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Abstract

Many systems can be described in terms of networks with char-
acteristic structural properties. To better understand the formation
and the dynamics of complex networks one can develop generative
models. We propose here a generative model (named dynamic spa-
tial game) that combines graph transformations and game theory. The
idea is that a complex network is obtained by a sequence of node-based
transformations determined by the interactions of nodes present in the
network. We model the node-based transformations by using graph
grammars and the interactions between the nodes by using game the-
ory. We illustrate dynamic spatial games on a couple of examples: the
role of cooperation in tissue formation and tumor development and the
emergence of patterns during the formation of ecological networks.

1 Introduction

In several contexts, it has been shown that the structure of social, tech-
nological, biological and molecular networks share some non-random sys-
tems features [56], [48], [2]. An important issue is that networks typically
change in time at both local and global level (typically by adaptation and
transformation, respectively). Local changes make the emergence of global
patterns possible, while global topology may constrain local dynamics, [49].
The coupling between local changes and global topologies of the networks
is considered one of most important problem in the area, e.g., [2], [12]. In
this paper we present a generative (rewriting) mechanism for studying the
dynamic of complex networks (graphs), with the idea that networks are
modified by means of node-based transformations that are “internal” to
the networks (i.e., not due, for instance, to external perturbations). The
approach proposed here is similar to what has been done in the area of nat-
ural languages where rewriting mechanisms (formal grammars) have been
proposed to model the generation of complex sentences by the iterative ap-
plications of simple transformations (productions), e.g., [11], [42].

Specifically, in this paper, we propose a generative model based on graph
grammars and game theory. The underlying idea is that complex networks
are obtained by iterative node-based transformations determined by the in-
teractions between the nodes of the networks. The node-based transforma-
tions are modeled by using graph grammars, while the interactions between
the nodes are abstracted by using game theory.

In the proposed model, that we name dynamic spatial game (where ”spa-
tial” may refer to both topographical and topological space), an initial net-
work is iteratively modified in the following manner. Each node in the
network has an associated label (state) that defines its type according to a
specified game (e.g., whether the node is a cooperator node or a defector
node). At each step of the dynamic spatial game, each node obtains a value
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that is calculated by considering the current state of the node and the states
of other nodes in the network (e.g., the adjacent nodes). Then, based on
the obtained value and on an adopted nodal response, each node executes a
certain node-based transformation of the network.

A node-based transformation consists in replacing a node with new nodes
(e.g., split a cooperator node into cooperator node and a defector node; split
into two cooperator nodes; etc..) and embed the new nodes in the rest of
the network in a certain specified manner (e.g., connect random, connect to
everybody in the network, etc..).

The nodal responses and, consequently, the node-based transformations
executed by each single node determine the transformations of the network
and, ultimately, shape the overall structure of the network. Intuitively,
the nodal responses adopted by the nodes can be seen as influenced by
some internal property of the nodes (i.e. network- and context-independent
attributes, like genetics).

The main advantage of the model proposed here is the fact that it is ob-
tained by combining graph grammars and game theory, already well-studied
tools. As we will see, this allows the cross-fertilization of tools and notions
between different areas.

On the other hand, dynamic spatial games group ideas and generalize
notions present in several fields. In fact, the model is essentially based on
graph transformations and graph grammars, [40] where subgraphs can be
replaced, in a recursive manner, by other subgraphs. There are approaches
that explicitly take in account interactions of adjacent nodes (e.g., [57],
[39], [46], [29]), but it is missing a graph grammar formalism where the
interactions between the nodes in the graph are modeled by using game
theory. This idea make our approach closer to the work done in spatial
games, [35], and games on graphs, (e.g., [36], [45], [50]) that consider players
of a game positioned on the nodes of a regular grid or on a graph. In these
works, a game is played on a fixed regular grid or of a fixed graph. In
our case, we have players positioned on the nodes of a network, but the
underlying network is dynamically changed by the actions of the players
(hence ”dynamic spatial game”). In this respect, our work is similar to
network formation, [26], that investigates the importance of networks and
their formation in economic situations. However, in network formation, the
nodes have no “internal” state, while in our case, the nodes have a state
that define their types (e.g., being a cooperator or defector) and the nodes
can switch between different states. Moreover, in network formation the
actions of the nodes is the reinforcing or removal of specific connections
(see, e.g., [49], [44]) while in our case the transformations of the network
are more general, since a node can be replaced by an arbitrary subgraph,
embedded in some specific manner in the global network. This can lead to
increase and decrease of the network size. Also in network formation (as
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used in the economic context) is usually assumed that a connection between
the nodes need the consent (or contribution) of both nodes. In our case
connections are established unilaterally by the nodes. In this respect there
are similarities with the work in [19] but there the networks considered have
a fixed dimension. There are also similarities between our approach and
repeated games in the context of bounded rationality, [43]. In fact, in [43],
a player can decide to switch between several states (e.g., from cooperator
to defector), according to the obtained payoff, and this is modeled by using
finite state automata. We generalize this concept by allowing a node to
switch between several states, according to the obtained value, but also to
be split in several nodes, and, possibly, to be deleted (this can be done, as
in the proposed model, by using a generalization of finite state automata
such as formal grammars, [25]). The relations between the proposed model
and similar paradigms is illustrated in Figure 1.

As we can see from the previous discussions, the model is general and
flexible enough to be applied to several areas and problems. In this paper
we sketch two possible applications: one on tissue formation, studying the
role of cooperation in cancer development, and another one on emerging
patterns in ecological network development.

We first introduce the separate parts of the model: game theory in Sec-
tion 1.1 and graph transformation (graph grammars) in Section 1.2. We then
present the model in Section 2, present the above applications in Sections 3
and conclude in Section 4.

