

SISCO LS - II Facoltà Ingegneria - Cesena

Verification of Concurrent Programs - Basics 1

FORMAL METHODS

- Errors in concurrent programming and concurrent systems cannot be discovered by debugging and corrections cannot be checked by testing
 - > need of formal methods to specify and the verify rigorously the concurrent programs (systems)
- Two principal (class of) formal techniques:
 - model checking
 - where verification is done by generating one by one all the states of the systems and by checking the properties state by state
 - can be automated by model checkers tools
 - inductive proofs of invariants
 - invariant properties are proved by induction over the states of the system
 - can be automated by tools called deductive systems
- Both techniques rely on some kind of *formal language / calculus to specify correctness properties*

CORRECTNESS PROPERTIES IN PROPOSITION CALCULUS

- With propositional calculus, correctness properties are expressed as *logic formulae* that must be true in order to verify the property in some state of the system
 - formulae are assertions obtained by composing propositions through logic connectors
 - and, or, not, implications, equivalence
- In our case propositions are about *the values of the variables* and *of the control pointers* during an execution of a concurrent programming
 - e.g. given the boolean variable wantp, an atomic proposition (assertion) wantp is true in a certain state if and only if the value of the variable wantp is true in that state
- Each label of a statement of a process will be used as an atomic proposition whose interpretation is "the control pointer of that process is currently at that label"
 - e.g. p1 proposition asserts that the control pointer of the process p is at the label p1.

AN EXAMPLE: MUTUAL EXCLUSION

Third attempt		
boolean wantp ← false boolean wantq ← false		
p	q	
loop forever p1: <i>non-critical section</i> p2: wantp ← true p3: await !wantq p4: <i>critical section</i> p5: wantp ← false	loop forever q1: <i>non-critical section</i> q2: wantq ← true q3: await !wantp q4: <i>critical section</i> q5: wantq ← false	

- Formula $p_4 \wedge q_4$
 - is true if both control pointers of the processes are in the critical section
- if it exists some state in which this formula is true, then it means that the mutual exclusion property is **not** satisfied
- > dually, a program satisfies the mutual exclusion property if the formula $\neg(p_4 \land q_4)$ is true for every possible state of every scenario

TEMPORAL LOGIC

- Processes and systems change their state over the time, and then also the interpretation of formulae about their state can change over the time.
 - > we need a formal language/calculus that would take this aspect into the account
 - > *temporal logic* is one of the most basic and popular one
- The **temporal logic** is a formal logic obtained by adding temporal operators to propositional or predicate logic
 - Linear Temporal Logic (LTL)
 - to express properties that must be true (at a state) for every possible scenario
 - linear / discrete model of time
 - Branching temporal logics
 - to express properties that must be true in some or all scenarios starting from a state
 - an example: CTL (computational tree logic)

LTL: TEMPORAL OPERATORS

- LTL is based on two basic temporal operators: *always* and *eventually*
 - box or always temporal operator: □A
 - the formula $\Box A$ is true in a state s_i of a computation if and only if the formula A is true in *all* states s_j with $j \ge i$
 - synonim: \Box p = G p (Globally p)
 - the always operator can be used then to specify *safety properties*, because it specifies what must be always be true

diamond or eventually temporal operator: A

- the formula $\Diamond A$ is true in a state s_i of a computation if and only if the formula A is true in *some* states s_j with $j \ge i$
 - synonim: $\Diamond p = F p$ (Finally p)
- the eventually operator is used to specify *liveness properties*, because it specifies something that eventually be true

BASIC PROPERTIES

• Reflexivity:
$$\Box A \rightarrow A$$

 $A \rightarrow \Diamond A$

• Duality:
$$\neg \Box A = \Diamond \neg A$$

 $\neg \Diamond A = \Box \neg A$

• Sequences of operators: $\Diamond \Box A$

 $\Box \Diamond A$

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics 7

DEDUCTION WITH TEMPORAL LOGICS

- Temporal logic is a formal system of deductive logic with its own axioms and rules of inference
 - it can be used to formalize the semantics of concurrent programs and used to rigorously prove correctness properties of programs
- An example of a theorems in TL:

 $(\Diamond \Box A1 \land \Diamond \Box A2) \rightarrow \Diamond \Box (A1 \land A2)$ is true.

