Several explicit examples of quasi exactly solvable `discrete' quantum
mechanical Hamiltonians are derived by deforming the well-known exactly
solvable Hamiltonians of one degree of freedom. These are difference analogues
of the well-known quasi exactly solvable systems, the harmonic oscillator
(with/without the centrifugal potential) deformed by a sextic potential and the
1/sin^2x potential deformed by a cos2x potential. They have a finite number of
exactly calculable eigenvalues and eigenfunctions.Comment: LaTeX with amsfonts, no figure, 17 pages, a few typos corrected, a
reference renewed, 3/2 pages comments on hermiticity adde