1.1 Game Theory

Game theory describes, in an abstract manner, the interactions between
individuals (players) that use distinct strategies. The reward (payoff) a
player gets depend on the chosen strategy and on the opponent’s strategy.
The strategic form of a game specifies the players of the game, their feasi-
ble actions (strategies) and the payoffs received by them for each possible
combination of actions that could be chosen by the players.

A 2-players game is formally specified, in the standard form, by giving
a a 2× 2 payoff matrix.

Moreover, for simplicity, we only consider symmetric games, [37], that
are games where the identity of the players does not influence the obtained
payoff. We also restrict the situation to 2-players games. In what follows,
2-players symmetric games are simply referred as games. A game G is
composed by a finite set of strategies S and a payoff function E : S×S → R.
Precisely, E(i, j) denotes the payoff obtained by a player adopting strategy
i ∈ S against an opponent player adopting strategy j ∈ S. When it is not
clear from the context, for a game G, S is denoted by SG and E(i, j) is
denoted by EG(i, j).
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Figure 1: The relations between dynamic spatial games and other similar
paradigms.

 game (prisoner’s dilemma)

                           cooperate  (C)       defect (D)

 cooperate (C)           4                        1

 defect        (D)          5                         2

Figure 2: Payoff matrix of the Prisoner’s dilemma. The matrix is read in
the following manner. A player that defect (defector) against a player that
cooperates (cooperator) gets 5 as payoff, E(D,C) = 5, while the cooperator
gets 1, E(C,D) = 1. If both players are defector then both get 2, E(D,D) =
2; if both players are cooperators, then both gets 4, E(C,C) = 4. The set
of strategies of the game is S = {C,D}.

An introduction to game theory can be found in [37]. In Figure 2 is
reported the matrix form of the prisoner’s dilemma game.
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1.2 Graph Transformation

The field of graph transformation consists in the study of the formalisms
that describe the dynamics of graphical structures (graphs, visual sentences,
etc..). It is a very active research area with applications to concurrent sys-
tems, databases, programming languages, and biology (e.g., see the proceed-
ings of the latest international conference on graph transformation [16] and
the webpage [58] for an overview of the current applications in the area).

In this paper the terms “graph” and “network” indicate a finite undi-
rected node labeled graph. A graph is formally given in the form g =
(V,E, Σ, lab) where V is a finite set of nodes, E ⊆ {{x, y} | x, y ∈ V }
is a set of undirected edges, Σ is a (finite nonempty) alphabet of node la-
bels, and lab : V → Σ is a labeling function; for v ∈ V , lab(v) is the label
of node v. All edges in the set {{x, y} ∈ E | x ∈ V } are called adja-
cent to x (these are the edges that have as endpoint node x). All nodes
adj(x) = {y ∈ V | {x, y} ∈ E} are called adjacent nodes to x. When it
is not clear from the context, we denote the components of a graph g by
Vg, Eg,Σg and labg.

For an alphabet Σ, the class of all graphs with the alphabet of node
labels equal Σ and i nodes is denoted by gi,Σ. The class of all graphs with
the alphabet of node labels equal Σ is then denoted by gΣ. Formally, we have
that gΣ = g0,Σ ∪ g1,Σ ∪ · · · ∪ gi,Σ ∪ . . . where g0,Σ is the empty graph, having
no nodes and no edges.

Among the general models of graph transformation, one of the most
studied, with several characterizations is called graph grammar (the reader
can find a complete coverage of the area in the handbook [40]). The basic
idea of graph grammars is to extend to graphs the theory of formal lan-
guages, formal grammars and automata theory, [25], used in the context of
natural languages and theory of computation. Graph grammars were first
introduced in [38] to solve picture processing problems.

The basic unit of a graph grammar is a production.
The role of a production is to replace one subgraph by another. In this

way, a graph g is transformed in a new graph g′. A production is applied by
replacing a subgraph m of g by a graph d that is then embedded into the
remainder of g, i.e., the graph that remains after removing m from g. This
process depends on the specification of the embedding, that is how the graph
d is inserted in the remainder of g. We say that g is the host graph (where
the production is applied), m is the mother graph (the removed graph) and
d is the daughter graph (the inserted graph). The removal of graph m from
g includes the removal of all edges of g that are adjacent to nodes of m. The
embedding function specifies how to embed d into the remainder of g. In this
paper we consider the special case of node-replacement productions, simply
called productions, where the mother graphs consist of one node only.

We give now a more formal definition of the productions (we follow the
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definition and the terminology used in the area, see, e.g., [41]).
Let Σ be a set (alphabet) of node-labels. A production over Σ is a triple

π = (a, β, γ) with a ∈ Σ is a node-label and is called the left-hand side of
π; β is a labeled graph and is called the right-hand side of π (in particular,
β can be the empty graph). Often π is written in the form a → β. The
symbol → is read as “is rewritten as”. The component γ is the embedding
function that specifies the embedding used by the production.

The rewriting (replacement) of a node n with label a (mother node) in a
host graph g by using the production π = (a, β, γ) is done in the following
way.

(1) The node n is removed from g, together with all edges adjacent to
n, leaving the rest graph RG.

(2) A subset EA of nodes of RG is selected based on the function γ.
This subset of nodes is called embedding area.

(3) A graph β isomorphic to the daughter graph β is added to RG (β
replaces node n). 1

(4) Using the embedding function γ the graph β is embedded in RG,
i.e., edges are established between some nodes in β and some nodes of EA.
2

Examples of productions are given in Figure 3. An application of a
production is presented in Figure 4.

Given a set Γ of productions over Σ, we denote by Γa the set of produc-
tions in Γ having as left-hand side the label a. The set of all left-hand sides
of the productions in Γ is denoted by left(Γ).

