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Influence of symmetric first-order divided differences on
Secant-like methods

M. A. HERNÁNDEZ-VERÓN1 , JOSÉ. L. HUESO2 and EULALIA MARTÍNEZ2

ABSTRACT. In this paper, by using symmetric first-order divided differences, we introduce a new family
of Secant-like iterative methods with quadratic convergence. Afterthought, we analyze its semilocal and local
behavior when the nonlinear operator F is not differentiable by imposing appropriate bounding conditions in
each case. Theoretical results have also been tested by solving a problem which shows the applicability of our
work.

1. INTRODUCTION

Solving nonlinear equations is a fundamental issue of numerical analysis because a
great variety of applied problems in engineering, physics, chemistry, biology, and statis-
tics, involve such kind of equations as a part of its solving process. We often use iterative
processes to approximate a simple solution x∗ of a nonlinear equation

(1.1) F (x) = 0.

We are interested in approximating a solution x∗ of a nonlinear system of equations
(1.1), where F : D ⊆ Rm → Rm is a continuous but non-differentiable nonlinear operator,
and D is a non-empty open convex domain in the space Rm, with values in the same space
Rm.

Newton’s method

x0 ∈ D, xn = xn−1 − [F ′(xn−1)]
−1F (xn−1), n ∈ N,

is the one of the most used iterative methods to approximate the solution x∗ of F (x) =
0. The quadratic convergence and the low operational cost of Newton’s method ensure
that it has a good computational efficiency. As Newton’s method needs the existence of
F ′, it cannot be applied when the operator F is not differentiable. So, if the operator
F is not differentiable, we have to choose the iterative processes carefully. The iterative
processes that do not use derivatives are generally less studied in the literature. This type
of methods generally includes divided differences [7] instead of derivatives. We shall
use the standard definition for the first order divided differences of an operator. Let us
denote by L(Rm,Rm) the space of bounded linear operators from Rm to Rm, see [2, 13].
An operator [x, y;H] ∈ L(Rm,Rm) is called a first order divided difference for the operator
H : D ⊆ Rm → Rm on the points x and y (x ̸= y) if the following equality holds

(1.2) [x, y;H](x− y) = H(x)−H(y).
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The best known iterative method that does not use derivatives in its algorithm is the
Secant method [5, 3],

(1.3)
{

x0, x−1 given in D,
xn+1 = xn − [xn−1, xn;F ]−1F (xn), n ≥ 0,

The use of the Secant method is interesting since the calculation of the first derivative F ′

is not required and the speed of convergence of the method of successive substitutions is
improved, although it is slower than Newton’s method. It is well known that the Secant
method is superlineal convergent with order of convergence (1 +

√
5)/2 (see [15]).

From the geometrical interpretation of the Secant method in the real case, it is clear that
if we consider a point of the segment that joins xn−1 and xn, yn = λxn + (1− λ)xn−1 with
λ ∈ [0, 1], the closer xn and yn are, the higher the speed of the convergence is. Accord-
ingly, in [16], an uniparametric family of Secant-like methods is considered, given by the
following algorithm:

(1.4)


x−1, x0 given in D,
yn = λxn + (1− λ)xn−1, λ ∈ [0, 1],

xn+1 = xn − [yn, xn;F ]
−1

F (xn),

This uniparametric family of iterative processes can be considered as a combination of
the Secant method (λ = 0) and, in the differentiable case, Newton’s method (λ = 1).
Moreover, its speed of convergence is close to that of Newton’s iteration, when λ is near
1(see [18]). However, the Secant-like methods (1.4) are superlineal convergent with order
of convergence (1 +

√
5)/2(see [18]).

The main objective of our work is to carry out a modification of the family of iterative
processes (1.4) that, maintaining a single parameter, allows us to define an uniparametric
family of iterative processes that, unlike (1.4), has quadratic convergence for whatever
value the parameter takes. It is well known that the symmetric divided differences ap-
proximate better the derivative than the one sided divided differences. We can see that the
Center-Steffensen and Kurchatov methods [14, 22] maintain the quadratic convergence of
Newton’s method by approximating the derivative through symmetric divided differ-
ences. Following this idea, from the uniparametric family (1.4), in this paper we consider
[xn − (yn − xn−1), xn + (yn − xn−1);F ] for approximating F ′(xn) in Newton’s method.
So, we obtain the uniparametric family of iterative processes given by the following algo-
rithm

(1.5)


x−1, x0 given in D, λ ∈ [0, 1],
yn = (1− λ)xn + λxn−1,
zn = (1 + λ)xn − λxn−1,

xn+1 = xn − [yn, zn;F ]
−1

F (xn).

