v1.1
BETA

Sistemi Concorrenti e di Rete LS

Il Facolta di Ingegneria - Cesena
a.a 2008/2009

[module 2.2]

VERIFICATION OF CONCURRENT
PROGRAMS - BASICS

SISCO LS - Il Facolta Ingegneria - Cesena Verification of Concurrent Programs - Basics 1




FORMAL METHODS

« Errors in concurrent programming and concurrent systems cannot
be discovered by debugging and corrections cannot be checked by
testing

> need of formal methods to specify and the verify rigorously the
concurrent programs (systems)

« Two principal (class of) formal techniques:

— model checking

« where verification is done by generating one by one all the states of the
systems and by checking the properties state by state

* can be automated by model checkers tools

— inductive proofs of invariants
* invariant properties are proved by induction over the states of the system
* can be automated by tools called deductive systems
« Both techniques rely on some kind of formal language / calculus to
specify correctness properties

SISCO LS - Il Facolta Ingegneria - Cesena Verification of Concurrent Programs - Basics 2




CORRECTNESS PROPERTIES IN
PROPOSITION CALCULUS

« With propositional calculus, correctness properties are expressed
as logic formulae that must be true in order to verify the property in
some state of the system

— formulae are assertions obtained by composing propositions through
logic connectors
* and, or, not, implications, equivalence

* |In our case propositions are about the values of the variables and of

the control pointers during an execution of a concurrent programming

— e.g. given the boolean variable wantp, an atomic proposition (assertion)
wantp is true in a certain state if and only if the value of the variable
wantp is true in that state

« Each label of a statement of a process will be used as an atomic
proposition whose interpretation is "the control pointer of that
process is currently at that label"

— e.g. p1 proposition asserts that the control pointer of the process p is at
the label p1.

SISCO LS - Il Facolta Ingegneria - Cesena Verification of Concurrent Programs - Basics 3




AN EXAMPLE: MUTUAL EXCLUSION

Third attempt

boolean wantp < false
boolean wantq < false

P q

loop forever loop forever

pl: non-critical section q1: non-critical section
p2: wantp € true q2: wantq € true

p3: await lwantg q3: await lwantp

pd: critical section q4: cnritical section

p5: wantp < false q5: wantq < false

 Formula P4/ s
— is true if both control pointers of the processes are in the critical section
« if it exists some state in which this formula is true, then it means that
the mutual exclusion property is not satisfied
> dually, a program satisfies the mutual exclusion property if the
formula —(ps A q4) is true for every possible state of every scenario

SISCO LS - Il Facolta Ingegneria - Cesena Verification of Concurrent Programs - Basics 4




TEMPORAL LOGIC

 Processes and systems change their state over the time, and then
also the interpretation of formulae about their state can change over
the time.
> we need a formal language/calculus that would take this aspect into the
account
> temporal logic is one of the most basic and popular one

« The temporal logic is a formal logic obtained by adding temporal
operators to propositional or predicate logic
— Linear Temporal Logic (LTL)
» to express properties that must be true (at a state) for every possible scenario
* linear / discrete model of time
— Branching temporal logics

» to express properties that must be true in some or all scenarios starting from
a state

« an example: CTL (computational tree logic)

SISCO LS - Il Facolta Ingegneria - Cesena Verification of Concurrent Programs - Basics 5




LTL: TEMPORAL OPERATORS

 LTL is based on two basic temporal operators: always and eventually

— box or always temporal operator: [JA

e the formula [JA is true in a state s; of a computation if and only if the formula
A is true in all states s; with j >=1

— synonim: L] p = G p (Globally p)
 the always operator can be used then to specify safety properties, because it
specifies what must be always be true

— diamond or eventually temporal operator: <> A
* the formula QA is true in a state s; of a computation if and only if the formula
A is true in some states s; with j >=1
— synonim: >p =F p (Finally p )
» the eventually operator is used to specify liveness properties, because it
specifies something that eventually be true

SISCO LS - Il Facolta Ingegneria - Cesena Verification of Concurrent Programs - Basics 6




BASIC PROPERTIES

« Reflexivity: 0UA— A
A— QA
« Duality;: —UA=0-A4
-0A =1-4

« Sequences of operators:

SISCO LS - Il Facolta Ingegneria - Cesena

OUIA
LIG0A

Verification of Concurrent Programs - Basics

7




DEDUCTION WITH TEMPORAL LOGICS

« Temporal logic is a formal system of deductive logic with its own
axioms and rules of inference

— it can be used to formalize the semantics of concurrent programs and
used to rigorously prove correctness properties of programs

* An example of a theorems in TL.:

(COAT A COA2) - SO (AT A A2) s true.