 $(\Box \Diamond A1 \land \Box \Diamond A2) \rightarrow \Box \Diamond (A1 \land A2)$ is false

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics 8

SPECIFYING SAFETY PROPERTIES

- Box operator can be used to specify safety properties
 - as properties that must be always true
- $\Box P$, where $P = \neg Q$ and Q is the description of a bad state
 - an example: mutual exclusion in CS problem

First attempt Integer turn ← 1		
p	q	
loop forever p1: <i>non-critical section</i> p2: await turn = 1 p3: <i>critical section</i> p4: turn ← 2	loop forever q1: <i>non-critical section</i> q2: await turn = 2 q3: <i>critical section</i> q4: turn ← 1	

– mutal exclusion property: $\Box \neg (p_3 \land q_3)$

SPECIFYING LIVENESS PROPERTIES

- Diamond operator can be used to specify liveness properties
 - as conditions that eventually will be true
- $\Diamond P$, where P is the description of a good case
 - an example: progress property (no starvation) in CS problem

First attempt				
Integer turn ← 1				
р	q			
loop forever p1: <i>non-critical section</i> p2: await turn = 1 p3: <i>critical section</i> p4: turn < 2	loop forever q1: <i>non-critical section</i> q2: await turn = 2 q3: <i>critical section</i> q4: turn ← 1			

- progress property *for one shot* (no loops): $p_2 \rightarrow \Diamond p_3$
- progress property with loops: $\Box(p_2 \rightarrow \Diamond p_3)$

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics 10

BINARY OPERATORS

- Always and eventually are unary operators. An example of useful and frequently used binary operator is until
 - Until operator: A U B
 - A U B is true in a state Si if and only if B is true in some state Sj, j>=i and A is true in all state Sk, i<=k<j.
 - That is: eventually B becomes true and that A is true until that happens
 - Weak-Until operator: A W B
 - like Until operator, but formula B is not required to become true eventually. If it does not, A must remain true indefinitely
 - A W B = as long as A is false, B must be true

OVERTAKING

• Consider the following scenario in the CS problem

```
try-p,try-q,CSq,try-q,CSq,...,CSq,CSp
```

1000 times

- It's not an example of starvation...
 - − it is true that ◇CSp
 - > but it's evident too that freedom from starvation can be a very weak property!
- in some cases we want to ensure that a process would enter its critical section within a reasonable amount of time

K-BOUND OVERTAKING PROPERTY

• *k*-bounded-overtaking property

- from the time a process p attempts to enter its critical section, another process can enter at most k times before p does
- Example: 3-overtaking