This new uniparametric family of iterative processes can be considered as a combination
of the Kurchatov’s method (λ = 1) and, for differentiable case, Newton’s method (λ = 0),
both iterative processes with quadratic convergence.

Another objective of this work is to analyze the semilocal and the local convergence of
the new uniparametric family of iterative process (1.5). First, the semilocal study of the
convergence is based on demanding conditions to the initial approximations x−1 and x0,
from certain conditions on the operator F , and provide the so-called domain of parame-
ters corresponding to the conditions required to the initial approximations that guarantee
the convergence of sequence (1.5) to the solution x∗. Second, the local study of the con-
vergence is based on demanding conditions to the solution x∗, from certain conditions
on the operator F , and provide the so-called ball of convergence of (1.5), that shows the
accessibility to x∗ from the initial approximation x0 belonging to the ball.
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The rest of the paper is structured as follows: Section 2 is devoted to obtain the local
order of convergence of (1.5) assuming differentiable operators. Then, in the next sections
we set the semilocal and local convergence study of (1.5) for both differentiable and non-
differentiable operators. In Section 5, we perform some numerical tests and finally, we
give the conclusions.

Throughout the paper we consider F : D ⊆ Rm → Rm a continuous nonlinear operator
and D is a non-empty open convex domain in the Banach space Rm. Moreover, as it is
known [7], there exists a divided difference of order one [z, w;F ] ∈ L(Rm,Rm) for each
pair of different points z, w ∈ Ω and we denote B(x, ϱ) = {y ∈ Rm; ∥y − x∥ ≤ ϱ} and
B(x, ϱ) = {y ∈ Rm; ∥y− x∥ < ϱ}, respectively for the closed and open balls with center in
x and of radius ϱ > 0 .

2. LOCAL ORDER OF CONVERGENCE

The speed of convergence of an iterative method is usually measured by the order
of convergence of the method. An excellent study about the speed of convergence of a
sequence can be seen in [8]. The first definition of order of convergence was given in 1870
by Schröder [27], but a very commonly measure of speed of convergence in Banach spaces
is the R-order of convergence [24], which is defined as follows:

Let {xn} a sequence of points of a Banach space X converging to a point
x∗ ∈ X and let σ ≥ 1 and

en(σ) =

{
n if σ = 1,
σn if σ > 1,

n ≥ 0.

(a) We say that σ is an R-order of convergence of the sequence {xn} if
there are two constants b ∈ (0, 1) and B ∈ (0,+∞) such that

∥xn − x∗∥ ≤ Bben(σ).

(b) We say that σ is the exact R-order of convergence of the sequence {xn}
if there are four constants a, b ∈ (0, 1) and A,B ∈ (0,+∞) such that

Aaen(σ) ≤ ∥xn − x∗∥ ≤ Bben(σ), n ≥ 0.

In general, check double inequalities of (b) is complicated, so that normally only seek
upper inequalities as (a). Therefore, if we find an R-order of convergence σ of sequence
{xn}, we then say that sequence {xn} has order of convergence at least σ.

However, in the scalar case, xn+1 = Φ(xn) with {xn} ∈ R, a simple procedure to obtain
this lower bound for the R-order of convergence, as long as the iteration function Φ is
sufficiently differentiable with these derivatives satisfying certain conditions, it consists
in applying Taylor expansions. Thus, if for example their local error difference equation is
en+1 = eσn+O(eσ+1

n ), where ej = xj−x∗ with x∗ = Φ(x∗), then {xn} has R-order of conver-
gence at least σ. Taking into account the expression of the local error difference equation,
we extend this situation in the m-dimensional case, Rm, and we consider, without using
norms, the definition of the local order of convergence [11].

