently 

experimental by as a minimum of K sensors. The information 

collected by the sensors will be broadcasting to the sink node 

using multiple hop communications. 

Li et al [30] examine the sensor scheduling for solving k- 

coverage problem .They need to capably schedule the sensors, 

such with the purpose of the observed area be able to be k-

covered during the network lifetime thus enhancing the 

network lifetime. Yang et al [31] examine the critical situation 

for connected-k-coverage with the percolation theorem and 

show their efficiency using simulation results. From the results 

it concludes that the connected-k-coverage has been accepted 

as a successful concept for maximizing the network lifetime.  

 

III. PROBLEM FORMULATION AND SYSTME 

MODEL 

In [32] the performance of Ant Colony Optimization (ACO) 

approach is introduced and used to increase network lifetime 

of HWSNs. This ACO approach is entirely used to discover 

the Maximum number of Disjoint Connected Covers (MDCC) 

that should satisfy both coverage areas of sensors and network 

connectivity. A construction graph model is formulated that 

has vertices which denote the assignment of a device inside a 
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WSN. The pheromone and heuristic information of the ants is 

helpful in the direction of finding an optimal path from 

construction graph which used to maximize the connected 

cover‘s count. The heuristic information of ants is used to 

reproduce the magnetism of device assignments. The search 

effectiveness is enhanced by proposing a local search 

procedure. But still the major drawback of this schema is the 

computation time and coverage problems are also not solved 

by this approach.  Consequently, energy efficiency becomes 

an important problem in HWSNs. To solve this problem new 

Markov Chain Monte Carlo (MCMC) is introduced in this 

research work which solves the energy efficiency and 

coverage problem in HWSN. These problems are solved by 

using Trapezoidal Fuzzy Membership Genetic Algorithm 

(TFMGA) in order to Maximize the number of Disjoint 

Connected Covers (DCC) and K Coverage (KC)(TFMGA-

MDCCKC). This proposed TFMGA-MDCCKC algorithm 

converts the coverage problem into a construction graph 

model. The major objective of this paper is to solving target 

coverage problem which maximizing the network lifetime and 

reducing energy constraints.   

 

 

A. Network Model and Problem Formulation 

The problem of discovering the MDCCKC nodes is discussed 

in this section. In addition this section also introduces a 

TFMGA method for approximating an upper bound of 

MDCCKC, covers in a HWSN. 

Problem formulation for target coverage: Let us consider 

number of sensors as SEN =  {SEN1, . . . , SEN SE  }  and a 

number of sinks SIN =  {SIN1, . . . , SIN SI  }  in a region area 

L × W area (|. |denotes the size of a set). Let us consider that 

the sensing range of sensor as rs  , a transmission range of 

sensor as rt  , sinks have a transmission range Rt  higher than rt   

. Properly we need to discover a set of nodes,  𝑆𝐸𝑁 =

 𝑆𝐸𝑁1, …𝑆𝐸𝑁 SE   , and each number of sinks works for Ti 

rounds. A routing is accordingly represented by a set of 

tuples, { SIN1 , SEN1, E1
r ,. ,   SIN SE  , SEN SI  , E SE  

r  }  with the 

purpose that  should satisfy the following constraints: 

Energy constraints: The amount of energy consumed by any 

sensor node in the HWSN at the end of the network lifetime 

couldn‘t exceed by its initial energy value. Let us consider that 

the σ be the energy level of sensor nodes  SE  in the HWSN 

with 𝐸 SE  
r units of residual energy. Problem formulation of 

number of DCC and KC has been stated as maximization of 

DCC and KC constraints, between each connected cover CSi  

(CSi  ⊆  SEN ∪  SIN, i =  1, . . . , DKC) . 
Coverage constraint:  The coverage constraint, which require 

the sensors in CSi  toward fully cover a target area TC. In other 

words, for any given point P ∈  TC , at least one sensor 

SENj ∈  CSi  assures 

  SENj − P  ≤ rs  (1) 

where   SENj − P   denoted as the distance between the 

sensors, SENj  and any known point P ∈  TC . The collection 

constraints must need to gather information of number of sinks 

(SIN) and their monitoring results are achieved by the sensor 

in the different subset.  For each sensor Nj ∈  CSi  , at least one 

sink SINk ∈  CSihas 

  SENj − SINk  ≤ rt  
(2) 

Routing constraint: The routing constraints which need the 

number of sinks SIN in CSito form a new DCC by transmitting 

data from source to destination. Accurately, this routing 

constraint is capable to be described as follows, among the two 

sinks SINj , SINy ∈ CSi , there is a path 𝔭𝔱 must satisfying 

max
 SINx−SINy  ∈𝔭𝔱

  SINx − SINy  ≤ Rt  ≥ KC (3) 