2 Dynamic Spatial Games

As discussed in the Introduction, we propose a model where individual nodes
“act” based on adopted nodal responses and on their interactions with other
nodes present in the network. An (infinite) iteration of such “actions” is then
referred as dynamic spatial game.

A dynamic spatial game is started from an initial network composed by
1We suppose that nodes in β are disjoint from those in RG.
2The various types of productions differ mainly in the way the embedding function is

defined. The definition of such function is crucial in the description of the productions
and the final theory. There are many types of productions in literature where several
embedding functions have been defined and investigated. For instance, one can say that
the embedding area EA consists only in the nodes that are adjacent to the removed node
and only edges between the nodes in the daughter graph and nodes in EA can be added
(this class of productions is well-studied and is generally referred as context-free, e.g.,
[18]). We do not enter here in details. The reader can find a survey on the classes of
productions and embedding functions in the handbook of graph grammars [40] and in the
survey [7].
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π 2 = (D, β2, γ2)
C

Cβ2

γ2:  EA is the set of all nodes in the RG that are

adjacent to the mother node. Connect each 

node in β2 to each node in the EA. 

π 3 = (C, β3, -)
β3 is the empty graph

π 4 = (D, β4, γ4) C
β4

γ4 : EA is the set of all nodes present 

in the RG. Connect each node in β4 to 

a randomly chosen node in EA

π1 = (C, β1, γ1)

γ1 :  The embedding area (EA) is the set of all 

nodes present in the rest graph (RG). Connect 

each node in β1 to a randomly chosen node in

the EA having degree higher or equal to 2.

D

β6

π6 = (C, β6, γ6)

γ6 : EA is the set of all nodes present in RG.

Keep the same edges of the mother node.

π7 = (C, β7, γ7)

γ7 : EA is the set of all nodes present in RG. 

Connect each node in β7 to a randomly 

chosennode in EA. 

π8 = (C, β8, γ8)

γ8: EA is the set of nodes adjacent to the 

mother node and with degree higher than 3.

Connect each node in β8 to each node in EA.

β7
C

C

D

C

C

β8

β1

C

C

Figure 3: We illustrate some productions over the alphabet {C,D}. Each
production is described by a triple. The first component denotes the label
of the node to replace. The second component denotes the graph that re-
places the node. The third component, given in a narrative way, denotes the
embedding conditions that specify how the inserted graph is inserted in the
network. As one can see, in general, the labels of the nodes in the right side
may be different from the one in the left side. Application of production π1

is described in Figure 4.

an arbitrary number of nodes. Each node has an associated label (state) that
denotes its type (strategy) according to a specified game (e.g., the node is
a cooperator or a defector).

At each step of the dynamic spatial game each node in the network
receives a value that can generally depend on its current state, on the states
of other nodes in the network, and on the network topology. Based on the
obtained values, and on the adopted nodal responses, each node executes
an “action” that consists in: (i) being replaced by zero, one or more new
nodes (e.g., a cooperator is replaced by two defectors); (ii) connect the new
nodes to the rest of the network, in some specified manner (e.g., in a random
manner).

Summarizing, the key aspects of a dynamic spatial game are then the
following ones:
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Figure 4: We show in detail the replacement of a node by using the pro-
duction π1 presented in Figure 3. The node to be replaced is selected and
removed, together with the adjacent edges (steps (a) and (b)). The rest
graph (RG) obtained is shown in (b). At step (c) the embedding area (EA)
is shown, selected as specified in the embedding function γ1. In this case,
EA consists of all nodes present in RG. At step (d) a graph isomorphic to
β1 is added to RG. At step (e) edges between the inserted graph and nodes
of EA are added, as specified in γ1. In this case, the embedding function
γ1 specifies that one edge must be established between each node of the
inserted graph and a randomly chosen node in the EA with degree higher
or equal to 2. In the Figure, node 9 is connected to node 6, while node 10
is connected to node 7. The new graph obtained is (e).

• The dynamic spatial game is executed on a network.

• The nodes in the network have associated a label (state) that denotes
the strategy of a game.

• Each node obtains a value that can depend on its own state, on the
states of other nodes in the network and on the network topology.

• Each node executes an action according to the obtained value and
the adopted nodal response (the nodal response is an algorithm that
specifies an action for each value that the node can get). The action
consists in the replacement of the node by means of an appropriate
production.
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• Nodal responses are passed to successive generations.

Technically, a dynamic spatial game is obtained by composing a set of
productions, a game and a value function.

Formally, a dynamic spatial game (in short, DSG) is the construct B =
(G,F ,R) where:

• G is a 2-player symmetric game with set of strategies S.

• F is a family {fg | g ∈ gS} of value functions with fg : Vg → R. 3

• R a finite set of pairs (Γ, η) with: Γ is a set of productions over S;
η = {ηx

a | a ∈ S, x ∈ R}, where each ηx
a is a probability distribution

function over Γa. 4 Each pair in R is called nodal response.

A DSG starts from an initial network g0 ∈ gS . The mapping µg : Vg →
R, for g ∈ gS , associates to each node of g a nodal response from R (the
mapping µg0 is called initial mapping).

A DSG consists in a sequence of transition steps (simply called steps).
Each step transforms the current network g ∈ gS into a new network g′ ∈ gS .
A step is executed in the following manner. A node n is selected in Vg

(suppose that labg(n) = a and that µg(n) = (Γ, η)). The node n is then
replaced by using the production π ∈ Γa with probability ηx

a(π), where
x = fg(n). After the replacement, the new graph g′ is obtained. The nodes
n1, · · · , nk that have replaced node n are still associated to the strategy
(Γ, η), i.e., µg′(n1) = · · · = µg′(nk) = µg(n) = (Γ, η). 5

An example of a DSG is given in Figure 5. Several steps of the DSG are
described in Figure 6.

