47,212 research outputs found

    Note on theoretical and practical solvability of a class of discrete equations generalizing the hyperbolic-cotangent class

    Get PDF
    There has been some recent interest in investigating the hyperbolic-cotangent types of difference equations and systems of difference equations. Among other things their solvability has been studied. We show that there is a class of theoretically solvable difference equations generalizing the hyperbolic-cotangent one. Our analysis shows a bit unexpected fact, namely that the solvability of the class is based on some algebraic relations, not closely related to some trigonometric ones, which enable us to solve them in an elegant way. Some examples of the difference equations belonging to the class which are practically solvable are presented, as well as some interesting comments on connections of the equations with some iteration processes

    New class of practically solvable systems of difference equations of hyperbolic-cotangent-type

    Get PDF
    The systems of difference equations xn+1=unvn2+aun+vn2,yn+1=wnsn2+awn+sn2,nN0,x_{n+1}=\frac{u_nv_{n-2}+a}{u_n+v_{n-2}},\quad y_{n+1}=\frac{w_ns_{n-2}+a}{w_n+s_{n-2}},\quad n\in\mathbb{N}_0, where a,u0,w0,vj,sja, u_0, w_0, v_j, s_j j=2,1,0,j=-2,-1,0, are complex numbers, and the sequences unu_n, vn,v_n, wnw_n, sns_n are xnx_n or yny_n, are studied. It is shown that each of these sixteen systems is practically solvable, complementing some recent results on solvability of related systems of difference equations

    Quasi Exactly Solvable Difference Equations

    Full text link
    Several explicit examples of quasi exactly solvable `discrete' quantum mechanical Hamiltonians are derived by deforming the well-known exactly solvable Hamiltonians of one degree of freedom. These are difference analogues of the well-known quasi exactly solvable systems, the harmonic oscillator (with/without the centrifugal potential) deformed by a sextic potential and the 1/sin^2x potential deformed by a cos2x potential. They have a finite number of exactly calculable eigenvalues and eigenfunctions.Comment: LaTeX with amsfonts, no figure, 17 pages, a few typos corrected, a reference renewed, 3/2 pages comments on hermiticity adde

    New Fundamental Symmetries of Integrable Systems and Partial Bethe Ansatz

    Get PDF
    We introduce a new concept of quasi-Yang-Baxter algebras. The quantum quasi-Yang-Baxter algebras being simple but non-trivial deformations of ordinary algebras of monodromy matrices realize a new type of quantum dynamical symmetries and find an unexpected and remarkable applications in quantum inverse scattering method (QISM). We show that applying to quasi-Yang-Baxter algebras the standard procedure of QISM one obtains new wide classes of quantum models which, being integrable (i.e. having enough number of commuting integrals of motion) are only quasi-exactly solvable (i.e. admit an algebraic Bethe ansatz solution for arbitrarily large but limited parts of the spectrum). These quasi-exactly solvable models naturally arise as deformations of known exactly solvable ones. A general theory of such deformations is proposed. The correspondence ``Yangian --- quasi-Yangian'' and ``XXXXXX spin models --- quasi-XXXXXX spin models'' is discussed in detail. We also construct the classical conterparts of quasi-Yang-Baxter algebras and show that they naturally lead to new classes of classical integrable models. We conjecture that these models are quasi-exactly solvable in the sense of classical inverse scattering method, i.e. admit only partial construction of action-angle variables.Comment: 49 pages, LaTe

    Dolan-Grady Relations and Noncommutative Quasi-Exactly Solvable Systems

    Get PDF
    We investigate a U(1) gauge invariant quantum mechanical system on a 2D noncommutative space with coordinates generating a generalized deformed oscillator algebra. The Hamiltonian is taken as a quadratic form in gauge covariant derivatives obeying the nonlinear Dolan-Grady relations. This restricts the structure function of the deformed oscillator algebra to a quadratic polynomial. The cases when the coordinates form the su(2) and sl(2,R) algebras are investigated in detail. Reducing the Hamiltonian to 1D finite-difference quasi-exactly solvable operators, we demonstrate partial algebraization of the spectrum of the corresponding systems on the fuzzy sphere and noncommutative hyperbolic plane. A completely covariant method based on the notion of intrinsic algebra is proposed to deal with the spectral problem of such systems.Comment: 25 pages; ref added; to appear in J. Phys.
    corecore