Definition 2.1. Given a one-step iterative method without memory, xn+1 = Φ(xn), the
local order of convergence is ρ ∈ N if there is an operator C ∈ Lρ(Rm,Rm), where
Lρ(Rm,Rm) the set of bounded ρ-linear operators, such that

en+1 = Ceρn +O(eρ+1
n ),

where eρn ∈ Rm × ...(ρ...× Rm.
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Given a one-step iterative method with memory, xn+1 = Φ(xn, xn−1, ..., xn−j+1), the
local order of convergence is ρ ∈ N if there are an operator C ∈ Lα1+α2+...+αj

(Rm,Rm)
and αk, nonnegative integers for 1 ≤ k ≤ j, such that

(2.6) en+1 = Ceα1
n eα2

n−1...e
αj

n−j+1 + o(eα1
n eα2

n−1...e
αj

n−j+1),

and ρ is the unique real positive root of the polynomial equation pj(t) = tj −α1t
j−1+ ...+

αj−1t− αj = 0 associated with (2.6).

Notice that if we apply Descartes’s rule to the previous polynomial, there is a unique
real positive root ρ that coincides with the local order of convergence (see [23, 29]).

On the other hand, note that a priori, when considering the m-dimensional space Rm,
this concept that we have just defined cannot be related to the R-order of convergence as
it happened in the scalar case R.

In this section we study the local order of convergence for the new uniparametric fam-
ily of iterative processes given by (1.5), assuming that the nonlinear operator F is differ-
entiable and we can obtain Taylor’s expansion in a neighborhood of the solution x∗. For
this purpose, we consider the characterization of divided difference operator introduced
in [23], given by

[x, x+ h;F ] =

∫ 1

0

F ′(x+ th) dt, (x, h) ∈ Rm × Rm,

and integrating the Taylor’s expansion of F ′(x+ th) around x we have:

[x, x+ h;F ] = F ′(x) +
1

2
F ′′(x)h+

1

6
F ′′′(x)h2 +O(h3).

Then, we establish the following result:

Theorem 2.1. Let F : D ⊆ Rm −→ Rm a sufficiently Fréchet differentiable function in a
non-empty open set D ⊆ Rm containing the solution x∗ of F (x) = 0. Suppose that F ′(x) is
continuous and non-singular at x∗, the initial approximations x−1 and x0 are chosen sufficiently
close to x∗. Then, the family of iterative processes (1.5) converges to x∗ and has local order of
convergence 2 for any value of the parameter λ ∈ [0, 1].

Proof. Let en = xn−x∗ the error in the n-th approximation to the solution x∗ of the system
F (x) = 0. As the initial approximations x−1 and x0 are chosen sufficiently close to x∗, we
can consider that the sequence {xn} converges to x∗.

We are going to develop the operator [yn, zn;F ], that approximates the derivative, con-
sidering in this case x = yn, x + h = zn and, therefore, hn = zn − yn = 2λ(en − en−1).
Thus, we obtain

(A) [yn, zn;F ] = F ′(yn) +
1

2
F ′′(yn)(zn − yn) +O((zn − yn)

2),

and, by using

yn = xn − λ(en − en−1) = xn − hn

2
,

zn = xn + λ(en − en−1) = xn +
hn

2
,

we obtain the following Taylor’s expansions around xn

F ′(yn) = F ′(xn)− F ′′(xn)
hn

2
+

1

2
F ′′′(xn)

(hn

2

)2

+ . . . ,(2.7)

F ′′(yn) = F ′′(xn)− F ′′′(xn)
hn

2
+

1

2
F (iv)(xn)

(hn

2

)2

+ . . . .(2.8)
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Now, we use the developments of function F (xn) and its successive derivatives in a
neighborhood of x∗ which take the form:

F (xn) = F ′(x∗)(en +A2e
2
n +A3e

3
n +A4e

4
n +A5e

5
n) +O(e6n),

F ′(xn) = F ′(x∗)(I + 2A2en + 3A3e
2
n + 4A4e

3
n + 5A5e

4
n) +O(e5n),

F ′′(xn) = F ′(x∗)(2A2 + 6A3en + 12A4e
2
n + 20A5e

3
n) +O(e4n).

where I is the identity operator in Rm and being Aj = 1
j!F

′(x∗)−1F (j)(x∗) ∈ Lj(Rm,Rm)

with Lj(Rm,Rm) the set of bounded j-linear operators, j = 1, 2, 3, . . . .

