
SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics 1

Sistemi Concorrenti e di Rete LS
II Facoltà di Ingegneria - Cesena
a.a 2008/2009

[module 2.2]
VERIFICATION OF CONCURRENT

PROGRAMS - BASICS

v1.1
BETA

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

FORMAL METHODS
• Errors in concurrent programming and concurrent systems cannot

be discovered by debugging and corrections cannot be checked by
testing
> need of formal methods to specify and the verify rigorously the

concurrent programs (systems)
• Two principal (class of) formal techniques:

– model checking
• where verification is done by generating one by one all the states of the

systems and by checking the properties state by state
• can be automated by model checkers tools

– inductive proofs of invariants
• invariant properties are proved by induction over the states of the system
• can be automated by tools called deductive systems

• Both techniques rely on some kind of formal language / calculus to
specify correctness properties

2

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

CORRECTNESS PROPERTIES IN
PROPOSITION CALCULUS
• With propositional calculus, correctness properties are expressed

as logic formulae that must be true in order to verify the property in
some state of the system
– formulae are assertions obtained by composing propositions through

logic connectors
• and, or, not, implications, equivalence

• In our case propositions are about the values of the variables and of
the control pointers during an execution of a concurrent programming
– e.g. given the boolean variable wantp, an atomic proposition (assertion)

wantp is true in a certain state if and only if the value of the variable
wantp is true in that state

• Each label of a statement of a process will be used as an atomic
proposition whose interpretation is "the control pointer of that
process is currently at that label"
– e.g. p1 proposition asserts that the control pointer of the process p is at

the label p1.

3

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

AN EXAMPLE: MUTUAL EXCLUSION

• Formula
– is true if both control pointers of the processes are in the critical section

• if it exists some state in which this formula is true, then it means that
the mutual exclusion property is not satisfied

> dually, a program satisfies the mutual exclusion property if the
formula is true for every possible state of every scenario

4

x = a0 +
1

a1 + 1
a2+ 1

a3+a4

(1)

S =
T1

TN
(2)

S =
1

1 − P + P
N

(3)

N is the number of processors
T1 is the execution time of the sequential algorithm
TN is the execution time of the parallel algorithm with N processors

P is the proportion of a program that can be made parallel
(1− P) is the proportion that cannot be parallelized (remains serial)

〈pi, qj , turn〉 pi qj

¬(p4 ∧ q4)

1

x = a0 +
1

a1 + 1
a2+ 1

a3+a4

(1)

S =
T1

TN
(2)

S =
1

1 − P + P
N

(3)

N is the number of processors
T1 is the execution time of the sequential algorithm
TN is the execution time of the parallel algorithm with N processors

P is the proportion of a program that can be made parallel
(1− P) is the proportion that cannot be parallelized (remains serial)

〈pi, qj , turn〉 pi qj

¬(p4 ∧ q4)

p4 ∧ q4

1

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

TEMPORAL LOGIC
• Processes and systems change their state over the time, and then

also the interpretation of formulae about their state can change over
the time.
> we need a formal language/calculus that would take this aspect into the

account
> temporal logic is one of the most basic and popular one

• The temporal logic is a formal logic obtained by adding temporal
operators to propositional or predicate logic
– Linear Temporal Logic (LTL)

• to express properties that must be true (at a state) for every possible scenario
• linear / discrete model of time

– Branching temporal logics
• to express properties that must be true in some or all scenarios starting from

a state
• an example: CTL (computational tree logic)

5

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

LTL: TEMPORAL OPERATORS
• LTL is based on two basic temporal operators: always and eventually

– box or always temporal operator: A
• ss

– synonim: p = G p (Globally p)
• the always operator can be used then to specify safety properties, because it

specifies what must be always be true

– diamond or eventually temporal operator: A
• ss

– synonim: p = F p (Finally p)
• the eventually operator is used to specify liveness properties, because it

specifies something that eventually be true

6

x = a0 +
1

a1 + 1
a2+ 1

a3+a4

(1)

S =
T1

TN
(2)

S =
1

1 − P + P
N

(3)

N is the number of processors
T1 is the execution time of the sequential algorithm
TN is the execution time of the parallel algorithm with N processors

P is the proportion of a program that can be made parallel
(1− P) is the proportion that cannot be parallelized (remains serial)

