21 research outputs found

    A Unified Convergence Analysis for Some Two-Point Type Methods for Nonsmooth Operators

    Get PDF
    The aim of this paper is the approximation of nonlinear equations using iterative methods. We present a unified convergence analysis for some two-point type methods. This way we compare specializations of our method using not necessarily the same convergence criteria. We consider both semilocal and local analysis. In the first one, the hypotheses are imposed on the initial guess and in the second on the solution. The results can be applied for smooth and nonsmooth operators.Research of the first and third authors supported in part by Programa de Apoyo a la investigación de la fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia 20928/PI/18 and by MTM2015-64382-P. Research of the fourth and fifth authors supported by Ministerio de Economía y Competitividad under grant MTM2014-52016-C2-1P. This research received no external funding

    Kurchatov-type methods for non-differentiable Hammerstein-type integral equations

    Get PDF
    [EN] We consider a generic type of nonlinear Hammerstein-type integral equations with the particularity of having non-differentiable kernel of Nemystkii type. So, in order to solve it we consider a uniparametric family of iterative processes derivative free, with the main advantage that for a special value of the involved parameter the iterative method obtained coincides with Newton's method, that is due to the fact of evaluating the divided difference operator when the two values are the same. We perform a qualitative convergence study by choosing an auxiliary point, that allow us to obtain the existence and separation of solutions of the given equation, that is, local and semilocal convergence balls can be obtained.This research was partially supported by Ministerio de Economia y Competitividad under grant PGC2018-095896-B-C21-C22 and by the project EEQ/2018/000720 under Science and Engineering Research Board.Hernández-Verón, MA.; Yadav, N.; Martínez Molada, E.; Singh, S. (2023). Kurchatov-type methods for non-differentiable Hammerstein-type integral equations. Numerical Algorithms. 93(1):131-155. https://doi.org/10.1007/s11075-022-01406-813115593

    Semilocal Convergence of the Extension of Chun's Method

    Full text link
    [EN] In this work, we use the technique of recurrence relations to prove the semilocal convergence in Banach spaces of the multidimensional extension of Chun's iterative method. This is an iterative method of fourth order, that can be transferred to the multivariable case by using the divided difference operator. We obtain the domain of existence and uniqueness by taking a suitable starting point and imposing a Lipschitz condition to the first Frechet derivative in the whole domain. Moreover, we apply the theoretical results obtained to a nonlinear integral equation of Hammerstein type, showing the applicability of our results.This research was supported by PGC2018-095896-B-C22 (MCIU/AEI/FEDER, UE) and FONDOCYT 027-2018 Republica Dominicana.Cordero Barbero, A.; Maimó, JG.; Martínez Molada, E.; Torregrosa Sánchez, JR.; Vassileva, MP. (2021). Semilocal Convergence of the Extension of Chun's Method. Axioms. 10(3):1-11. https://doi.org/10.3390/axioms10030161S11110

    Local convergence of the Gauss-Newton-Kurchatov method under generalized Lipschitz conditions

    Get PDF
    We investigate the local convergence of the Gauss-Newton-Kurchatov method for solving nonlinear least squares problems. This method is a combination of Gauss-Newton and Kurchatov methods and it is used for problems with the decomposition of the operator. The convergence analysis of the method is performed under the generalized Lipshitz conditions. The conditions of convergence, radius and the convergence order of the considered method are established. Given numerical examples confirm the theoretical results

    Generalized relativistic small-core pseudopotentials accounting for quantum electrodynamic effects: construction and pilot applications

    Full text link
    A simple procedure to incorporate one-loop quantum electrodynamic (QED) corrections into the generalized (Gatchina) nonlocal shape-consistent relativistic pseudopotential model is described. The pseudopotentials for Lu, Tl, and Ra replacing only inner core shells (with principal quantum numbers n3n\le 3 for the two former elements and n4n\le 4 for the latter one) are derived from the solutions of reference atomic SCF problems with the Dirac-Coulomb-Breit Hamiltonian to which the model Lamb shift operator added. QED contributions to atomic valence excitation energies evaluated at the SCF level are demonstrated to exceed the errors introduced by the pseudopotential approximation itself by an order of magnitude. Pilot applications of the new model to calculations of excitation energies of two-valence-electron atomic systems using the intermediate-Hamiltonian relativistic Fock space coupled cluster method reformulated here for incomplete main model spaces are reported. Implications for high-accuracy molecular excited state calculations are discussed

    Convergence and dynamics of improved Chebyshev-Secant-type methods for non differentiable operators