3A value function is used to associate a value to each node of a graph taken in gS , i.e.,
the class of graphs with the nodes labeled by the strategies of G. Therefore, fg(n), with
g ∈ gS , is the value associated in the graph g to the node n. One can define arbitrary
value functions depending on the application. In this paper we consider a value function
as used in spatial games [35]: The value of a of node n in a graph g is calculated as the sum
of the payoffs resulting from playing with all adjacent nodes in the graph g. In this case,
for any any g ∈ gS and any n ∈ Vg we have that fg(n) =

∑
j∈adjg(n) EG(labg(n), labg(j)).

Because of its semantics, we call such function node-additive.
4The function ηx

a specifies the probability that a node labeled by a and with value x is
replaced by using a certain production. Specifically ηx

a(π) is the probability of replacing
a node with label a and value x ∈ R by means of the production π ∈ Γa. The definition
is given in a very general way to allow many possible responses (e.g., best-response, [26])
and to include restrictions (e.g., costs).

5We have defined a step of a dynamic spatial game. A sequence of steps constitutes
a dynamic spatial game. In this case one has to specify a way to select the nodes in the
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                             Nodal responses: (Γ1, η1 ) , (Γ2, η2 ) 

Γ1 = {π1, π2, π3}                                      
                                  Game: prisoner’s dilemma
η1:                               Strategies = {C, D}

if x <5
ηx

C (π1) = 0.6
ηx

C (π3) = 0.4

if x≥5
ηx

C (π1) = 0.2
ηx

C (π3) = 0.8

for any x
ηx

D (π2) = 1.0

Γ2 = {π1, π2, π4, π8}

η2:

if x <4
ηx

C(π1) = 0.2
ηx

C (π8) = 0.8

if x ≥ 4
ηx

C (π1) = 0.5
ηx

C (π8) = 0.5

if x < 5
ηx

D (π4) = 0.8
ηx

D (π2) = 0.2

if x ≥  5
ηx

D (π4) = 0.2
ηx

D (π2) = 0.8

Value functions: node-additive

Initial mapping:   1,3,6 → (Γ1, η1 )
                                  4,2 →   (Γ2, η2 )

C

C

D D

C

C

1

3

5

2

6
Initial network
4

Figure 5: We present an example of a dynamic spatial game B. The figure
shows its components. The game G is the prisoners’ dilemma with set of
strategies C,D and payoffs matrix defined as in Figure 2. The value function
is node-additive. There are two nodal responses: the pair (Γ1, η1) and the
pair (Γ2, η2) (the productions in Γ1 and Γ2 are described in Figure 3). The
initial mapping associates to each node of the initial network a certain nodal
response. In this case nodes 1, 3 and 6 use the nodal response (Γ1, η1), while
the rest use (Γ2, η2). Some steps of B are presented in Figure 6.

3 Old and New Questions

DSGs are obtained by combining two well-known areas: graph grammars
and game theory. This has two advantages: it extends the notion of graph
grammars and allows the cross-fertilization of questions and tools between
different areas. Here, we want to briefly discuss some of the possibilities.

A major problem in graph grammars concerns the mathematical charac-
terization of the family of graphs generated by a certain class of grammars
(where generated means obtained by iterations of the productions). Follow-
ing the natural language terminology, these families of graphs are called the

current network, at each step (all, some of them, etc..). For instance, one can consider
sequences of parallel steps where each node in the current network must be considered
before considering the new introduced ones. Other “update dynamics” can be considered
(e.g., as done in cellular automata). We do not enter in details, but, generally, the ways
nodes are considered in the current network can have an important effect on the obtained
networks.
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“languages” generated by the graph grammars. In this respect the literature
is very rich, e.g.,[40]. Many grammars have been investigated and several
mathematical characterizations for the generated languages have been pro-
duced. In several cases one can, for instance, predict if a certain graph can
be generated by a certain graph grammar (see, [7]), even in an efficient man-
ner (see, e.g., [8], [31]). These results could be re-used in DSGs based on
the fact that nodal responses are essentially graph grammars productions.
In this way, one could characterize the networks obtained when all nodes
use the same nodal response. We expect that extending the results ob-
tained for graph grammars, one could predict, for restricted cases, the type
of networks obtained when all nodes use the same response. Most probably,
for this purpose, one has to restrict the core model by considering specific
nodal responses (e.g., productions with particular embedding functions) and
specific value functions. In this respect, there are several interesting candi-
dates such as context-free graph grammars, with well-known mathematical
characterizations (see, e.g., [10], [18]). Also the strong theoretical founda-
tions of graph grammars can have significant advantages in a formal study
of the constructed models. For instance, one can investigate confluence –
the ability to reach, independently of the initial network and of the update
dynamics, a certain specified range of networks. Which are the nodal re-
sponses that, when adopted by all nodes, guarantee confluence? The topic
of confluence has been widely studied in the theory of graph grammars in
several applications, see, e.g., [10], [23]. Another important question con-
cern the robustness of a certain nodal response, that is the ability for a
network to survive to perturbations, that in our case means to add or re-
move nodes using different nodal responses. Again, a similar question has
been approached in the area of graph grammars in a very different context:
the integrity of databases and of software architectures, see, e.g., [15], [33],
[24] and [14].

