149,741 research outputs found

    The basics of gravitational wave theory

    Full text link
    Einstein's special theory of relativity revolutionized physics by teaching us that space and time are not separate entities, but join as ``spacetime''. His general theory of relativity further taught us that spacetime is not just a stage on which dynamics takes place, but is a participant: The field equation of general relativity connects matter dynamics to the curvature of spacetime. Curvature is responsible for gravity, carrying us beyond the Newtonian conception of gravity that had been in place for the previous two and a half centuries. Much research in gravitation since then has explored and clarified the consequences of this revolution; the notion of dynamical spacetime is now firmly established in the toolkit of modern physics. Indeed, this notion is so well established that we may now contemplate using spacetime as a tool for other science. One aspect of dynamical spacetime -- its radiative character, ``gravitational radiation'' -- will inaugurate entirely new techniques for observing violent astrophysical processes. Over the next one hundred years, much of this subject's excitement will come from learning how to exploit spacetime as a tool for astronomy. This article is intended as a tutorial in the basics of gravitational radiation physics.Comment: 49 pages, 3 figures. For special issue of New Journal of Physics, "Spacetime 100 Years Later", edited by Richard Price and Jorge Pullin. This version corrects an important error in Eq. (4.23); an erratum is in pres

    Basics of Quantum Mechanics, Geometrization and some Applications to Quantum Information

    Full text link
    In this paper we present a survey of the use of differential geometric formalisms to describe Quantum Mechanics. We analyze Schr\"odinger framework from this perspective and provide a description of the Weyl-Wigner construction. Finally, after reviewing the basics of the geometric formulation of quantum mechanics, we apply the methods presented to the most interesting cases of finite dimensional Hilbert spaces: those of two, three and four level systems (one qubit, one qutrit and two qubit systems). As a more practical application, we discuss the advantages that the geometric formulation of quantum mechanics can provide us with in the study of situations as the functional independence of entanglement witnesses.Comment: AmsLaTeX, 37 pages, 8 figures. This paper is an expanded version of some lectures delivered by one of us (G. M.) at the ``Advanced Winter School on the Mathematical Foundation of Quantum Control and Quantum Information'' which took place at Castro Urdiales (Spain), February 11-15, 200

    The Fundamentals of Radar with Applications to Autonomous Vehicles

    Get PDF
    Radar systems can be extremely useful for applications in autonomous vehicles. This paper seeks to show how radar systems function and how they can apply to improve autonomous vehicles. First, the basics of radar systems are presented to introduce the basic terminology involved with radar. Then, the topic of phased arrays is presented because of their application to autonomous vehicles. The topic of digital signal processing is also discussed because of its importance for all modern radar systems. Finally, examples of radar systems based on the presented knowledge are discussed to illustrate the effectiveness of radar systems in autonomous vehicles
    • …
    corecore