research

The basics of gravitational wave theory

Abstract

Einstein's special theory of relativity revolutionized physics by teaching us that space and time are not separate entities, but join as ``spacetime''. His general theory of relativity further taught us that spacetime is not just a stage on which dynamics takes place, but is a participant: The field equation of general relativity connects matter dynamics to the curvature of spacetime. Curvature is responsible for gravity, carrying us beyond the Newtonian conception of gravity that had been in place for the previous two and a half centuries. Much research in gravitation since then has explored and clarified the consequences of this revolution; the notion of dynamical spacetime is now firmly established in the toolkit of modern physics. Indeed, this notion is so well established that we may now contemplate using spacetime as a tool for other science. One aspect of dynamical spacetime -- its radiative character, ``gravitational radiation'' -- will inaugurate entirely new techniques for observing violent astrophysical processes. Over the next one hundred years, much of this subject's excitement will come from learning how to exploit spacetime as a tool for astronomy. This article is intended as a tutorial in the basics of gravitational radiation physics.Comment: 49 pages, 3 figures. For special issue of New Journal of Physics, "Spacetime 100 Years Later", edited by Richard Price and Jorge Pullin. This version corrects an important error in Eq. (4.23); an erratum is in pres

    Similar works

    Full text

    thumbnail-image

    Available Versions