One of the most important line of research in network formation is to
understand how players can maximize their cost-benefit ratio in building
a network, and at the same time to have a network that satisfies certain
properties (see, e.g., [51]). These types of problems could be investigated in
DSGs in a more general form. In fact, in DSGs, a node can, not only, change
its connectivity, but also splits in several nodes, each of them with its own
internal state. These features would probably require an extensions of the
concepts introduced in the area of network formation, in particular of Nash
equilibrium and of the price of anarchy, that have been defined for networks
with fixed number of nodes (see, e.g, [51]). Moreover, using the proposed
model one can also represent the situations of “global” games, where external
“metaplayers” “own” several nodes in the network. Such metaplayers can
control the splittings of the nodes, their removal, their connectivity and their
internal states with the final goal, as in network formation, to obtain certain
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types of networks at certain costs (that can include the costs of splitting,
changing states, reconnect, the number of owned nodes, etc..). For instance,
in Figure 6, one can imagine two metaplayers, owning the nodes in the
initial network. The first one owns the nodes 1, 3 and 6 and the second one
owns the rest. Each metaplayer “manages” the owned nodes by the assigned
nodal responses.

Notice also that well-known embedding mechanisms (e.g., preferential at-
tachment 6) could be used in nodal responses. A natural question is whether
these nodal responses are actually evolutionary stable strategies, [32], in the
sense that are resistant to small mutant invasion (e.g., nodes using different
nodal responses). This would lead to an evolutionary explanation of why
such nodal responses can actually spread and survive, and, consequently,
why certain types of networks are more frequent than others.

On the other hand, the used notion of production, stresses the fact that
nodal responses are composed by two components that define (i) when to
split a node and/or change its state and (ii) when to change the connec-
tivity of a node. This can pose the following insights: There could exist a
trade-off between these two components. Such trade-off could lead to cases
when, depending on the actual conditions, one of these components domi-
nates. There are examples in nature that seem to support the existence of
such trade-off. For instance, brain neurons dynamically change their inter-
actions (connectivity) but rarely divide [21], or butterfly species seem to be
either sedentary and good competitors or, alternatively, mobile and weak
competitors [54].

Despite its simplicity the presented model is enough flexible to be appli-
cable in several areas. To illustrate this we sketch two possible applications,
concerning tissue formation (cell-to-cell communication) and the develop-
ment of patterns in ecological networks. We avoid a formal definition of
the models, but rather we prefer to stress the intuitive explanation of the
proposed applications.

3.1 Emerging patterns in ecological networks

Ecological systems are composed of several components (e.g., species) and
several types of interspecific interactions among them. These include var-
ious combinations of signed effects between two species that can, e.g., act
“positively” or “negatively” between them. For instance, we can classify the
interactions according to the effects of the involved species: (+/+: mutual-
ism, -/-: competition, +/-: predator-prey or host-parasite interaction, +/0:
facilitation, -/0: amensalism). It is a classical problem in ecology how to

6Preferential attachment, defined in [4], is a generative mechanism that allow the cre-
ation of scale-free networks.
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study simultaneously these multiple interactions (see [55]). For example, it
is not easy to compare the relative effects of a pollinator and an herbivore
on a particular plant species. Thus, it is a great challenge to model signed
ecological networks.

Moreover, the paleontological record suggests some general patterns for
the evolution of ecological interactions, [53]. For example, a high proportion
of mutualistic interactions seem to have evolved from higher-order interac-
tions, or pollination is typically a result of herbivory. Coexisting species
co-evolve in a community context: the transformation (change) of interac-
tions modifies the network and the network constraints local dynamics. An
important question is how local or how global are these kinds of transfor-
mations, [28].

In this section we sketch an example that shows how both aspects –
species interactions and transformations of interactions – could be modelled
using DSGs.

The basic idea is to consider a food-web as a network, with nodes rep-
resenting species and the edges that represent species and interspecific in-
teractions. We associate to each node a label, + or −, that indicates if the
species acts positively or negatively, respectively, on its partners (in short,
a species labelled by + is called positive species, a species labelled by − is
called negative species; this simplification, that is open for further refine-
ment, aims to make a difference between species that tend to be mutualists
and species that tend to be antagonistic partners).

We allow the possibilities of structural changes of the food-web by con-
sidering speciation (creation of a new species), extinction and change of
interactions partners. These structural changes in the food-web can be im-
plemented by opportune productions that determine the local dynamics of
the food-web and that are discussed in Figure 7.

Partially inspired by [54], we suppose that the species are grouped in
two main classes with distinct ways of changing their partners: specialists
and generalists. In a narrative way, one can say that specialists (i) build
only a few links to others, (ii) prefer local partners and (iii) behave in a
conservative way (do not change interactions easily); generalists (i) prefer
to have more connections, (ii) explore a larger area (in our model, mobility
is replaced by topological distance) and (iii) change more easily partners.
We can also assume that there are some genetical tendency of every species
to evolve in a more specialist or more generalist way: in this way specialists
and generalists can be modelled as nodes that use distinct nodal responses,
in an appropriate DSG. A DSG with specialists and generalists is illustrated
in Figure 8.

The appropriate tuning of the payoffs matrix of the nodal responses
in Figure 8 can capture several interesting situations leading to important
questions in ecology. In what follows we shortly enumerate some of them:
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(1) how results depend on the actual values in the payoffs matrix, (2) which
qualitative changes of the payoffs matrix provide confluency, (3) under which
conditions (productions and payoffs) will the ”tendency towards structural
balance” [22] emerge (if any), (4) how does the outcome of the DSG depends
on the initial positions of specialists and generalist nodes, (5) how do the two
subgraphs composed of generalists and specialists change in time, (6) under
which conditions do ”broker” nodes appear in the network (e.g., nodes with
only a few links but very strong indirect neighbourhood), (7) how do the
productions (e.g., embedding functions) affect emerging food web topologies
(e.g., scale-free networks, [2]), (8) which is the relevant size of neighborhoods
responsible for local dynamics (i.e., how “local is the local”), (9) under
which conditions specialists and generalists nodes are more successful (e.g.,
in terms of their ratio within the network), (10) which conditions make it
easier to reach global optima on a rugged landscape (i.e., providing shallow
valleys), and, as a general question, (11) how contingent is global topology
with local mechanistic rules. As a particular question, (12) we are still
interested in the topological position of specialists and generalists nodes in
a ”mature” network: are they aggregated, is any of them more central, and
what kind of subgraphs they form?

