237 research outputs found

    Proofs of two conjectures on ternary weakly regular bent functions

    Full text link
    We study ternary monomial functions of the form f(x)=\Tr_n(ax^d), where x\in \Ff_{3^n} and \Tr_n: \Ff_{3^n}\to \Ff_3 is the absolute trace function. Using a lemma of Hou \cite{hou}, Stickelberger's theorem on Gauss sums, and certain ternary weight inequalities, we show that certain ternary monomial functions arising from \cite{hk1} are weakly regular bent, settling a conjecture of Helleseth and Kholosha \cite{hk1}. We also prove that the Coulter-Matthews bent functions are weakly regular.Comment: 20 page

    Group Divisible Codes and Their Application in the Construction of Optimal Constant-Composition Codes of Weight Three

    Full text link
    The concept of group divisible codes, a generalization of group divisible designs with constant block size, is introduced in this paper. This new class of codes is shown to be useful in recursive constructions for constant-weight and constant-composition codes. Large classes of group divisible codes are constructed which enabled the determination of the sizes of optimal constant-composition codes of weight three (and specified distance), leaving only four cases undetermined. Previously, the sizes of constant-composition codes of weight three were known only for those of sufficiently large length.Comment: 13 pages, 1 figure, 4 table

    Codes and Pseudo-Geometric Designs from the Ternary mm-Sequences with Welch-type decimation d=2⋅3(n−1)/2+1d=2\cdot 3^{(n-1)/2}+1

    Full text link
    Pseudo-geometric designs are combinatorial designs which share the same parameters as a finite geometry design, but which are not isomorphic to that design. As far as we know, many pseudo-geometric designs have been constructed by the methods of finite geometries and combinatorics. However, none of pseudo-geometric designs with the parameters S(2,q+1,(qn−1)/(q−1))S\left (2, q+1,(q^n-1)/(q-1)\right ) is constructed by the approach of coding theory. In this paper, we use cyclic codes to construct pseudo-geometric designs. We firstly present a family of ternary cyclic codes from the mm-sequences with Welch-type decimation d=2⋅3(n−1)/2+1d=2\cdot 3^{(n-1)/2}+1, and obtain some infinite family of 2-designs and a family of Steiner systems S(2,4,(3n−1)/2)S\left (2, 4, (3^n-1)/2\right ) using these cyclic codes and their duals. Moreover, the parameters of these cyclic codes and their shortened codes are also determined. Some of those ternary codes are optimal or almost optimal. Finally, we show that one of these obtained Steiner systems is inequivalent to the point-line design of the projective space PG(n−1,3)\mathrm{PG}(n-1,3) and thus is a pseudo-geometric design.Comment: 15 pages. arXiv admin note: text overlap with arXiv:2206.15153, arXiv:2110.0388

    Further results on several classes of optimal ternary cyclic codes with minimum distance four

    Get PDF
    Cyclic codes are a subclass of linear codes and have applications in consumer electronics, data storage systems, and communication systems as they have efficient encoding and decoding algorithms. In this paper, by analyzing the solutions of certain equations over F3m\mathbb{F}_{3^m} and using the multivariate method, we present three classes of optimal ternary cyclic codes in the case of mm is odd and five classes of optimal ternary cyclic codes with explicit values ee, respectively. In addition, two classes of optimal ternary cyclic codes C(u,v)C_{(u, v)} are given

    A Novel Application of Boolean Functions with High Algebraic Immunity in Minimal Codes

    Full text link
    Boolean functions with high algebraic immunity are important cryptographic primitives in some stream ciphers. In this paper, two methodologies for constructing binary minimal codes from sets, Boolean functions and vectorial Boolean functions with high algebraic immunity are proposed. More precisely, a general construction of new minimal codes using minimal codes contained in Reed-Muller codes and sets without nonzero low degree annihilators is presented. The other construction allows us to yield minimal codes from certain subcodes of Reed-Muller codes and vectorial Boolean functions with high algebraic immunity. Via these general constructions, infinite families of minimal binary linear codes of dimension mm and length less than or equal to m(m+1)/2m(m+1)/2 are obtained. In addition, a lower bound on the minimum distance of the proposed minimal linear codes is established. Conjectures and open problems are also presented. The results of this paper show that Boolean functions with high algebraic immunity have nice applications in several fields such as symmetric cryptography, coding theory and secret sharing schemes

    Mod-2 dihedral Galois representations of prime conductor

    Get PDF
    For all odd primes N up to 500000, we compute the action of the Hecke operator T_2 on the space S_2(Gamma_0(N), Q) and determine whether or not the reduction mod 2 (with respect to a suitable basis) has 0 and/or 1 as eigenvalues. We then partially explain the results in terms of class field theory and modular mod-2 Galois representations. As a byproduct, we obtain some nonexistence results on elliptic curves and modular forms with certain mod-2 reductions, extending prior results of Setzer, Hadano, and Kida

    Covering Radius 1985-1994

    Get PDF
    We survey important developments in the theory of covering radius during the period 1985-1994. We present lower bounds, constructions and upper bounds, the linear and nonlinear cases, density and asymptotic results, normality, specific classes of codes, covering radius and dual distance, tables, and open problems
    • …
    corecore