    Full text link
    [EN] In this paper, the convergence and dynamics of improved Chebyshev-Secant-type iterative methods are studied for solving nonlinear equations in Banach space settings. Their semilocal convergence is established using recurrence relations under weaker continuity conditions on first-order divided differences. Convergence theorems are established for the existence-uniqueness of the solutions. Next, center-Lipschitz condition is defined on the first-order divided differences and its influence on the domain of starting iterates is compared with those corresponding to the domain of Lipschitz conditions. Several numerical examples including Automotive Steering problems and nonlinear mixed Hammerstein-type integral equations are analyzed, and the output results are compared with those obtained by some of similar existing iterative methods. It is found that improved results are obtained for all the numerical examples. Further, the dynamical analysis of the iterative method is carried out. It confirms that the proposed iterative method has better stability properties than its competitors.This research was partially supported by Ministerio de Economia y Competitividad under grant PGC2018-095896-B-C22.Kumar, A.; Gupta, DK.; Martínez Molada, E.; Hueso, JL. (2021). Convergence and dynamics of improved Chebyshev-Secant-type methods for non differentiable operators. Numerical Algorithms. 86(3):1051-1070. https://doi.org/10.1007/s11075-020-00922-9S10511070863Hernández, M.A.: Chebyshev’s approximation algorithms and applications. Comput. Math. Appl. 41(3-4), 433–445 (2001)Ezquerro, J.A., Grau-Sánchez, Miquel, Hernández, M.A.: Solving non-differentiable equations by a new one-point iterative method with memory. J. Complex. 28(1), 48–58 (2012)Ioannis , K.A., Ezquerro, J.A., Gutiérrez, J.M., hernández, M.A., saïd Hilout: On the semilocal convergence of efficient Chebyshev-Secant-type methods. J. Comput. Appl. Math. 235(10), 3195–3206 (2011)Hongmin, R., Ioannis, K.A.: Local convergence of efficient Secant-type methods for solving nonlinear equations. Appl. Math. comput. 218(14), 7655–7664 (2012)Ioannis, Ioannis K.A., Hongmin, R.: On the semilocal convergence of derivative free methods for solving nonlinear equations. J. Numer. Anal. Approx. Theory 41 (1), 3–17 (2012)Hongmin, R., Ioannis, K.A.: On the convergence of King-Werner-type methods of order 1+21+\sqrt {2} free of derivatives. Appl. Math. Comput. 256, 148–159 (2015)Kumar, A., Gupta, D.K., Martínez, E., Sukhjit, S.: Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces. J. Comput. Appl. Math. 330, 732–741 (2018)Grau-Sánchez, M., Noguera, M., Gutiérrez, J.M.: Frozen iterative methods using divided differences “à la Schmidt–Schwetlick”. J. Optim. Theory Appl. 160 (3), 931–948 (2014)Louis, B.R.: Computational Solution of Nonlinear Operator Equations. Wiley, New York (1969)Blanchard, P.: The dynamics of Newton’s method. Proc. Symp. Appl. Math. 49, 139–154 (1994)Parisa, B., Cordero, A., Taher, L., Kathayoun, M., Torregrosa, J.R.: Widening basins of attraction of optimal iterative methods. Nonlinear Dynamics 87 (2), 913–938 (2017)Chun, C., Neta, B.: The basins of attraction of Murakami’s fifth order family of methods. Appl. Numer. Math. 110, 14–25 (2016)Magreñán, Á. A.: A new tool to study real dynamics: the convergence plane. Appl. Math. Comput. 248, 215–224 (2014)Ramandeep, B., Cordero, A., Motsa, S.S., Torregrosa, J.R.: Stable high-order iterative methods for solving nonlinear models. Appl. Math. Comput. 303, 70–88 (2017)Pramanik, S.: Kinematic synthesis of a six-member mechanism for automotive steering. Trans Ame Soc. Mech. Eng. J. Mech. Des. 124(4), 642–645 (2002

    A family of Kurchatov-type methods and its stability

    Full text link
    [EN] We present a parametric family of iterative methods with memory for solving of nonlinear problems including Kurchatov¿s scheme, preserving its second-order of convergence. By using the tools of multidimensional real dynamics, the stability of members of this family is analyzed on low-degree polynomials, showing some elements of this class more stable behavior than the original Kurchatov¿s method. The iteration is extended for multi-dimensional case. Computational efficiencies of proposed technique is discussed and compared with the existing methods. A couple of numerical examples are considered to test the performance of the new family of iterations.The authors thank to the anonymous referees for their valuable comments and for the suggestions that have improved the final version of the paper. This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P and Generalitat Valenciana PROMETEO/2016/089.Cordero Barbero, A.; Soleymani, F.; Torregrosa Sánchez, JR.; Haghani, FK. (2017). A family of Kurchatov-type methods and its stability. Applied Mathematics and Computation. 294:264-279. https://doi.org/10.1016/j.amc.2016.09.021S26427929

    On the semilocal convergence of derivative free methods for solving nonlinear equations

    Get PDF
    We introduce a Derivative Free Method (DFM) for solving nonlinear equations in a Banach space setting. We provide a semilocal convergence analysis for DFM using recurrence relations. Numerical examples validating our theoretical results are also provided in this study to show that DFM is faster than other derivative free methods [9] using similar information
    corecore