〈pi, qj , turn〉 pi qj

¬(p4 ∧ q4)

p4 ∧ q4

the formula !A is true in a state si of a computation if and only if the formula
A is true in all states sj with j >= i

the formula ♦A is true in a state si of a computation if and only if the formula
A is true in some states sj with j >= i

1

x = a0 +
1

a1 + 1
a2+ 1

a3+a4

(1)

S =
T1

TN
(2)

S =
1

1 − P + P
N

(3)

N is the number of processors
T1 is the execution time of the sequential algorithm
TN is the execution time of the parallel algorithm with N processors

P is the proportion of a program that can be made parallel
(1− P) is the proportion that cannot be parallelized (remains serial)

〈pi, qj , turn〉 pi qj

¬(p4 ∧ q4)

p4 ∧ q4

the formula !A is true in a state si of a computation if and only if the formula
A is true in all states sj with j >= i

the formula ♦A is true in a state si of a computation if and only if the formula
A is true in some states sj with j >= i

1

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

BASIC PROPERTIES
• Reflexivity:

• Duality:

• Sequences of operators:

7

x = a0 +
1

a1 + 1
a2+ 1

a3+a4

(1)

S =
T1

TN
(2)

S =
1

1− P + P
N

(3)

N is the number of processors
T1 is the execution time of the sequential algorithm
TN is the execution time of the parallel algorithm with N processors

P is the proportion of a program that can be made parallel
(1− P) is the proportion that cannot be parallelized (remains serial)

〈pi, qj , turn〉 pi qj

¬(p4 ∧ q4)

p4 ∧ q4

the formula !A is true in a state si of a computation if and only if the formula
A is true in all states sj with j >= i

the formula ♦A is true in a state si of a computation if and only if the formula
A is true in some states sj with j >= i

!P , where P = ¬Q and Q is the description of a bad state

♦P , where P is the description of a good case

p2 → ♦p3

!(p2 → ♦p3)

tryp → ¬csq W csq W ¬csq W csp

!A → A

A → ♦A

1

A→ ♦A

¬"A = ♦¬A

¬♦A = "¬A

♦"A

"♦A

2

A→ ♦A

¬"A = ♦¬A

¬♦A = "¬A

♦"A

"♦A

2

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

DEDUCTION WITH TEMPORAL LOGICS
• Temporal logic is a formal system of deductive logic with its own

axioms and rules of inference
– it can be used to formalize the semantics of concurrent programs and

used to rigorously prove correctness properties of programs
• An example of a theorems in TL:

8

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

SPECIFYING SAFETY PROPERTIES
• Box operator can be used to specify safety properties

– as properties that must be always true
• xx

– an example: mutual exclusion in CS problem

– mutal exclusion property:

9

x = a0 +
1

a1 + 1
a2+ 1

a3+a4

(1)

S =
T1

TN
(2)

S =
1

1 − P + P
N

(3)

N is the number of processors
T1 is the execution time of the sequential algorithm
TN is the execution time of the parallel algorithm with N processors

P is the proportion of a program that can be made parallel
(1− P) is the proportion that cannot be parallelized (remains serial)

〈pi, qj , turn〉 pi qj

¬(p4 ∧ q4)

p4 ∧ q4

the formula !A is true in a state si of a computation if and only if the formula
A is true in all states sj with j >= i

the formula ♦A is true in a state si of a computation if and only if the formula
A is true in some states sj with j >= i

!P , where P = ¬Q and Q is the description of a bad state

1

x = a0 +
1

a1 + 1
a2+ 1

a3+a4

(1)

S =
T1

TN
(2)

S =
1

1 − P + P
N

(3)

N is the number of processors
T1 is the execution time of the sequential algorithm
TN is the execution time of the parallel algorithm with N processors

P is the proportion of a program that can be made parallel
(1− P) is the proportion that cannot be parallelized (remains serial)

〈pi, qj , turn〉 pi qj

¬(p4 ∧ q4)

p4 ∧ q4

the formula !A is true in a state si of a computation if and only if the formula
A is true in all states sj with j >= i

the formula ♦A is true in a state si of a computation if and only if the formula
A is true in some states sj with j >= i

!P , where P = ¬Q and Q is the description of a bad state

!¬(p3 ∧ q3)

1

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

SPECIFYING LIVENESS PROPERTIES
• Diamond operator can be used to specify liveness properties

