11,418 research outputs found

    Ten virtues of structured graphs

    Get PDF
    This paper extends the invited talk by the first author about the virtues of structured graphs. The motivation behind the talk and this paper relies on our experience on the development of ADR, a formal approach for the design of styleconformant, reconfigurable software systems. ADR is based on hierarchical graphs with interfaces and it has been conceived in the attempt of reconciling software architectures and process calculi by means of graphical methods. We have tried to write an ADR agnostic paper where we raise some drawbacks of flat, unstructured graphs for the design and analysis of software systems and we argue that hierarchical, structured graphs can alleviate such drawbacks

    Towards Translating Graph Transformation Approaches by Model Transformations

    Get PDF
    Recently, many researchers are working on semantics preserving model transformation. In the field of graph transformation one can think of translating graph grammars written in one approach to a behaviourally equivalent graph grammar in another approach. In this paper we translate graph grammars developed with the GROOVE tool to AGG graph grammars by first investigating the set of core graph transformation concepts supported by both tools. Then, we define what it means for two graph grammars to be behaviourally equivalent, and for the regarded approaches we actually show how to handle different definitions of both - application conditions and graph structures. The translation itself is explained by means of intuitive examples

    Constraint Design Rewriting

    Get PDF
    We propose an algebraic approach to the design and transformation of constraint networks, inspired by Architectural Design Rewriting. The approach can be understood as (i) an extension of ADR with constraints, and (ii) an application of ADR to the design of reconfigurable constraint networks. The main idea is to consider classes of constraint networks as algebras whose operators are used to denote constraint networks with terms. Constraint network transformations such as constraint propagations are specified with rewrite rules exploiting the networkā€™s structure provided by terms

    Graph Transformations and Game Theory: A Generative Mechanism for Network Formation

    Get PDF
    Many systems can be described in terms of networks with characteristic structural properties. To better understand the formation and the dynamics of complex networks one can develop generative models. We propose here a generative model (named dynamic spatial game) that combines graph transformations and game theory. The idea is that a complex network is obtained by a sequence of node-based transformations determined by the interactions of nodes present in the network. We model the node-based transformations by using graph grammars and the interactions between the nodes by using game theory. We illustrate dynamic spatial games on a couple of examples: the role of cooperation in tissue formation and tumor development and the emergence of patterns during the formation of ecological networks

    Parallel Distributed Grammar Engineering for Practical Applications

    Get PDF
    Based on a detailed case study of parallel grammar development distributed across two sites, we review some of the requirements for regression testing in grammar engineering, summarize our approach to systematic competence and performance profiling, and discuss our experience with grammar development for a commercial application. If possible, the workshop presentation will be organized around a software demonstration

    Simulating Multigraph Transformations Using Simple Graphs

    Get PDF
    Application of graph transformations for software verification and model transformation is an emergent field of research. In particular, graph transformation approaches provide a natural way of modelling object oriented systems and semantics of object-oriented languages.\ud \ud There exist a number of tools for graph transformations that are often specialised in a particular kind of graphs and/or graph transformation approaches, depending on the desired application domain. The main drawback of this diversity is the lack of interoperability.\ud \ud In this paper we show how (typed) multigraph production systems can be translated into (typed) simple-graph production systems. The presented construction enables the use of multigraphs with DPO transformation approach in tools that only support simple graphs with SPO transformation approach, e.g. the GROOVE tool

    Efficient Tabular LR Parsing

    Get PDF
    We give a new treatment of tabular LR parsing, which is an alternative to Tomita's generalized LR algorithm. The advantage is twofold. Firstly, our treatment is conceptually more attractive because it uses simpler concepts, such as grammar transformations and standard tabulation techniques also know as chart parsing. Secondly, the static and dynamic complexity of parsing, both in space and time, is significantly reduced.Comment: 8 pages, uses aclap.st

    The Grail theorem prover: Type theory for syntax and semantics

    Full text link
    As the name suggests, type-logical grammars are a grammar formalism based on logic and type theory. From the prespective of grammar design, type-logical grammars develop the syntactic and semantic aspects of linguistic phenomena hand-in-hand, letting the desired semantics of an expression inform the syntactic type and vice versa. Prototypical examples of the successful application of type-logical grammars to the syntax-semantics interface include coordination, quantifier scope and extraction.This chapter describes the Grail theorem prover, a series of tools for designing and testing grammars in various modern type-logical grammars which functions as a tool . All tools described in this chapter are freely available
    • ā€¦
    corecore