K Coverage constraint: Known an integer KC , and the 

condition KC < 0 is satisfied. The major objective of this 

proposed problem is to compute a subset of sensors Ui  sensors 

, Vi  sinks, and then it must need to assure the following 

conditions: 

i. All sensor node in the subset of sensors 𝑈𝑖  must be 

enclosed by as a minimum of K different wireless 

sensors in coverage set CS . 

ii. The number of SEN in CS is reduced. 

iii. The wireless sensors in CS are DCC and targeted by 

each other. 
Moreover, target KC problem is transformed to an integer 

programming model is discussed detail in the following 

sections. Assume that the this work deploy a number of 

sensors as  =   SEN1, SEN2, . . , SEN SE    ,  number of sinks as 

SIN =   SIN1, SIN2, . . . , SIN SI     and  αij  is the  coefficients 

which denotes K coverage relationship between  different 

sensors , which is calculated  as follows. 

𝛼𝑖𝑗 =  
1  𝑖𝑓 𝑡𝑒 𝑠𝑒𝑛𝑠𝑜𝑟 𝑛𝑜𝑑𝑒 𝑆𝐸𝑁𝑖  𝑐𝑎𝑛 𝑏𝑒 𝑠𝑒𝑛𝑠𝑒𝑑 𝑏𝑦 𝑆𝐸𝑁𝑗  

0 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
  

(4

) 

The selected sensor nodes under the 𝛼𝑖𝑗  is denoted as 𝜒𝑖   in 

boolean values, 𝑗 ∈ {1, …𝑛}. 

𝜒𝑗  =  
1  𝑖𝑓 𝑡𝑒 𝑠𝑒𝑛𝑠𝑜𝑟 𝑛𝑜𝑑𝑒 𝑆𝐸𝑁𝑖  𝑐𝑎𝑛 𝑏𝑒 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝐶𝑆𝑗  

0 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
  
(5

) 

Minimize  𝜒𝑖
𝑛
𝑖=1  (6

) 

S.T.  𝛼𝑖𝑗 ,𝑛
𝑗=1 𝜒𝑗  ≥ 𝑘, 𝑖 ∈  1,2 … , 𝑛  , 𝜒𝑗 ∈ {0,1} (7

) 

To maximize the network lifetime in target Disjoint Connected 

Coverage (DCC) and K Coverage (KC) nodes process, the 

energy efficiency of the sensors  𝑆𝐸𝑁  must be measured.  To 

calculate sensing range of sensor 𝑟𝑠   first need to compute the 

sensor priority. So the sensor priority of sensors should be 

calculated as follows: 

Pri =
1

2
 𝑟𝑠𝑖 + 𝛾𝑖 ×    𝑟𝑠𝑖 − 1 − 𝛾𝑖 × 𝜏 + 2𝐸𝑖

𝑟 − 2 

+ 𝑟𝑠𝑖  

(8) 

Here the parameter γ
i 
is used to change the sensing range of 

sensor rs  based on the computed sensor priority. This 

parameter γ
i 
is computed as follows:  

𝛾𝑖 =  
𝐸𝑖

𝑟 − 2

𝜏
  

(9) 

Homogeneous and Heterogeneous WSNs: A WSN is 

homogeneous if each and every one of sensors and its nodes 

have the equal sensing range 𝑟𝑠 , the equal transmission range 

of sensor as 𝑟𝑡and the equal initial energy 𝐸𝑖
𝑟  .Elsewhere  the 

WSN is Heterogeneous.  It should be simulated from the 

above mentioned four constraints that also address the sensing 

coverage and network connectivity.  
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Upper Bound of C: In a HWSN, the maximum number of 

connected covers shouldn‘t exceed the maximum number of 

full cover subsets that should satisfy the coverage constraint 

under DCC and KC. So, the maximum number of full cover 

subsets should be used as the upper bound of 𝐶𝑺𝑖 . However 

finding the maximum number of full cover subsets are 

formulated as NP-complete problem [33], to focus on this 

problem we be able to compute the upper bound of 𝐶𝑺𝑖 . When 

all the deployed sensors are active state, the target area is 

rationally classified into a number of fields, each of which is a 

set of points covered all the way through the same set of 

sensors.   

 
Figure 1. Fields in the target area 

Figure 1 shows the fields in the target area, where each dot in 

the figure represents a sensor, and the circle centered on the 

dot in the figure represents the sensing range of the sensor. 