– as conditions that eventually will be true
• xx

– an example: progress property (no starvation) in CS problem

– progress property for one shot (no loops):

– progress property with loops:

10

x = a0 +
1

a1 + 1
a2+ 1

a3+ a4

(1)

S =
T1

TN
(2)

S =
1

1− P + P
N

(3)

N is the number of processors
T1 is the execution time of the sequential algorithm
TN is the execution time of the parallel algorithm with N processors

P is the proportion of a program that can be made parallel
(1− P) is the proportion that cannot be parallelized (remains serial)

〈p i , q j , turn〉 p i q j

¬(p4 ∧ q4)

p4 ∧ q4

the formula !A is true in a state s i of a computation if and only if the formula
A is true in all states s j with j >= i

the formula ♦A is true in a state s i of a computation if and only if the formula
A is true in some states s j with j >= i

!P , where P = ¬Q and Q is the description of a bad state

♦P , where P is the description of a good case

p2 → ♦p3

!(p2 → ♦p3)

1

x = a0 +
1

a1 + 1
a2 + 1

a3 + a4

(1)

S =
T1

TN
(2)

S =
1

1− P + P
N

(3)

N is the number of processors
T1 is the execution time of the sequential algorithm
TN is the execution time of the parallel algorithm with N processors

P is the proportion of a program that can be made parallel
(1− P) is the proportion that cannot be parallelized (remains serial)

〈pi, qj , turn〉 pi qj

¬(p4 ∧ q4)

p4 ∧ q4

the formula !A is true in a state si of a computation if and only if the formula
A is true in all states sj with j >= i

the formula ♦A is true in a state si of a computation if and only if the formula
A is true in some states sj with j >= i

!P , where P = ¬Q and Q is the description of a bad state

♦P , where P is the description of a good case

p2 → ♦p3

!(p2 → ♦p3)

1

x = a0 +
1

a1 + 1
a2 + 1

a3+a4

(1)

S =
T1

TN
(2)

S =
1

1− P + P
N

(3)

N is the number of processors
T1 is the execution time of the sequential algorithm
TN is the execution time of the parallel algorithm with N processors

P is the proportion of a program that can be made parallel
(1− P) is the proportion that cannot be parallelized (remains serial)

〈pi, qj , turn〉 pi qj

¬(p4 ∧ q4)

p4 ∧ q4

the formula !A is true in a state si of a computation if and only if the formula
A is true in all states sj with j >= i

the formula ♦A is true in a state si of a computation if and only if the formula
A is true in some states sj with j >= i

!P , where P = ¬Q and Q is the description of a bad state

♦P , where P is the description of a good case

p2 → ♦p3

!(p2 → ♦p3)

1

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

BINARY OPERATORS
• Always and eventually are unary operators. An example of useful

and frequently used binary operator is until
– Until operator: A U B

• A U B is true in a state Si if and only if B is true in some state Sj, j>=i and A is
true in all state Sk, i<=k<j.

• That is: eventually B becomes true and that A is true until that happens
– Weak-Until operator: A W B

• like Until operator, but formula B is not required to become true eventually. If
it does not, A must remain true indefinitely

• A W B = as long as A is false, B must be true

11

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

OVERTAKING
• Consider the following scenario in the CS problem

• It’s not an example of starvation...
– it is true that CSp
> but it’s evident too that freedom from starvation can be a very weak

property!
• in some cases we want to ensure that a process would enter its

critical section within a reasonable amount of time

12

try-p,try-q,CSq,try-q,CSq,...,CSq,CSp
 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 1000 times

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

K-BOUND OVERTAKING PROPERTY
• k-bounded-overtaking property

– from the time a process p attempts to enter its critical section, another
process can enter at most k times before p does

– Example: 3-overtaking
– try-p,try-q,CSq,try-q,CSq,try-q,CSq,CSp

• The property can be expressed by the weak until operator W
– example with 1-bounded-overtaking:

13

x = a0 +
1

a1 + 1
a2+ 1

a3+a4

(1)

S =
T1

TN
(2)

S =
1

1− P + P
N

(3)

N is the number of processors
T1 is the execution time of the sequential algorithm
TN is the execution time of the parallel algorithm with N processors

P is the proportion of a program that can be made parallel
(1− P) is the proportion that cannot be parallelized (remains serial)