Then, we substitute this Taylor series in (2.7)-(2.8) and, taking into account the value of
hn in (A), we obtain the error equation for the divided difference operator [yn, zn;F ]:

[yn, zn;F ] = F ′(x∗)(I − 3λ2A3e
2
n−1 + 2A2en + 6λ2A3en−1en) +O (en, en−1) ,(2.9)

where O (en, en−1) denotes high order terms of en and en−1.
Now, we consider

[yn, zn;F ]−1 = (I +B1e
2
n−1 +B2en +B3en−1en)F

′(x∗)−1 +O (en, en−1) ,

and therefore, from [yn, zn;F ]−1[yn, zn;F ] = I , we deduce by product of series, (see [10,
12]), the following

B1 = 3λ2A3, B2 = −2A2, and B3 = −6λ2A3.

Then, we obtain for the inverse operator

[yn, zn;F ]−1 = (I + 3λ2A3e
2
n−1 − 2A2en − 6λ2A3en−1en)F

′(x∗)−1 +O (en, en−1) .

So, we get the error equation of the method:

en+1 = xn − x∗ − [yn, zn;F ]−1F (xn) = −3λ2A3e
2
n−1en −A2e

2
n +O (en, en−1) .(2.10)

Therefore, if we assume that the family of iterative processes (1.5) has local order of con-
vergence r, we have that en+1 ≈ Dne

r
n and also en ≈ Dn−1e

r
n−1. With these equivalences

the error equation (2.10) turns up in

en+1 ≈ DnD
r
n−1e

r2

n−1 ≈ −3λ2A3Dn−1e
r+2
n−1 −A2D

2
n−1e

2r
n−1,

whose associated equations are r2 − 2r = 0, if we consider r + 2 ≤ 2r, or r2 − r − 2 = 0,
if we consider r + 2 ⩾ 2r. Both of them with positive solution equal 2, which proves that
the proposed method has at least quadratic local order of convergence. □

In the Remarks section, at point 2, we study the computational order of convergence
(5.27) for the iterative processes (1.5), seeing that their computational order of convergence
tends to be quadratic. While, in the case of iterative processes (1.4), their computational
order of convergence tends to (1 +

√
5)/2.

Note that the difference in operational cost between families of iterative processes (4)
and (5) is 2m more products per iteration in family (5). Taking into account the quadratic
convergence that we have just tested for (1.5), and that (1.4) has superlinear convergence
(1 +

√
5)/2, it is evident that the new family of iterative processes (1.5) has a computa-

tional efficiency greater that of (1.4).
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3. SEMILOCAL CONVERGENCE

To analyze the semilocal convergence of iterative processes that do not use derivatives
in their algorithms, the conditions usually required for the divided difference operator are
the Lipschitz and Hölder continuous conditions (see [19]). Notice that in these conditions
the operator F must be differentiable [16]. To generalize the above conditions and even
to consider situations in which operator F is non-differentiable, we will consider the ω-
continuous condition (3.11) in D for the operator first order divided difference of operator
F . Therefore, we will consider λ ∈ (0, 1], eliminating the case corresponding to Newton’s
method, which requires the differentiability of the operator F .

Now, we provide a semilocal convergence result for the uniparametric family of itera-
tive processes given in (1.5). For this purpose, we denote An = [yn, zn, F ] and assume the
following conditions (SL):

(SL1): There exist x−1, x0 ∈ D, with ∥x−1 − x0∥ = α, such that there exists A0
−1

with ∥A0
−1∥ ≤ β and ∥A0

−1F (x0)∥ ≤ η.
(SL2): There exists ω : R+×R+ → R+, a non decreasing continuous function in its

two arguments, such that

(3.11) ∥[x, y;F ]− [v, w;F ]∥ ≤ ω(∥x− v∥, ∥y − w∥); x, y, v, w ∈ D,

with x ̸= y and u ̸= v.
(SL3): The equation

(3.12) (1−Q(t))t− η = 0,

has at least one positive zero, and we denote by R the smallest positive zero.
Where Q(t) =

q

1− βω(t+ λα, t+ λ(η + α))
, with q = max{ω(λα, η+λα), ω(λη, (1+

λ)η)}.
(SL4): B(x0, R+ η) ⊆ D and q + βw(R+ λα, t+ λ(η + α)) < 1.