Each 𝐹𝑖  (𝑖 =  1, . . . , 15) denotes field in the coverage area. A 

field 𝐹𝑖 in darker shade is covered by more sensors. Figure 1 

illustrates an example of five sensors formed with fifteen 

fields. Each and every one of them covered with least number 

of sensors is described as the Critical Fields (CF) (e.g., F1, F3, 

F5, F13, and F15). If a group of sensors are proficient to form 

complete target coverage area, every CF is enclosed with at 

least one sensor. The no. of sensors covering in a CF is 

capable to be estimated as the upper bound of the number of 

full cover subsets [34-35]. Consequently, the least number of 

sensors in the covering region is denoted by 𝐶𝑆𝑖
 , be capable to 

be utilized as the upper bound of 𝐶𝑆𝑖 . 

 

B. PROPOSED TFMGA -MDCCKC METHODOLOGY 

FOR NETWORK LIFETIME MAXIMIZATION 

In this work introduces a new Trapezoidal Fuzzy Membership 

Genetic Algorithm (TFMGA) in order to maximize the 

number of Disjoint Connected Covers (DCC) and K Coverage 

(KC) (TFMGA-MDCCKC). Consequently, energy efficiency 

have been becomes a most important issue in HWSNs. To 

solve this problem, Markov Chain Monte Carlo (MCMC) is 

introduced in this work. In TFMGA-MDCCKC algorithm 

initially converts the coverage problem and energy efficiency 

problem into a Constructed Graph (CG) model. In the CG 

model, vertex is denoted as the assignment of a device in a 

subset. Heuristic information from TFMGA is used for 

calculating its constraint violations such as DCC and KC for 

coverage problem, routing constraints and energy constraints. 

A dynamic representation of nodes in the TFMGA is worked 

based on the TFM .This improves the optimal MDCCKC 

solutions by updating of Coverage Set (CS) nodes.  For 

performing this task, TFMGA-MDCCKC approach is initially 

introduced for network lifetime maximization and above 

mentioned constraints is checked simultaneously under the 

number of connected covers in a HWSN. Let us consider the 

coverage constraint solution as SOL =
 {Sol1 , Sol2, . . . , SolN  } where SOLi  ⊆  SEN ∪  SIN denotes a 

subset of sensors Uiand Vi  sinks, i =  1, 2, . . . , N, and N be the 

total number of subsets. Each cover subset is Disjoint and K 

Coverage Constraint (DCKCC) by each other‘s and the 

combination of the N subsets equals to the set of 𝑆𝐸𝑁 ∪  𝑆𝐼𝑁.  

Coverage Constraint: The coverage percentage of each sensor 

nodes in the cover set CSi is calculated directly and it is used 

as the coverage criterion for coverage constraint. At this point 

if the target is under group of separate points, then coverage 

percentage is the part of covered points. If the target is 

obtained via the computation of coverage percentage 𝜅𝑖  .The 

coverage ratio 𝜅𝑖  is computed as the number of covered fields 

to the number of presented fields, i.e., 

𝜅𝑖 =
|  𝐹𝑗𝑆𝐸𝑁𝑗∈𝑆𝑂𝐿𝑖

|

|𝐹|
 

(10) 

K Coverage Constraint: From the above mentioned 

constraints and connected descriptions, the target K Coverage 

(KC) is computed via the sensors in 𝑆𝐸𝑁𝑖  during their energy 

is considered as objective function is calculated as follows, 

𝐸𝑖 = 𝐸𝑟 −  𝐸

 𝑑𝑖  

𝑙=1

(𝑑𝑖
𝑙) 

(11) 

Here 𝑟𝑠  is the sensing range of the cover set 𝐶𝑆𝑖 .  

Collection Constraint: Term a sensor through at least one sink 

in its transmission range as a composed sensor. Obviously, a 

cover subset during a larger proportion of collected sensors is 

capable that must assure the collection constraint. The 

percentage 𝜒𝑖  of collected sensors in 𝑆𝑂𝐿𝑖  is capable to be 

measured as the criterion, i.e., 

𝜒𝑖 =
𝐻𝑖

𝑈𝑖

 
(12) 

where 𝐻𝑖  is the total number of collected sensors in 𝑆𝑂𝐿𝑖 .  

Routing Constraint: Let us assume that the Constructed 

Graph(CG) model as Gi  , with Vi  sinks in SOLi .  Includes of 

vertex set and edge set as {(SINj  , SINk  ):   SINj  −  SINk   ≤

 Rt  , SINj  , SINk  ∈  SOLi , j ≠  k}.  The sinks in 𝑆𝑂𝐿𝑖   denotes a 

connected network iff 𝐺𝑖  is a connected graph. From the above 

mentioned graph theory, the connectivity of a graph is 

computed via the relative size 𝜆𝑖  with its largest connected 

subgraph [36]. The routing constraint criterion is calculated as 

follows, 

𝜆𝑖 =
𝐵𝑖

𝑉𝑖

 
(13) 

where 𝐵𝑖 is the number of sinks in  𝐺𝑖 .  After computing four 

criteria‘s then compute the N subsets, the objective value 

𝜙 𝑆𝑂𝐿  must be computed as follows,  

𝜙(𝑆𝑂𝐿) = 𝑤𝑒1  (𝜅𝑖 + 𝜒𝑖 + 𝜆𝑖 +

𝑁

𝑖=1

Pri)/4

+ 𝑤𝑒2𝐶𝑆 

(14) 

where 𝑤𝑒1 , 𝑤𝑒2 > 0   are the weights values which are 

predefined initially, and 𝐶𝑆 is represented as cover set in 𝑆𝑂𝐿. 