Finally, notice that the use of productions allows to consider food-webs
with a dynamically changing number of species and of interactions; this is
rather different from other approaches in the area that have considered the
degree of the nodes as constant, see, e.g. [30].

3.2 Games and Developmental Biology

A living cell can rest in G0 state, proliferate or die, depending on the ex-
ternal and internal signals it receives. Tumor formation is a long process,
where cells collect multiple mutations to get fully independent of the envi-
ronment and proliferate without control [20]. In [3] Axelrod and colleagues
proposed the hypothesis that cells with a few early stage mutations, coop-
erate with each other to help further steps of malignant tumor formation.
Cooperation among partially mutated cells may take the form of by-product
mutualism by sharing resources and growth-factors or anti-apoptotic agents.
The important point of this hypothesis is that at the early steps of tumor
formation individual cells do not need to accumulate all of the mutations to
be independent of external signals. Cells that have accumulated only a few
relevant mutations may cooperate with other partially mutated cells to form
a community of cells that can survive, increasing the chance to get further
mutations and independence from the surrounding tissue.

We show how one can formalize and investigate the hypothesis proposed
in [3] by using an appropriate DSG.

Following the approach proposed in [5] bidimensional cellular tissues
can be modeled by using triangulated graphs. In this case the nodes are
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interpreted as cells. Cell division and cell death can be seen as operations
on triangulated graphs and mutations in the cell line can be also simulated
by the appropriate productions, as illustrated in Figure 9.

We can couple the productions described in Figure 9 with an appropriate
game and consider the labels of the cells (nodes) as strategies of the game.
For instance, the strategies of the game could represent the possible states of
a cell. As a simplification, we only consider that cells can be in normal state,
in a partially mutated state and in an independent mutated state. The game
can be then used to abstract the interactions between these types of cells.
In this way, the cooperation between cells in different states (e.g., partially
mutated cells) can be then tuned in the payoffs matrix of the game. The
corresponding DSG is discussed in Figure 10.

The DSG presented in Figure 10 can be used to formalize more general
questions in developmental biology and tissue formation. In fact, a natu-
ral question concerns the relations between the game and the properties of
the tissue (triangulated graph) obtained. Linking then to morphogenesis is
rather direct as it has been showed the importance of competition between
cells in drosophila wing formation, [47], as well in higher eukaryotes, [1].

4 Conclusions

Although we know more and more about the macroscopic topological proper-
ties of static networks, we need to much better understand network transfor-
mations in terms of simple local dynamics and emergent, global constraints:
This problem is highly relevant in a variety of issues ranging from tumor
formation to food web assembly, as illustrated in Section 3.1 and Section 3.2
and from the origin of social insect colonies [6] to homeland security [27].
The introduced model seems to be a general, theory-based framework for
studying the mechanistic background of local (node-based) network trans-
formations. The combination of graph grammars and game theory is original
and we expect that much theoretical work can be done to import the results
obtained in the area of graph grammars to this new framework. This would
enrich the theory of graph transformations with interesting multidisciplinary
questions and, as discussed in Section 3, would provide efficient computa-
tional tools and algorithms to verify and predict the generation of certain
types of networks, for given classes of DSGs. Moreover, graph grammars can
be efficiently implemented on computers given their “algorithmic/automata-
based” nature (see, e.g., the numerous tools in [58]) and, in this respect, a
software that can run several DSGs is currently in development. On the
other hand, several extensions of the introduced model are possible. One
can apply the same idea and using different kinds of graph grammars, e.g.,
that allow the replacement of entire subgraphs, [40] – this would allow to
model, for instance, fusion of nodes. One could also consider weighted net-
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works (e.g., by adding or removing weights to a particular edge) and use
directed edges by allowing directed interactions (in fact, graph grammars
have also been defined and investigated with directed edges, [40]). One
could also consider particular classes of productions by using embedding
functions that model the ”semi-global” approach proposed by Harary [22],
where graph dynamics is ruled by loop sign, i.e., determined neither locally
nor globally, or to consider endogenous link formation as done in the area
of computational economics, [52].

Acknowledgments The authors would like to thank Ivan Mura and Tar-
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References

[1] J.M. Abrams, M.A. White, Coordination of cell death and the cell cycle:
linking proliferation to death through private and communal couplers,
Current opinion in cell biology, 16, 6, 2004.

[2] R. Albert, A.-L. Barabási, Statistical methods of complex networks,
Rev. Mod. Phys., 74, 2002.

[3] R. Axelrod, D.E. Axelrod, K.J. Pienta, Evolution of cooperation among
tumor cells, PNAS, 103, 36, 2006.

[4] A.-L. Barabási, R. Albert, Emergence of scaling in random networks,
Science, 286, 1999.

[5] S. Bar-Duvdevani, L. Segel, On topological simulations in developmen-
tal biology, Journal of Theoretical Biology, 166, 1, 1994.

[6] A. Bhadra, F. Jordán, A. Sumana, S. Deshpande, R. Gadagkar, A com-
parative social network analysis of wasp colonies and classrooms: link-
ing network structure to functioning, Ecological Complexity, in press.

[7] D. Blostein, H. Fahmy, A. Grbavec, Issues in the practical use of graph
rewriting, Proc. int. workshop on graph grammars and their application
to computer science, LNCS 1073, 1994.

[8] F.J. Brandenburg, On polynomial time graph grammars, STACS 88,
LNCS 294, 1988.

[9] H. Bunke, Programmed graph grammars, Proc. int. workshop on graph-
grammars and their application to computer science and biology, LNCS
73, 1978.