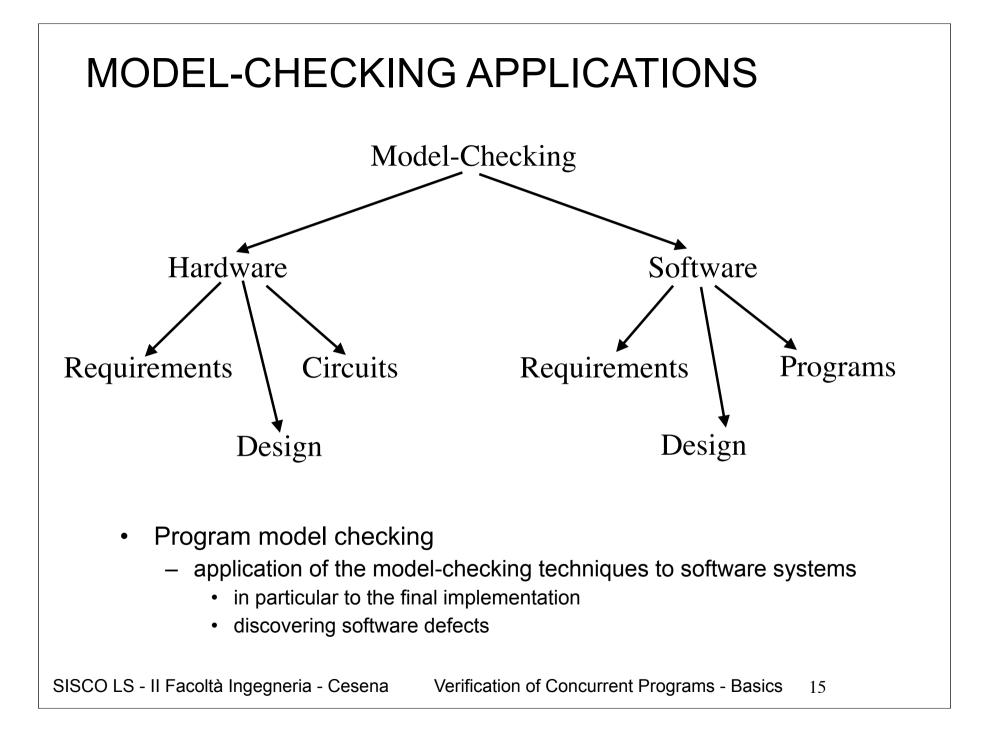
- try-p,try-q,CSq,try-q,CSq,try-q,CSq,CSp

- The property can be expressed by the weak until operator W
 - example with 1-bounded-overtaking:

 $try_p \to \neg cs_q \ \mathsf{W} \ cs_q \ \mathsf{W} \ \neg cs_q \ \mathsf{W} \ cs_p$

VERIFICATION TECHNIQUES (1/2): MODEL-CHECKING

- Model checking is the most important and used technique for automatically checking correctness properties of concurrent systems
 - invaluable conceptual and practical tool for software engineers
- Strategy based on exhaustively searching the entire state space of a system and verify if certain properties are satisfied
 - properties as predicates on a system state or states, expressed as a logical specification such as propositional temporal logic formula
 - if the system satisfies the property, the model checker generates a confirmation response
 - otherwise, it produces a *trace* (counterexample) => useful also to identify bugs, not only to prove correctness
- SW vs. HW model checking
 - can be applied also to hardware
 - e.g. Intel adopting Model-Checking after the Pentium Bug in 1994
 - used in mission critical software systems
 - e.g. NASA after Mars Polar Lander incident in 1999



DEALING WITH THE STATE-SPACE EXPLOSITION PROBLEM

- The big problem of model-checking technique is the size of the state space
 - how to manage graph of millions of states? Is it feasible ?
- State-of-the art techniques
 - applying rules to reduce the number of states
 - using variables that can be modeled by a limited number of values
 - incremental construction of the whole graph
 - exploring only reachable state of an execution.
 - checking the truth of a correctness specification as the incremental diagram is constructed, stopping the construction is a falsifying state is found
 - symbolic model checking
 - working with set of states

