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FORMAL METHODS
• Errors in concurrent programming  and concurrent systems cannot 

be discovered by debugging and corrections cannot be checked by 
testing
> need of formal methods to specify and the verify rigorously the 

concurrent programs (systems)
• Two principal (class of) formal  techniques: 

– model checking
• where verification is done by  generating one by one all the states of the 

systems and by checking the properties state by  state 
• can be automated by model checkers tools

– inductive proofs of invariants
• invariant properties are proved by induction over the states of the system 
• can be automated by tools called deductive systems 

• Both techniques rely on some kind of formal language / calculus to 
specify correctness properties 
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CORRECTNESS PROPERTIES IN 
PROPOSITION CALCULUS
• With propositional  calculus,  correctness properties are expressed 

as logic formulae that must be true in order to verify the property in 
some state of the system 
– formulae are  assertions obtained by composing propositions through 

logic connectors 
• and, or, not, implications, equivalence

• In our case propositions are about the values of the variables and of 
the control pointers during an execution of a concurrent programming
– e.g. given the boolean variable wantp, an atomic proposition (assertion) 

wantp is true in a certain state if and only if the value of the variable 
wantp is true in that state

• Each label of a statement of a process will be used as an atomic 
proposition whose interpretation is "the control pointer of that 
process is currently at that label"
– e.g. p1 proposition asserts that the control pointer of the process p is at 

the label p1.
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AN EXAMPLE: MUTUAL EXCLUSION

• Formula 
– is true if both control pointers of the processes are in the critical section

• if it exists some state in which this formula is true, then it means that 
the mutual exclusion property is not satisfied 

> dually, a program satisfies the mutual exclusion property if the 
formula                  is true for every possible state of every scenario
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TEMPORAL LOGIC
• Processes and systems change their state over the time, and then 

also the interpretation of formulae about their state can change over 
the time.
> we need a formal language/calculus that would take this aspect into the 

account
> temporal logic is one of the most basic and popular one

• The temporal logic is a formal logic obtained by adding temporal 
operators to propositional or predicate logic
– Linear Temporal Logic (LTL)

• to express properties that must be true (at a state) for every possible scenario
• linear / discrete model of time 

– Branching temporal logics
• to express properties that must be true in some or all scenarios starting from 

a state
• an example: CTL (computational tree logic)
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LTL: TEMPORAL OPERATORS
• LTL is based on two basic temporal operators: always and eventually

– box or always temporal operator:     A
• ss

– synonim:      p = G p (Globally p)
• the always operator can be used then to specify safety properties, because it 

specifies what must be always be true

– diamond or eventually temporal operator:     A
• ss

– synonim:     p = F p (Finally p )
• the eventually operator is used to specify liveness properties, because it 

specifies something that eventually be true
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BASIC PROPERTIES
• Reflexivity:

• Duality:

• Sequences of operators:
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DEDUCTION WITH TEMPORAL LOGICS
• Temporal logic is a formal system of deductive logic with its own 

axioms and rules of inference
– it can be used to formalize the semantics of concurrent programs and 

used to rigorously prove correctness properties of programs
• An example of a theorems in TL:
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SPECIFYING SAFETY PROPERTIES
• Box operator can be used to specify safety properties

– as properties that must be always true
•   xx 

– an example: mutual exclusion in CS problem

– mutal exclusion property:      
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SPECIFYING LIVENESS PROPERTIES
• Diamond operator can be used to specify liveness properties

– as conditions that eventually will be true
• xx

– an example: progress property (no starvation) in CS problem

– progress property for one shot (no loops): 

– progress property with loops:   
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BINARY OPERATORS
• Always and eventually are unary operators. An example of useful 

and frequently used binary operator is until
– Until operator:  A U B

• A U B is true in a state Si if and only if B is true in some state Sj, j>=i and A is 
true in all state Sk, i<=k<j. 