[10] B. Courcelle, An axiomatic definition of context-free rewriting and its
application to NLC graph grammars, STACS, LNCS 294, 1988.

16



[11] N. Chomsky, Aspects of the theory of syntax, Cambridge, MA, MIT
Press, 1965.

[12] S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks - From bio-
logical nets to the internet and WWW, Oxford University Press, 2003.

[13] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg Eds., Handbook of
graph grammars and computing by graph Transformation, Vol.2: Ap-
plications, Languages and Tools, World Scientific, 1999.

[14] H. Ehrig, H.-J. Kreowski, U. Montanari, G. Rozenberg Eds., Handbook
of graph grammars and computing by Graph Transformation, Vol.3:
Concurrency, Parallelism and Distribution, World Scientific, 1999.

[15] H. Ehrig, H. Kreowski, Applications of graph grammars theory to con-
sistency, synchronization and scheduling in database systems, Informa-
tion Systems, 5, 1980.

[16] H. Ehrig, R. Heckel, G. Rozenberg, G. Taentzer Eds., Proc. Graph
transformation, ICGT2008, LNCS 5214, 2008.

[17] H. Ehrig, G. Taentzer, Computing by graph transformation: A survey
and annotated bibliography, Bullettin of the EATCS, 59, 1996.

[18] J. Engelfriet, Context-free graph grammars, in [42].

[19] A. Fabrikant, A. Luthra, E. Maneva, C. Papadimitriou, C. Shenker,
On a network creation game, Proc. ACM Symp. of distributed systems,
2003.

[20] D. Hanahan, R. Weinberg, The hallmarks of cancer, Cell, 100, 1, 2000.

[21] G.I. Hatton, Function-related plasticity in hypothalamus, Annual re-
view of neuroscience, 20, 1997.

[22] F. Harary, A structural analysis of the situation in the Middle East in
1956, The Journal of Conflict Resolution, 5, 1961.
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Figure 6: We present a (parallel) step of the DSG B defined in Figure 5,
starting from the initial network (a). In a parallel step, all the 6 nodes
present in the initial network must act according to the adopted nodal re-
sponses. Nodes are selected in an arbitrary order. A node gets a value
calculated using the value function specified in B. The node is then re-
placed by using the production specified in the adopted nodal response (in
the Figure it is indicate, at each step, the selected node and the applied
production). For instance, the transition from network (a) to network (b)
is obtained in the following way. Node 3 is selected. The value of node 3 is
calculated as EG(C,C)+EG(C,C)+EG(C,D)+EG(C,D) = 10 (i.e., value
function of B is node-additive). Node 3 uses the nodal response (Γ1, η1) as
specified in B. Based on the obtained value 10 and on the adopted response
(Γ1, η1) node 3 is replaced by using production π1 with probability 0.2 (in
fact, see Figure 5, for η1 we have that η10