Theorem 3.2. Assume that conditions (SL) are verified. Then, by taking two different starting
points x−1, x0 ∈ B(x0, R + η), the sequence {xn} given by the family of iterative processes (1.5)
is well defined, belongs to B(x0, R) and converges to x∗ ∈ B(x0, R) a solution of the equation
F (x) = 0.

Proof:
First of all we notice that, by taking two different points x−1, x0 ∈ B(x0, R + η), with
∥x−1 − x0∥ = α, from (1.5), we obtain

∥y0 − x0∥ ≤ λ∥x−1 − x0∥ = λα < R+ η

∥z0 − x0∥ ≤ λ∥x0 − x−1∥ = λα < R+ η.(3.13)

So, y0, z0 ∈ B(x0, R+ η). Moreover, as λ ∈ (0, 1] and x−1 ̸= x0, it follows that

z0 − y0 = 2λ(x0 − x−1) ̸= 0,

therefore, y0 and z0 are a pair of different points in B(x0, R+ η). On the other hand, from
(3.12), we have that ∥x1 − x0∥ ≤ ∥A0

−1∥∥F (x0)∥ ≤ η < R. Then x1 ∈ B(x0, R).
By a reasoning similar to that considered in the case n = 0, from (1.5), we have that

∥y1 − x0∥ ≤ (1− λ)∥x1 − x0∥ = ∥x1 − x0∥ − λ∥x1 − x0∥ < R+ η,

∥z1 − x0∥ ≤ (1 + λ)∥x1 − x0∥ ≤ ∥x1 − x0∥+ λ∥x1 − x0∥ < R+ λη < R+ η.(3.14)

Moreover, if x0 is not a solution of F (x) = 0 then, as λ ∈ (0, 1] and x1 ̸= x0, we have
z1−y1 = 2λ(x1−x0) ̸= 0. Therefore, y1 and z1 are a pair of different points in B(x0, R+η).
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Notice that, if x0 were a solution of F (x) = 0 then xn = x1 = x0, for all n ⩾ 2, and the
family of iterative processes would end with x∗ = x0. Then, converges to x∗.

As y1 and z1 are a pair of different points in B(x0, R + η), [y1, z1;F ] is well defined.
Moreover, we are now in conditions to prove that A−1

1 exists. So, we have that

∥I −A0
−1A1∥ ≤ ∥A−1

0 ∥∥A0 −A1∥ ≤ βω(∥y1 − y0∥, ∥z1 − z0∥)
≤ βω(∥(1− λ)(x1 − x0) + λ(x0 − x−1)∥, ∥(1 + λ)(x1 − x0)− λ(x0 − x−1)∥)
≤ βω((1− λ)η + λα, (1 + λ)η + λα)

≤ βω((1− λ)η + λα,R+ λ(η + α)) < 1.

Notice that the previous bound follows from the hypothesis and using the non decreasing
character of ω−function, for being λ ∈ (0, 1] and η < R, so it follows that ω((1 − λ)η +
λα, (1 + λ)η + λα) ≤ ω(R+ λα, (1 + λ)R+ λα) < 1.

Now, by applying Banach Lemma [20], we have that A−1
1 exists and

∥A−1
1 ∥ ≤ β

1− βω((1− λ)η + λα, (1 + λ)η + λα)
.

Therefore, x2 is well defined.
Now, we use the characterization of divided differences,

[x0, x1, F ](x0 − x1) = F (x0)− F (x1),

and, by the definition of function iteration (1.5) for obtaining x1, it follows: F (x0) =
A0(x0 − x1). Then

F (x1) = F (x0)− [x0, x1, F ](x0 − x1) = (A0 − [x0, x1, F ])(x0 − x1).