• That is: eventually B becomes true and that A is true until that happens
– Weak-Until operator:  A W B

• like Until operator, but formula B is not required to become true eventually. If 
it does not, A must remain true indefinitely

• A W B = as long as A is false, B must be true
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OVERTAKING
• Consider the following scenario in the CS problem

• It’s not an example of starvation...
– it is true that     CSp 
> but it’s evident too that freedom from starvation can be a very weak 

property!
• in some cases we want to ensure that a process would enter its 

critical section within a reasonable amount of time
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try-p,try-q,CSq,try-q,CSq,...,CSq,CSp
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K-BOUND OVERTAKING PROPERTY
• k-bounded-overtaking property

– from the time a process p attempts to enter its critical section, another 
process can enter at most k times before p does

– Example: 3-overtaking
– try-p,try-q,CSq,try-q,CSq,try-q,CSq,CSp

• The property can be expressed by the weak until operator W
– example with 1-bounded-overtaking:
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VERIFICATION TECHNIQUES (1/2): 
MODEL-CHECKING
• Model checking is the most important and used technique for 

automatically checking correctness properties of concurrent systems
– invaluable conceptual and practical tool for software engineers

• Strategy based on exhaustively searching the entire state space of a 
system and verify if certain properties are satisfied
– properties as predicates on a system state or states, expressed as a 

logical specification such as propositional temporal logic formula
– if the system satisfies the property, the model checker generates a 

confirmation response
• otherwise, it produces a trace (counterexample) => useful also to identify 

bugs, not only to prove correctness

• SW vs. HW model checking
– can be applied also to hardware 
– e.g. Intel adopting Model-Checking after the Pentium Bug in 1994 
– used in mission critical software systems

• e.g. NASA after Mars Polar Lander incident in 1999
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MODEL-CHECKING APPLICATIONS

• Program model checking
– application of the model-checking techniques to software systems

• in particular to the final implementation
• discovering software defects 
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DEALING WITH THE STATE-SPACE 
EXPLOSITION PROBLEM
• The big problem of model-checking technique is the size of the state 

space
– how to manage graph of millions of states? Is it feasible ?

• State-of-the art techniques
– applying rules to reduce the number of states 

• using variables that can be modeled by a limited number of values
– incremental construction of the whole graph

• exploring only reachable state of an execution.
• checking the truth of a correctness specification as the incremental diagram 

is constructed, stopping the construction is a falsifying state is found
– symbolic model checking

• working with set of states
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SPIN AND PROMELA
• SPIN is a widely used model-checker used in both academic 

research and industrial software development
– extremely efficien
– used in modeling and designing concurrent and distributed systems in 

general
• PROMELA is the language that is used in Spin to write concurrent 

programs modeling language
– limited number of constructs intended to be used to build models of 

concurrent systems
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AN EXAMPLE: DEKKER IN PROMELA
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JAVA PATH FINDER (JPF)

• JPF is a recent model-checker specialized for the verification of 
programs written in Java
– developed by NASA, used for critical software
– open-source project

• http://javapathfinder.sourceforge.net/

• JPF is a special JVM executing programs theoretically along all 
possible scenarios (execution paths), checking for property violations 
– deadlocks, uncaught exceptions, etc
– If it finds an error, JPF reports the whole execution that leads to it
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JPF MODEL OF OPERATION
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VERIFICATION TECHNIQUES (2/2): 
INDUCTIVE PROOF OF INVARIANTS
• invariant

– a formula that must be invariably true at any point of any computation
• e.g. 

• Invariants can be proved using induction over the states of all the 
computations:
– to prove that A is an invariant:

• prove that A is true in the initial state (the base case)
• assume that A is true in a generic state S (inductive hypothesis) and prove 

that A is true in all the possible state next to S (inductive step)

• Deductive systems
– software systems for automated theorem proving  
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NOTE ABOUT SAFETY AND LIVENESS 
PROPERTY VERIFICATION
• safety property are easier to verify

– a safety property must be true at all states
• it is sufficient to find a state not veryfing the property to complete the 

verification
– a liveness property claims that a state satisfying a property will inevitably 

occur
• it is not sufficient to check states one by one, it is necessary to check all 

possible scenarios
>  it requires more complex theory and software techniques
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