The  𝜙 𝑆𝑂𝐿   is calculated from objective function with two 

major parts. The first part represents the constraint violations 

of each one of the subsets. The second part represents the 

objective value for connected covers(𝐶𝑆). The objective of 

TFMGA-MDCCKC is to compute an optimal solution that 

maximizes the number of Disjoint Connected Covers and K 

coverage constraints; the objective value should rise as C 

increases. In this work set 𝑤𝑒1 = 1 and 𝑤𝑒2 ≥ 𝐶𝑆 .  
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𝑤𝑒2

𝑤𝑒1

≥ 𝐶𝑆  
(15) 

Construction Graph(CG) Model: Figure 2 shows the 

realtime example of CG model with five Sensors (SEN) and 

three Sinks(SIN) (|SEN| = 5, |SIN| = 3, , K=4 and 𝑁𝑡   = 5) 

,where 𝑁𝑡  is the number of existing subsets at iteration t. Each 

vertex 𝑣𝑖𝑗  ( 𝑖 =  1, 2. . . . , 𝑁𝑡  𝑗 =  1, 2, . . . ,  𝑆𝐸𝑁 +   𝑆𝐼𝑁 ) in 

the ‗G‘ denotes a device allocation to a subset. If j is smaller 

than  𝑆𝐸𝑁 , 𝑣𝑖𝑗 denotes the assignment of sensor 𝑆𝐸𝑁𝑗  to 𝐿𝑖  . 

Else, 𝑣𝑖𝑗  is allocated to sink 𝑆𝐼𝑁𝑗 −  𝑆𝐸𝑁  to 𝑆𝑂𝐿𝑖   . Every 

pair of vertices 𝑣𝑖𝑗  is associated via undirected arc graph 

model, which represents an optimal route of gene. Genes 

following the arcs during the CG ‗G‘ model selects precisely 

one vertex from each column, ensuing in a solution through Nt 

disjoint subsets. The general path 

( 𝑣11 , 𝑣42 , 𝑣23 , 𝑣34 , 𝑣15 , 𝑣36 , 𝑣27 , 𝑣48 ) differentiate a solution 

𝑆𝑂𝐿 =   𝑆𝑜𝑙1  , 𝑆𝑜𝑙2 , 𝑆𝑜𝑙3 , 𝑆𝑜𝑙4  , 𝑆𝑜𝑙5 , where  𝑠𝑜𝑙1  =
  𝑆𝐸𝑁1  , 𝑆𝐼𝑁5 , 𝑆𝑜𝑙2 =   𝑆𝐸𝑁3 , 𝑆𝐼𝑁2  𝑆𝑜𝑙3  =
 {𝑆𝐸𝑁4, 𝑆𝐼𝑁1}, 𝑆𝑜𝑙4  =  {𝑆𝐸𝑁2  , 𝑆𝐼𝑁3} , and 𝑆𝑜𝑙5 =  ∅  lies 

inside of 𝑁𝑡  .  

 
Figure 2. Example of the construction graph with |SEN| = 

5, |SIN| = 3, K=4  

C. MARKOV CHAIN MONTE CARLO (MCMC) 

ALGORITHM FOR ENERGY CONSUMPTION  

In MCMC algorithm, search begins with the initial residual 

energy values of each SEN and SIN node. Following a 

backbone transition, the condition energy values are calculated 

from individuals of the initial condition of the transition. A 

path finishes when its connected energy level becomes zero. 

For example, if data transmission starts from SIN to SEN 

nodes with the purpose of reaches destination node, followed 

by SIN node becomes dependent on SEN and go towards to 

destination node. The CG model is modeled by a directed edge 

in the G, i.e., SINi  → SENj .  In this work make use of the 

Bayesian network theory to store probabilistic dependencies in 

the CG model, Residual Energy Measurement Table (REMT) 

is generated and associated with each vertex. This REMT 

predetermine how the data transmission flows with vertex 

from its sink nodes of incoming edges to its children nodes. 