This allows to have

∥F (x1)∥ ≤ ω(∥y0 − x0∥, ∥z0 − x1∥)∥x0 − x1∥ ≤ ω(λα, η + λα)∥x0 − x1∥

and then, by (1.5) for obtaining x2 and as η < R, it is verified

∥x2 − x1∥ ≤ ∥A−1
1 ∥∥F (x1)∥ ≤ βω(λα, η + λα)

1− βω((1− λ)R+ λα,R+ λ(η + α))
∥x0 − x1∥

≤ Q(R)∥x1 − x0∥ < ∥x1 − x0∥ ≤ η.

Moreover, we also get

∥x2 − x0∥ ≤ ∥x2 − x1∥+ ∥x1 − x0∥ ≤ (Q(R) + 1)η <
η

1−Q(R)
= R.

Then, x2 ∈ B(x0, R) and ∥x2 − x1∥ < ∥x1 − x0∥.
Next, by a mathematical induction procedure, we assume that for k = 1, 2, ..., n−1, the

following assertions are verified:

(i)k yk, zk ∈ B(x0, R+ η) with yk ̸= zk.

(ii)k ∥A−1
k ∥ ≤ β

1− βω(R+ λα,R+ λ(η + α))
.

(iii)k ∥xk+1 − xk∥ ≤ Q(R)∥xk − xk−1∥ ≤ ... ≤ Q(R)k∥x1 − x0∥ < ∥x1 − x0∥ ≤ η.

(iv)k ∥xk+1 − x0∥ ≤ (Q(R)k +Q(R)k−1 + ...+Q(R) + 1)η <
η

1−Q(R)
= R.

Under these hypothesis we conclude the process studding the bounds for k = n.
As before, we suppose that xn−1 is not solution of F (x) = 0. Otherwise, xn−1 = xn =

xk, for all k ⩾ n, and then the result is proved with x∗ = xn−1. Next, by using the
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introduced process and by (1.5), we have that

∥yn − x0∥ ≤ ∥xn − x0∥+ λ∥xn−1 − xn∥ < R+ λ∥x1 − x0∥ ≤ R+ η,

∥zn − x0∥ ≤ ∥xn − x0∥+ λ∥xn − xn−1∥ < R+ λ∥x1 − x0∥ ≤ R+ λη,

∥yn − xn∥ ≤ λ∥xn − xn−1∥ < λ∥x1 − x0∥ ≤ λη,

∥zn − xn∥ ≤ λ∥xn−1 − xn∥ < λ∥x1 − x0∥ ≤ λη,

yn − zn = 2λ(xn−1 − xn) ̸= 0.

So, we have that yn and zn are a pair of different points such that yn, zn ∈ B(x0, R + η),
what proves item (i)n. Moreover, [yn, zn;F ] is well defined and we obtain

∥I −A0
−1An∥ ≤ ∥A−1

0 ∥∥A0 −An∥
≤ βω(∥yn − y0∥, ∥zn − z0∥)
≤ βω(R+ λα,R+ λ(η + α)) < 1,

where we have used the induction hypotheses and

∥yn − y0∥ ≤ ∥(1− λ)(xn − x0) + λ(xn−1 − x0) + λ(x0 − x−1)∥ < R+ λα,

∥zn − z0∥ ≤ ∥(xn − x0) + λ(xn − xn−1)− λ(x0 − x−1)∥ < R+ λ(η + α).

So, by Banach Lemma [20], we have the existence of A−1
n and (ii)n is proved.

Now, we use the definition of first order divided difference and our iterative process
(1.5) to obtain:

F (xn) = F (xn−1)− [xn−1, xn, F ](xn−1 − xn) = (An−1 − [xn−1, xn, F ])(xn−1 − xn).

This allows to have
(3.15)
∥F (xn)∥ ≤ ω(∥yn−1 − xn−1∥, ∥zn−1 − xn∥)∥xn−1 − xn∥ ≤ ω(λη, (1 + λ)η)∥(xn − xn−1)∥,

where we have used ∥yn−1 − xn−1∥ ≤ λη, and

∥zn−1 − xn∥ ≤ ∥(xn−1 − xn) + λ(xn−1 − xn−2)∥ ≤ (1 + λ)η.