(OCAT A OC A2) = DS (A1 A A2) 1S false

SISCO LS - Il Facolta Ingegneria - Cesena Verification of Concurrent Programs - Basics 8




SPECIFYING SAFETY PROPERTIES

« Box operator can be used to specify safety properties
— as properties that must be always true

« [P, where P = —( and (@ is the description of a bad state
— an example: mutual exclusion in CS problem

First attempt

Integer turn < 1

p

q

loop forever

p1: non-critical section
p2: await turn = 1

p3: critical section

pd: tum < 2

loop forever

q1: non-critical section
q2: await turmn = 2

q3: critical section

qd: turn < 1

— mutal exclusion property: D—l(pg A\ Q3)

SISCO LS - Il Facolta Ingegneria - Cesena

Verification of Concurrent Programs - Basics




SPECIFYING LIVENESS PROPERTIES

« Diamond operator can be used to specify liveness properties

— as conditions that eventually will be true
« OP, where P is the description of a good case
— an example: progress property (no starvation) in CS problem

First attempt

Integer turn < 1

p

q

loop forever

p1: non-critical section
p2: await turn = 1

p3: critical section

pd: tum < 2

loop forever

q1: non-critical section
q2: await turmn = 2

q3: critical section

qd: turn < 1

— progress property for one shot (no loops): p2 — Ops

— progress property with loops: UO(py — Op3)

SISCO LS - Il Facolta Ingegneria - Cesena

Verification of Concurrent Programs - Basics

10




BINARY OPERATORS

« Always and eventually are unary operators. An example of useful
and frequently used binary operator is until

— Until operator: AUB

« AU B s true in a state Si if and only if B is true in some state Sj, j>=iand A is
true in all state Sk, i<=k<.

« That is: eventually B becomes true and that A is true until that happens

— Weak-Until operator: AWB

« like Until operator, but formula B is not required to become true eventually. If
it does not, A must remain true indefinitely

« AWB =aslong as Ais false, B must be true

SISCO LS - Il Facolta Ingegneria - Cesena Verification of Concurrent Programs - Basics 11




OVERTAKING

« Consider the following scenario in the CS problem

try-p,try-q,C5q,try-q,Csq,...,C59,CSp

AANANAANANANAANANAANANANAANANAANANAANANAANANAANANAANANANAANANAANAN

1000 times

* It's not an example of starvation...
— itis true that <*CSp
> but it's evident too that freedom from starvation can be a very weak
property!
 in some cases we want to ensure that a process would enter its
critical section within a reasonable amount of time

SISCO LS - Il Facolta Ingegneria - Cesena Verification of Concurrent Programs - Basics 12




K-BOUND OVERTAKING PROPERTY

 k-bounded-overtaking property

— from the time a process p attempts to enter its critical section, another
process can enter at most k times before p does

— Example: 3-overtaking
- try_pltry—qlcsqltry_qlqultry_qICSqICSp

 The property can be expressed by the weak until operator W
— example with 1-bounded-overtaking:

tryp, — —csq W esg W —es; W oesy,

SISCO LS - Il Facolta Ingegneria - Cesena Verification of Concurrent Programs - Basics 13




VERIFICATION TECHNIQUES (1/2):
MODEL-CHECKING

« Model checking is the most important and used technique for
automatically checking correctness properties of concurrent systems

— invaluable conceptual and practical tool for software engineers
« Strategy based on exhaustively searching the entire state space of a
system and verify if certain properties are satisfied

— properties as predicates on a system state or states, expressed as a
logical specification such as propositional temporal logic formula

— if the system satisfies the property, the model checker generates a
confirmation response

» otherwise, it produces a trace (counterexample) => useful also to identify
bugs, not only to prove correctness

« SW vs. HW model checking
— can be applied also to hardware
— e.g. Intel adopting Model-Checking after the Pentium Bug in 1994

— used in mission critical software systems
» e.g. NASA after Mars Polar Lander incident in 1999

SISCO LS - Il Facolta Ingegneria - Cesena Verification of Concurrent Programs - Basics 14




MODEL-CHECKING APPLICATIONS

Model-Checking

T

Hardware Software
Requirements Circuits Requirements Programs
Design Design

* Program model checking

— application of the model-checking techniques to software systems
 in particular to the final implementation
 discovering software defects

SISCO LS - Il Facolta Ingegneria - Cesena Verification of Concurrent Programs - Basics 15




DEALING WITH THE STATE-SPACE
EXPLOSITION PROBLEM

« The big problem of model-checking technique is the size of the state
space
— how to manage graph of millions of states? Is it feasible ?