For example, if some of the sink nodes vertices of a vertex 

turn into tainted directly, the REMT in the vertex saves the 

probability to the vertex also obtain infected. Bayesian 

examination provides easy step for energy consumption value 

estimation of each SEN nodes in the CG model at the time of 

data transmission. Known set of energy consumption value of 

each SEN nodes are represented as Si, calculate a probability 

distribution p(z). The energy consumption value of each 

sensor node SEN is computed before performing data 

transmission process. Subsequently compute how the observed 

data ‗x‘ relates to z by computing a likelihood function 

p(SEN E SEN  
r   z . Finally, apply Bayes‘ rule 

𝑝 𝑧 𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁 
𝑟 )   =

𝑝 𝑧 𝑝 𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁 
𝑟 ) 𝑧 

 𝑝(𝑧)𝑝(𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁 
𝑟 )|𝑧)𝑑𝑧

 
(16) 

In the previous step, Bayesian likelihood is considered as 

optimization problem by introducing a parameterized posterior 

approximation qθ(z|SEN(E SEN  
r ) )  by choosing parameters 

ℒ toward reduce a lower bound L on the marginal likelihood: 

𝑙𝑜𝑔 𝑝(𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁 
𝑟 ))

≥ 𝑙𝑜𝑔 𝑝 𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁 
𝑟 )  

− 𝐷𝐾𝐿(𝑞𝜃(𝑧|𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁 
𝑟 ) )||𝑝 𝑧 𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁 

𝑟 )  ) 

(17) 

= 𝔼𝑞𝜃 (𝑧|𝑥)[𝑙𝑜𝑔 𝑝 𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁 
𝑟 )  

− 𝑙𝑜𝑔(𝑞𝜃 𝑧 𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁 
𝑟 )  ] 

(18) 

A variational inference, MCMC starts by computing random 

distribution 𝑧0  from initial distribution 

𝑞(𝑧0) 𝑜𝑟 𝑞(𝑧0|𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁 
𝑟 ) ). Before optimizing this random 

distribution function, on the other hand, MCMC consequently 

apply a stochastic transition operator toward the random 

distribution 𝑧0: 

𝑧𝑡~𝑞(𝑧𝑡 |𝑧𝑡−1, 𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁 
𝑟 ) ) (19) 

By thoughtfully selecting the transition operator 

𝑞(𝑧𝑡 |𝑧𝑡−1, 𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁 
𝑟 ) )  and iteratively applying it several 

times, the result of this procedure, 𝑧𝑇  , determination be a 

random variable with the purpose of converges in distribution 

to the accurate posterior 𝑝  𝑧 𝑆𝐸𝑁 𝐸 𝑆𝐸𝑁 
𝑟   .  The major 

advantage of this MCMC is that the sensor nodes it provides  

approximate value from the posterior distribution with 

stochastic Markov chain for energy computation is computed 

as follows, 

𝑞 𝑧| 𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁 
𝑟 )    

=  𝑞  z0|𝑆𝐸𝑁 𝐸 𝑆𝐸𝑁 
𝑟    𝑞

𝑇

𝑡=1

 𝑧𝑡  𝑧𝑡−1 , 𝑆𝐸𝑁 𝐸 𝑆𝐸𝑁 
𝑟    

(20) 

As a variational approximation is extended by considering 

𝑦 =  𝑧0 , 𝑧1, . . . , 𝑧𝑡−1  toward be a set of secondary random 

variables into the variational lower bound (18), is calculated as 

follows,  
ℒ𝑎𝑢𝑥

= 𝔼𝑞(𝑦 ,𝑧𝑇 |,𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁  
𝑟 ) )[𝑙𝑜𝑔 𝑝 , 𝑆𝐸𝑁 𝐸 𝑆𝐸𝑁 

𝑟  , 𝑧𝑇 𝑟(𝑦|, 𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁 
𝑟 ) , 𝑧𝑇)]

− 𝑙𝑜𝑔(𝑞 𝑦, 𝑧𝑇 , 𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁 
𝑟 )  ] 

(21

) 

where 𝑟(𝑦|, 𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁 
𝑟 ) , 𝑧𝑇  )  is an secondary Bayesian 

distribution with marginal posterior approximation designed 

for energy computation between SIN node to SEN node is 

defined as follows, 

q  zT   , 𝑆𝐸𝑁 𝐸 𝑆𝐸𝑁 
𝑟    =   q  y, zT   , 𝑆𝐸𝑁 𝐸 𝑆𝐸𝑁 

𝑟   dy 
(22) 

The marginal approximation q  zT   , 𝑆𝐸𝑁 𝐸 𝑆𝐸𝑁 
𝑟    is currently 

a mixture of distributions of the form q zT   𝑆𝐸𝑁 𝐸 𝑆𝐸𝑁 
𝑟  , y . 