SPIN AND PROMELA

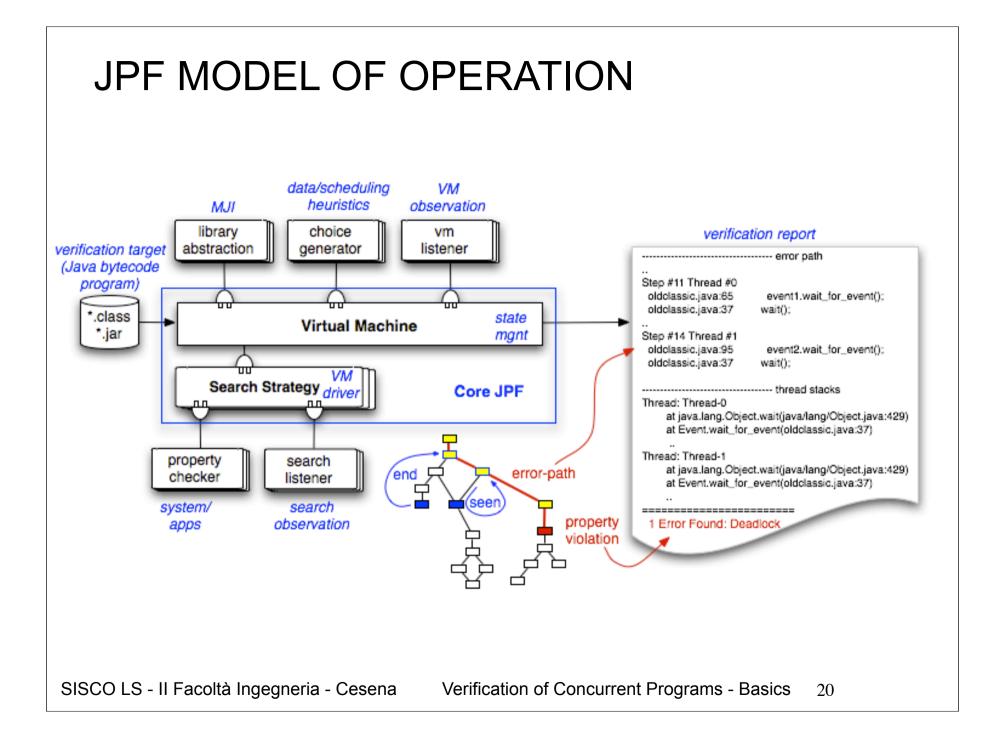
- **SPIN** is a widely used model-checker used in both academic research and industrial software development
 - extremely efficien
 - used in modeling and designing concurrent and distributed systems in general
- **PROMELA** is the language that is used in Spin to write concurrent programs modeling language
 - limited number of constructs intended to be used to build models of concurrent systems

AN EXAMPLE: DEKKER IN PROMELA

```
bool
        wantp = false, wantq = false;
byte
        turn = 1;
proctype p() {
    do ::
        wantp = true;
        do :: !wantq -> break;
           :: else ->
            if :: (turn == 1)
               :: (turn == 2) ->
                   wantp = false;
                   (turn == 1);
                   wantp = true
            fi
        od;
        printf("LOG: p in CS\n");
        turn = 2;
        wantp = false
    od
proctype q() { /* similar */}
init {
  atomic {
   run p
   run q
  }
}
```

JAVA PATH FINDER (JPF)

- JPF is a recent model-checker specialized for the verification of programs written in Java
 - developed by NASA, used for critical software
 - open-source project
 - http://javapathfinder.sourceforge.net/
- JPF is a special JVM executing programs theoretically along all possible scenarios (execution paths), checking for property violations
 - deadlocks, uncaught exceptions, etc
 - If it finds an error, JPF reports the whole execution that leads to it



VERIFICATION TECHNIQUES (2/2): INDUCTIVE PROOF OF INVARIANTS

- invariant
 - a formula that must be invariably true at any point of any computation
 - e.g. $\neg(p_4 \land q_4)$
- Invariants can be proved using **induction** over the states of all the computations:
 - to prove that A is an invariant:
 - prove that A is true in the initial state (the base case)
 - assume that A is true in a generic state S *(inductive hypothesis)* and prove that A is true in all the possible state next to S *(inductive step)*
- Deductive systems
 - software systems for automated theorem proving

NOTE ABOUT SAFETY AND LIVENESS PROPERTY VERIFICATION

- safety property are easier to verify
 - a safety property must be true at all states
 - it is sufficient to find a state not veryfing the property to complete the verification
 - a liveness property claims that a state satisfying a property will inevitably occur
 - it is not sufficient to check states one by one, it is necessary to check all possible scenarios
 - > it requires more complex theory and software techniques