« State-of-the art techniques
— applying rules to reduce the number of states
 using variables that can be modeled by a limited number of values
— incremental construction of the whole graph

» exploring only reachable state of an execution.

» checking the truth of a correctness specification as the incremental diagram
is constructed, stopping the construction is a falsifying state is found

— Symbolic model checking
« working with set of states

SISCO LS - Il Facolta Ingegneria - Cesena Verification of Concurrent Programs - Basics 16




SPIN AND PROMELA

« SPIN is a widely used model-checker used in both academic
research and industrial software development

— extremely efficien

— used in modeling and designing concurrent and distributed systems in
general

- PROMELA is the language that is used in Spin to write concurrent
programs modeling language

— limited number of constructs intended to be used to build models of
concurrent systems

SISCO LS - Il Facolta Ingegneria - Cesena Verification of Concurrent Programs - Basics 17




AN EXAMPLE: DEKKER IN PROMELA

bool wantp = false, wantg = false;
oyte turn = 1;
proctype pl) |
do
wantp = true;
do :: lwantg -» break;
else ->
1f :: (turn == 1}
(turn == 2} -=
wantp = falss;
(turn == 1}:
wantp = true
£i
od;
printf (“"LOG: © in C8%n");
turn = Z;
wantp = false
od
proctype g() { /* similar */}
init {
atomic {
run p
run g
}
}

SISCO LS - Il Facolta Ingegneria - Cesena Verification of Concurrent Programs - Basics

18




JAVA PATH FINDER (JPF)

« JPF is a recent model-checker specialized for the verification of
programs written in Java

— developed by NASA, used for critical software
— open-source project
e http://javapathfinder.sourceforge.net/

e JPF is a special JVM executing programs theoretically along all
possible scenarios (execution paths), checking for property violations

— deadlocks, uncaught exceptions, etc
— If it finds an error, JPF reports the whole execution that leads to it

SISCO LS - Il Facolta Ingegneria - Cesena Verification of Concurrent Programs - Basics 19




JPF MODEL OF OPERATION

datascheduling VT
AT heuristics observation
Iihrar'_..f choice vm verfication report
verification target | abstraction generator listener amar peth

(Java bytecode ..
prograim) Steg #11 Thread #0
o9 iy Yy iy oldciassic,javass averil.wait_lor_aventi);
oo oo ua stale oldclassic. | avaay waitll:
Virtual Machine - -
mognt Step #14 Threed #1
‘?’ J I:llljl:-'.l-a.'aﬁlc.|a.'\'3.95 E'ul'El"l‘IE.'!'u'EiI 1I:|r E'ul'lEl"l":].
m e oldiassic | avas3y Wit
Vi f
Search Strategy .0, Core JPF threed stacks
Theead: Threed-0
at jawa.lang. Ciojsct.watijavalang oot java:428)
/' at Evertowait_tor_evertioldcizssic. javair]
Th rea;:.s: Threed-1
‘ property H search /’ - _ . .
) arrar-path at jawa lang. Dojsctwaitijavalang Dojsct javai429)
checker listener end P at Everi.wait_lor_evert{oldciassic.java3r]
system/ search — -

1 Eror Found: Deadlock

property

ANRS ohsenation
violation

S

SISCO LS - Il Facolta Ingegneria - Cesena Verification of Concurrent Programs - Basics 20




VERIFICATION TECHNIQUES (2/2):
INDUCTIVE PROOF OF INVARIANTS

* invariant
— a formula that must be invariably true at any point of any computation
* e9. ~(psA\qa)
« Invariants can be proved using induction over the states of all the
computations:

— to prove that A is an invariant:
» prove that Ais true in the initial state (the base case)

« assume that A is true in a generic state S (inductive hypothesis) and prove
that A is true in all the possible state next to S (inductive step)

* Deductive systems
— software systems for automated theorem proving

SISCO LS - Il Facolta Ingegneria - Cesena Verification of Concurrent Programs - Basics 21




NOTE ABOUT SAFETY AND LIVENESS
PROPERTY VERIFICATION

« safety property are easier to verify

— a safety property must be true at all states
« it is sufficient to find a state not veryfing the property to complete the
verification
— a liveness property claims that a state satisfying a property will inevitably
occur

it is not sufficient to check states one by one, it is necessary to check all
possible scenarios

> it requires more complex theory and software techniques

SISCO LS - Il Facolta Ingegneria - Cesena Verification of Concurrent Programs - Basics 22