The selection of 

r y , 𝑆𝐸𝑁 𝐸 𝑆𝐸𝑁 
𝑟  , zT  =  q y , 𝑆𝐸𝑁 𝐸 𝑆𝐸𝑁 

𝑟  , zT     should be 

optimal  to a reasonable degree. The particular case of 

auxiliary inference distribution from Markov structure is 

computed by posterior approximation [37]:  

r(z0 , . . . , zt−1|, 𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁 
𝑟 ), zT)  

=  rt

T

t=1

(zt−1|, 𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁 
𝑟 ), zt) 

(23) 

Here the lower bound consumed energy value of each sensor 

nodes have been rewritten as follows 
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log p  𝑆𝐸𝑁 𝐸 𝑆𝐸𝑁 
𝑟   

≥ 𝔼q [log p 𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁 
𝑟 ) , zT  

− log  q  y, zT 𝑆𝐸𝑁 𝐸 𝑆𝐸𝑁 
𝑟     ]

+ log r(z0, . . zt−1|𝑆𝐸𝑁(𝐸 𝑆𝐸𝑁 
𝑟 ) , zT) 

(24) 

Markov Chain Monte Carlo (MCMC) is introduced in this 

work to solve the energy efficiency problem and network 

lifetime maximization in HWSN. 

D. TRAPEZOIDAL FUZZY MEMBERSHIP GENETIC 

ALGORITHM (TFMGA)  

Genetic Algorithms (GA) is a category of evolutionary 

algorithms with the purpose of use evolution as a basis of 

stimulation to discover the solution for several optimization 

problems. The chromosomes are created from Constructed 

Graph (CG) Model and each dimension of these sensor nodes 

is able to be considered to be a gene. Each generation has a 

particular number of chromosomes also named as the 

population.  The most key process of MGA is the use of 

fitness function; here the fitness function is computed based on 

the optimal coverage constraint and energy constraint value 

for chosen sensor nodes. This fitness functions (𝜙(𝑆𝑂𝐿))  of 

each sensor nodes are described in equation (14). The fitness 

value then computes the proximity of the sensor nodes from 

chromosome to the optimal fitness value. The sensor nodes 

from chromosomes with optimal coverage constraint value are 

chosen for reproduction. The form of reproduction are mostly 

relies on crossover and mutation. Crossover is the interchange 

of two sensor nodes between the CG model and mutation is 

the randomly modify in the sensor nodes. Mutation is 

regularly done on weak sensor nodes from CG model; 

therefore that it adds diversity to the sensor nodes (population) 

not including actually impeding the development towards the 

optimal solution. The chromosomes that have reproduced are 

replaced by the new sensor nodes, irrespective of the fitness 

values of the new sensor nodes. This results in the formation 

of the new sensor nodes generation. These sensor nodes 

(chromosomes) are now passed through the fitness function 

again and the strongest sensor nodes are chosen to reproduce 

.This results in a new sensor nodes iteration, with a new set of 

chromosomes and ideally closer to the optimal coverage 

constraint value and energy constraint values. The most 

considerable GA operators are described as follows: 

 Selection operator chooses sensor nodes in the 

population for reproduction. This operator is 

generally stochastic and introduced to choose sensor 

nodes the optimal coverage constraint of the 

chromosomes from the CG model.  

 Crossover operator selects sensor nodes and replaces 

the sensor nodes in the chromosomes before and after 

the sensor nodes to create new sensor nodes 

offspring. 

 Mutation operator randomly flips the sensor nodes 

thus creating a new sensor nodes paths offspring.  

Elitism: At the same time as replacing chromosomes from CG 

Model from iteration N to iteration N+1, sensor nodes with a 

highly good coverage constraint value may be replaced by 

sensor nodes with a poor coverage constraint value. 

Consequently, this might result in the selection of optimal 

coverage constraints value. In elitism, the top sensor nodes of 

every iteration are classified as elite individuals. These sensor 

nodes will participate in the new population generation, 

however will not be changed by any sensor nodes from the 

next iteration. This step is named as Simple Elitism. In Global 

Elitism, each sensor nodes from iteration N+1 can replace its 

parent sensor nodes from iteration N, iff its performance is 

increases. The drawback of this function is that coverage 

constraint value is updated to only present sensor nodes in the 

CG model. To solve this problem dynamic Elitism is used in 

this proposed work.  