C (π1) = 0.2). The inserted nodes
7 and 8 use the same nodal response of the replaced mother node 3 (we
suppose that nodal responses are genetically coded and transferred to suc-
cessive generations). We can also look at the transition from network (c) to
(d). In this case node 4 is selected. The value of the node is 1. The node
uses the nodal response (Γ2, η2) as specified in B. Based on the obtained
value and on the adopted response the node is replaced by using production
π2 with probability 0.2. Notice the semantics of such response: a node D
(defector) is replaced by two nodes C (cooperator). The parallel step of B
is completed when all the nodes in the network (a) have been considered.
The new network (g) is then obtained.
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πspe_Y,+ = (Y, β3, γ4)
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Figure 7: A food-web can be represented as a graph, where nodes are species
and edges denote the interactions between (partner) species. Each node is
labelled by + and − that denotes if the species is positive or negative. A
part of a more complex food-web is shown in (a); in particular, there is a
species “labelled” by Y (can be arbitrarily instanced as + or −) interacting
with other two species. We consider four types of dynamics for the food-
web: a species can survive – it simply keeps the same interactions partners;
a species can change some of its partners; a (mother) species can speciate by
creating a (daughter) species; a species can get extinct. These dynamics can
be implemented by opportune productions that are sketched in the figure.
The left side of the productions is constituted by the label Y of the species to
be replaced, that can be either + or −. The right side can consist of a graph
with two species (in case of speciation), with one species (in case of survival
and change of partners), or can be the empty graph (in case of extinction).
The embedding functions for the different productions can be understood
from the Figure. The survival of a species, not shown here, is implemented
by the production πstay Y . In this case the embedding function γ6 must
keep all connections - simply, no change is done. In case of speciation, we
have two possible dynamics: (i) the daughter species interacts with two
species randomly selected, or (ii) the daughter species interacts with all
the species that are partners of the mother. In both cases, the daughter
species is positive. These two types of speciation can be implemented by
productions (i) πr spe Y,+ and (ii) πspe Y,+, respectively. The embedding
functions γ5 and γ4 of these productions can be understood from the Figure:
(a)−(f) represents the application of πr spe Y,+ while (a)−(e) represents the
application of πspe Y,+ (inserted nodes and added connections are in bold).
A species can change its partners according to two possible dynamics: (i) the
species changes one of its partners to one its neighbors, or (ii) the species has
two more partners, searched randomly in the food-web. These two dynamics
can be implemented by productions (i) πls Y and (ii) πgs Y , respectively.
The embedding functions of these productions can be understood from the
Figure: (a)− (c) describes the application of πgs Y , while (a)− (d) describes
the application of πls Y (inserted connections are in bold). A species can
also get extinct: implemented by production πext Y ; the embedding function
of this production can be understood from the figure (a)− (b).
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Figure 8: We sketch some of the components of a DSG that models a food-
web with generalists and specialists positive and negative species. The DSG
is executed starting from an initial network (graph), not shown here, repre-
senting a food-web, with an arbitrary number of species (nodes). At each
step of the DSG the graph obtained represents the current food-web: nodes
correspond to positive and negative species, distinguished by their labels, as
discussed in Figure 7. The entries of the payoffs matrix are used to quantify
the interactions between positive and negative species. Since the payoffs
represents various pairwise relationships, we suppose to use a node-additive
value function: the value obtained by a species depends on the adjacent
species (partners) and on the payoffs matrix. Moreover, some of the nodes
are specialists while the rest are generalists. We assume that specialists are
the nodes that use nodal responses (Γ1, η1) while generalists are the nodes
that use nodal response (Γ2, η2). The productions in Γ1 and Γ2 implement
speciation, extinction, survival and change of partners as described in Figure
7. The functions η1 and η2 specify when and how to apply the productions.
Essentially, η1 and η2 give the differences between specialists and generalists.
For instance, if a specie gets a value x smaller than 0, then the specie gets
extinct, with probability 1, in both cases. If it gets a value x between 0 and
2, a specialist uses, with probability 1, production πls Y , so it re-patterns his
links by doing a local search, while for the same range of values a generalist
uses, with probability 1, the production πgs Y , so it re-patterns his links by
doing a global search.
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Figure 9: A triangulated labeled graph representing a 2D cellular tissue, [5]:
each node corresponds to a cell, cell-to-cell contact corresponds to a con-
necting edge and the dual graph represents the tissue. Cell division and cell
death is presented (the operations are described in details in [5]). Cell mu-
tation means that a daughter cell has a different label than the mother cell.
Cell staying (rest), not shown in the Figure, means that the cell and its con-
nections are kept unchanged and it represents the behavior of resting cells.
Cell division, cell mutations, cell rest and cell death can be implemented by
the sketched productions πdiv, πmut, πstay, πdeath, respectively. The left side
of the productions is constituted by the label Y of the node to be rewritten.
The right side can consist of a graph with two nodes (in case of division),
with one node (in case of rest), or be the empty graph (in case of death).
The embedding functions for the different productions can be understood
from the Figure. In case of cell rest, the embedding function must keep all
connections as the mother node. The function that implements such embed-
ding is referred as γstay. In the case of cell division, (a)−(b), the two created
nodes must be connected in a random manner to the adjacent nodes of the
mother, with the restriction to keep the graph triangulated. The edges that
are added are in bold. The function that implements such embedding is
referred as γdiv (the embedding γmut works in the same manner). Cell death
is presented in (a)− (c). In this case, a node is removed and the connections
between the adjacent nodes of the deleted node must be modified accord-
ingly, to keep the graph triangulated, as shown in (a) − (c) . The function
that implements such embedding is referred as γdeath. Notice that, in this
last case, the embedding function is more complex that the ones presented
in Section 1.2 and must “invoke” the rewriting/replacement of nodes adja-
cent to the mother node. The productions using such type of embedding
have been considered in literature under the name of ordered/programmed
productions. The presentation in details of these types of productions is not
in the the scope of this paper, but the reader can find their descriptions in
[9], in the survey on graph transformation [17] and [13].
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Nodal response: (Γ, η)

Γ = {πdiv_Y, πdeath_Y, πstay_Y   for Y  = N , C1, C2, T}
    ∪{ πmut_Y,Z   for   Y  = N  and  Z =  C1,C2   or

                                             Y = C1,C2   and Z = T}

η : πdeath_Y has an higher probability  when Y = C1, C2
       than when  Y = N, T

         N       C1      C2     T
N      cNN       cN1   cN2     cNT
C1       c1N        c11      c12      c1T
C2       c2N        c21      c22      c2T
T      cTN        cT1     cT2      cTN

Value functions:  node-additive

game
 Initial network

N

Figure 10: We present some of the components of a DSG that can model
cooperation in tumor development. The DSG is only sketched with the main
goal to illustrate the intuitions behind the model. The DSG is executed
starting from an initial network that is composed by a single node. At each
step of the DSG the network obtained represents a tissue: nodes correspond
to cells, as discussed in Figure 9 – we use “cells” instead of “nodes”. Each
cell has a label that corresponds to its state – we use “state” instead of
“label”. We consider four possible states for the cells: N (normal), C1 and
C2 (partially mutated), and T (independent). The strategies of the proposed
game are the possible four states of the cells. The value function used by
the DSG is node-additive (the payoffs abstract quantities of growth factors).
This means that the value of a cell depends on the adjacent cells and on the
payoffs matrix. In this way, the entries c11, c12, c21, c22 of the payoffs matrix
represent the amount of cooperation between partially mutated cells. In
the proposed DSG there is only one nodal response and is the pair (Γ, η)
(hence, all cells divide, mutate, rest and die as determined by such nodal
response). Specifically, Γ is the set of productions that implement cells
division, cell death, cell mutation and cell rest (as described in Figure 9) for
the cells in the four possible states N,C1, C2, T (we suppose that only cells in
state N,C1, C2 can mutate). The function η (very informally sketched here)
should be instanced according to the known division and mutation rates for
living cells. In particular, the function η must be defined in such a way that:
(i) for an arbitrary state Y , a cell with state Y has a probability to rest (i.e.,
be replaced by using πstay Y ) proportional to the obtained value; (ii) cells
in states C1 or C2 should have higher chance to die (i.e., be replaced by
πdeath Y ) than cells in states N or T . In other words, the function η should
model the fact that (i) higher values means for the cells higher probability to
rest (and to not die) and that (ii) partially mutated cells are not independent
and have higher chance to die than normal or independent cells. One can
investigates the hypothesis of cooperation in tumor development, [3], by
tuning the entries of the game and looking to the types of tissues (networks)
produced/generated during the DSG.
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