〈pi, qj , turn〉 pi qj

¬(p4 ∧ q4)

p4 ∧ q4

the formula !A is true in a state si of a computation if and only if the formula
A is true in all states sj with j >= i

the formula ♦A is true in a state si of a computation if and only if the formula
A is true in some states sj with j >= i

!P , where P = ¬Q and Q is the description of a bad state

♦P , where P is the description of a good case

p2 → ♦p3

!(p2 → ♦p3)

tryp → ¬csq W csq W ¬csq W csp

1

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

VERIFICATION TECHNIQUES (1/2):
MODEL-CHECKING
• Model checking is the most important and used technique for

automatically checking correctness properties of concurrent systems
– invaluable conceptual and practical tool for software engineers

• Strategy based on exhaustively searching the entire state space of a
system and verify if certain properties are satisfied
– properties as predicates on a system state or states, expressed as a

logical specification such as propositional temporal logic formula
– if the system satisfies the property, the model checker generates a

confirmation response
• otherwise, it produces a trace (counterexample) => useful also to identify

bugs, not only to prove correctness

• SW vs. HW model checking
– can be applied also to hardware
– e.g. Intel adopting Model-Checking after the Pentium Bug in 1994
– used in mission critical software systems

• e.g. NASA after Mars Polar Lander incident in 1999

14

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

MODEL-CHECKING APPLICATIONS

• Program model checking
– application of the model-checking techniques to software systems

• in particular to the final implementation
• discovering software defects

15

Model-Checking

Hardware Software

Requirements

Design

ProgramsRequirements

Design

Circuits

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

DEALING WITH THE STATE-SPACE
EXPLOSITION PROBLEM
• The big problem of model-checking technique is the size of the state

space
– how to manage graph of millions of states? Is it feasible ?

• State-of-the art techniques
– applying rules to reduce the number of states

• using variables that can be modeled by a limited number of values
– incremental construction of the whole graph

• exploring only reachable state of an execution.
• checking the truth of a correctness specification as the incremental diagram

is constructed, stopping the construction is a falsifying state is found
– symbolic model checking

• working with set of states

16

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

SPIN AND PROMELA
• SPIN is a widely used model-checker used in both academic

research and industrial software development
– extremely efficien
– used in modeling and designing concurrent and distributed systems in

general
• PROMELA is the language that is used in Spin to write concurrent

programs modeling language
– limited number of constructs intended to be used to build models of

concurrent systems

17

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

AN EXAMPLE: DEKKER IN PROMELA

18

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

JAVA PATH FINDER (JPF)

• JPF is a recent model-checker specialized for the verification of
programs written in Java
– developed by NASA, used for critical software
– open-source project

• http://javapathfinder.sourceforge.net/

• JPF is a special JVM executing programs theoretically along all
possible scenarios (execution paths), checking for property violations
– deadlocks, uncaught exceptions, etc
– If it finds an error, JPF reports the whole execution that leads to it

19

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

JPF MODEL OF OPERATION

20

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

VERIFICATION TECHNIQUES (2/2):
INDUCTIVE PROOF OF INVARIANTS
• invariant

– a formula that must be invariably true at any point of any computation
• e.g.

• Invariants can be proved using induction over the states of all the
computations:
– to prove that A is an invariant:

• prove that A is true in the initial state (the base case)
• assume that A is true in a generic state S (inductive hypothesis) and prove

that A is true in all the possible state next to S (inductive step)

• Deductive systems
– software systems for automated theorem proving

21

x = a0 +
1

a1 + 1
a2+ 1

a3+a4

(1)

S =
T1

TN
(2)

S =
1

1 − P + P
N

(3)

N is the number of processors
T1 is the execution time of the sequential algorithm
TN is the execution time of the parallel algorithm with N processors

P is the proportion of a program that can be made parallel
(1− P) is the proportion that cannot be parallelized (remains serial)

〈pi, qj , turn〉 pi qj

¬(p4 ∧ q4)

1

SISCO LS - II Facoltà Ingegneria - Cesena Verification of Concurrent Programs - Basics

NOTE ABOUT SAFETY AND LIVENESS
PROPERTY VERIFICATION
• safety property are easier to verify

– a safety property must be true at all states
• it is sufficient to find a state not veryfing the property to complete the

verification
– a liveness property claims that a state satisfying a property will inevitably

occur
• it is not sufficient to check states one by one, it is necessary to check all

possible scenarios
> it requires more complex theory and software techniques

22