Trapezoidal Fuzzy membership function :Then Trapezoidal 

Fuzzy membership function is introduced to automatic 

representation of coverage constraint value into equal ranges 

[0-1]. The trapezoidal curve is a function of a coverage 

constraint value, Y, with four parameters such as a, b, c, and d, 

as represented as follows by equation (25) 

𝑓(𝑦, 𝑎, 𝑏, 𝑐, 𝑑) =  

 
  
 

  
 

0, 𝑧 ≤ 𝑎
𝑧 − 𝑎

𝑏 − 𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

1, 𝑏 ≤ 𝑥 ≤ 𝑐
𝑑 − 𝑥

𝑑 − 𝑐
0, 𝑑 ≤ 𝑧

, 𝑐 ≤ 𝑥 ≤ 𝑑

    

(25) 

Dynamic Population Size: The general issue of conventional 

GA is the fixed representation of population size. Thus 

increases the computational complexity if the number of k 

chromosomes increases.  At the same time GAs prefers a 

reproduction operation, thus increases the time complexity. So 

global elitism operation is introduced to GA thus overcomes 

computational complexity. In the modified GA, a cut-off on 

the coverage constraint and energy constraint has been 

considered as objective function and every sensor nodes with 

the purpose of has a fitness value less than this objective 

function is discarded. If at any point after the cutoff, the 

number of sensor nodes is greater than the original population 

size, the original population size is increased, if less then 

original population size is decreased. Accordingly, in this 

manner the number of sensor nodes on any point will never be 

greater than the size of the original population from graph 

model, thus ensuring computational effectiveness. 

Dynamic Elitism: The global elitism is applied to sensor 

nodes in the direction of sink node basis are considered as elite 

individuals. MGA is being used with the best number of 

sensor nodes is self-motivated, i.e. it is varying from 

generation. The advantage of this TFMGA method is that 

sensor nodes are straightforwardly proportionality with the 

fitness function. 

Aging factor: A new parameter named the age of the sensor 

nodes has been measured and used for simulation. The 

fundamental principle following to the use of this parameter is 

that the sensor nodes which are fit to live on for a several 

number of iterations have previously reproduced in the earlier 

iterations. Consequently, allowing these sensor nodes to 

reproduce again will reduce the diversity of the node 

population to graph model and hence should cause a premature 

convergence. Thus, the fitness values of the sensor nodes with 

the purpose are measured for new population generation are 

not directly proportional to the age of the sensor nodes.  
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IV. SIMULATION RESULTS 

In this section simulation work is experimented and measured 

results between methods are Trapezoidal Fuzzy Membership 

Genetic Algorithm (TFMGA) - Disjoint Connected Covers 

(DCC) and K Coverage (KC) namely (TFMGA-DCCKC), 

BFO-MDCCKC, ACO-MNCC and Energy-efficient 

Distributed Target Coverage (EDTC) algorithm. The 

simulation work is simulated using network OMNET++ 

simulator tool with three different sets of HWSNs 

environment is used with varied scales and redundancy. In Set 

A, WSNs are formed by the use of randomly positioning 

sensors and sinks in a 50 x 50 area. Table 1 describes the 

details of simulation setup parameters for HWSNs which 

consists of scale |SEN|, |SIN|, 𝑟𝑠  , 𝑟𝑡   of sensors, Rt of sinks, 

and the upper bound  𝐶  of the number of connected covers. 

From the simulation results it concludes that TFMGA-

DCCKC, BFO-MDCCKC and ACO-MNCC are able to 

determine a solution via the use of 𝐶  connected covers 

designed for each case. Accordingly, the value of maximum 

number of connected covers is 𝐶   in the Set A. In the 

simulation setup, initially the energy value of sensors nodes is 

predefined to 50 units. The sensing range of each sensor node 

is predefined to 50m. The initial phase ends with 8 seconds, 

and the period of a round is 10 minutes.  

Table 1. Test cases 

No |SEN| |SIN| No |SEN| |SIN| 𝑟𝑠  𝑟𝑡  𝑅𝑡  𝐶  
A1 200 100 B1 179 76 10 18 36 6 

A2 400 100 B2 295 69 10 20 40 8 

A3 400 200 B3 328 154 15 20 40 21 

A4 600 100 B4 444 75 8 20 40 8 

A5 600 200 B5 496 156 11 18 36 19 

A6 800 100 B6 464 60 8 15 30 5 

A7 800 200 B7 586 137 10 18 36 16 

A8 800 400 B8 639 268 12 18 36 29 

A9 1000 100 B9 773 71 5 18 36 6 

A10 1000 200 B10 848 147 6 15 30 11 

A11 1000 400 B11 883 301 9 16 32 25 

To measure the simulation results the following parameters 

has been used in this work for measuring the results of several 

approaches in HWSNs. The parameters description is 

specified as follows: 

I. Average Energy consumption of each and every one node in 

the known area for transmitting a data packet to the 

nearest sink. 

II. Network lifetime of the node is measured as the network 

running out of its energy and how in the direction of 

increasing the lifetime. 

III. Success Ratio is computes the success ratio in the direction 

of sending packets from source to destination node. 

IV. Loss Ratio computes the loss ratio in the direction of 

sending packets from source to destination node. 

 

Figure 3. Network lifetime vs.  No. of sensors 

 

 
 

Figure 4. Network lifetime vs. No. of targets 

 

Figures 3 shows the results of network lifetime are measured 

by varying the number of sensors node between 10 and 100. 

At the same time the number of targets and attributes are 

assumed to 25 and 4 equally. From the simulation results it 

concludes that the proposed TFMGA- DCCKC produces 

maximum network lifetime results of 45 ms for 100 no. of 

nodes which is 4 ms, 7 ms, and 11 ms higher when compared 

to BFO, ACO and EDTC methods respectively. The network 

lifetime is maximized when number of sensors increases since 

more sensors provide additional opportunities in the direction 

of covers the targets (shown in Figure 3).  

Figure 4 shows the performance comparison results of 

network lifetime in terms of number of targets. From the 

results it concludes that the proposed TFMGA-DCCKC 

produces network lifetime results of 39 ms for 100 numbers of 

nodes which is 6ms, 10ms, 13ms higher when compared to 

BFO, ACO and EDTC methods respectively. It concludes that 

the proposed TFMGA-DCCKC work performs better when 

compared to other methods (shown in Figure 4). 
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Figure 5. Success Ratio vs. No. of nodes 

 

 

 
 

Figure 6. Packet Loss Ratio (PLR) vs. No. of 

nodes 

 

As a result, TFMGA-DCCKC is more suitable and gives best 

results in terms of network lifetime and data transmission. 

Figure 5 shows the performance comparison results of success 

ratio in terms of number of nodes. From the results it 

concludes that the proposed TFMGA-DCCKC produces 

higher success ratio results of 90 % for 100 no. of nodes which 

is 7%, 33%, 43% higher when compared to BFO, ACO and 

EDTC methods correspondingly. From the simulation results 

it demonstrated that the proposed TFMGA-DCCKC approach 

produces better results when compared to existing methods. It 

demonstrated that if the number of nodes increases the success 

ratio of the proposed TFMGA-DCCKC system is moreover 

increases (shown in Figure 5).Figure 6 shows the performance 

comparison results of Packet Loss Ratio (PLR) in terms of 

number of nodes. From the results it demonstrated that the 

proposed TFMGA-DCCKC produces lesser PLR results of 90 

% which is 7%, 33%, and 43% lesser when compared to other 

existing BFO, ACO and EDTC methods correspondingly. It 

demonstrated that the proposed TFMGA- DCCKC work better 

when compared to other methods. It demonstrated that if the 

no of nodes increases the PLR results of the proposed 

TFMGA- DCCKC system becomes increases however 

decreases when compared to other existing methods (shown in 

Figure 6). 

 

Figure 7. Energy Consumption vs. No. of nodes 

Figure 7 shows the performance comparison results of energy 

consumption in terms of no of nodes. From the results it 

demonstrated that the proposed TFMGA-DCCKC consumes 

lesser energy results of 792 J which is 64J, 146J, 292J when 

compared to other existing BFO, ACO and EDTC methods 

correspondingly. It demonstrated that the proposed TFMGA- 

DCCKC work better when compared to other methods. It 

demonstrated that if the no of nodes increases the energy 

consumption results of the proposed TFMGA- DCCKC 

system becomes increases, however it decreases when 

compared to other existing methods. Since the proposed work 

energy efficiency is solved by using MCMC (shown in Figure 

7). 

 

V. CONCLUSION AND FUTURE WORK 

In this research paper we focus on resolving target coverage 

problem under MDCCKC in HWSNs with the purpose of 

network lifetime maximization and energy efficiency 

constraints.  This work mainly addresses energy-efficient 

target coverage problem under maximize the number of 

Disjoint Connected Covers (DCC) and K Coverage (KC) 

namely MDCCKC in HWSN. Here Trapezoidal Fuzzy 

Membership Genetic Algorithm (TFMGA) is introduced to 

MDCCKC problem known as TFMGA-MDCCKC for solving 

target coverage problem. A distributed target coverage 

algorithm is presented in this work to HWSN with many 

sensing units which saves energy and extend network lifetime. 

The main principle behind of TFMGA is to introduce the 

concept of sensor priority, which is obtained by integrating 

three parameters together, which are the Coverage, Routing 

constraint, and the remaining energy. The simulation results 

demonstrate that the proposed TFMGA-MDCCKC approach 

performs betters in terms of network lifetime maximization, 

energy efficiency and Packet Delivery Ratio (PDR).  In the 

future work, it is expected with the purpose of the different 

optimization methods are integrated to TFMGA for further 

decreasing the computational time in large-scale HWSNs and 

real time environments.  
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