Then, to prove (iii)n, we consider

∥xn+1 − xn∥ ≤ ∥A−1
n ∥∥F (xn)∥

≤ w(λη, (1 + λ)η)

1− βw(R+ λα,R+ λ(η + α))
∥(xn−1 − xn)∥

≤ Q(R)∥xn−1 − xn∥
≤ Q(R)n∥x1 − x0∥ < ∥x1 − x0∥.

On the other hand, by the induction hypothesis (iv)n−1, we have that the iterates {xn}
defined by (1.5) remain in the ball B(x0, R) since

∥xn+1 − x0∥ ≤ ∥xn+1 − xn∥+ ∥xn − x0∥ ≤ (Q(R)n +Q(R)n−1 + ...+Q(R) + 1)η < R.

Therefore the mathematical induction procedure is finished.
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Next, to conclude the proof, we prove that {xn} is a Cauchy sequence. For this, we
consider

∥xn+k − xn∥ ≤
k∑

j=1

∥xn+j − xn−(j−1)∥

≤ (Q(R)k−1 +Q(R)k−2 + ...+Q(R) + 1)∥xn+1 − xn∥

≤ 1−Q(R)k

1−Q(R)
∥xn+1 − xn∥ ≤ 1

1−Q(R)
Q(R)nη.

So, {xn} is a Cauchy sequence that converges to x∗ ∈ B(x0, R). Moreover, in order to
have that the limit x∗ is a solution of F (x) = 0, we notice that by using (3.15) we get

(3.16) ∥F (xn)∥ ≤ ω(λη, (1 + λ)η)∥(xn − xn−1)∥
and taking limits when n → +∞, by the continuity of the operator F , we have that
F (x∗) = 0. □

Concerning the uniqueness of the solution x∗, we have the following result.

Theorem 3.3. Under the conditions (SL) suppose that there exists R̃ ≥ R such that

(3.17) βω(R, R̃+ λα) < 1.

Then, x∗ is the unique solution of equation (1.1) in B(x0, R̃) ∩D.

Proof. If we assume the existence of y∗ ∈ B(x0, R̃) ∩ D, be such that F (y∗) = 0, we can
write

(3.18) [x∗, y∗;F ](x∗ − y∗) = F (x∗)− F (y∗) = 0.

Then, using (SL1) and (SL2), we get in turn that

∥I − [y0, z0;F ]−1[x∗, y∗;F ]∥ ≤ ∥[y0, z0;F ]−1∥∥[y0, z0;F ]− [x∗, y∗;F ]∥
≤ βω(∥y0 − x∗∥, ∥z0 − y∗∥)
≤ βω(∥y0 − x∗∥, ∥x0 − y∗∥+ λ∥x0 − x−1∥)
≤ βω(R, R̃+ λα) < 1.

Hence, there exists [x∗, y∗;F ]−1. Then, from (3.18), we deduce that x∗ = y∗. □

4. LOCAL CONVERGENCE FROM AUXILIARY POINTS

In this Section, we focus our attention on the analysis of the local convergence of se-
quence (1.5). We present a local convergence analysis for the uniparametric family of
iterative processes (1.5) in order to approximate a locally unique solution of the equation
(1.1), both in the differentiable case and in the non-differentiable case for the operator F .
Therefore, we will consider λ ∈ (0, 1] throughout this section to contemplate both situa-
tions.

On the other hand, it is common for the study of local convergence of derivative-free
iterative processes to show a small contradiction. Usually, in many known results of local
convergence (see [6], [9], [19], [21], [25], [26], and references therein given) the existence
of the operator [F ′(x∗)]−1 is required, forcing the operator F to be Fréchet differentiable.
These results therefore study the accessibility of the iterative process for Fréchet differen-
tiable operators. However, in [17], by modifying the hypothesis about the solution x∗ and
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using an auxiliary point, a result of local convergence for (1.4) is obtained, where the op-
erator F is non-differentiable. This is the procedure that we are going to follow to obtain
our local convergence result for (1.5).

We shall show the local convergence of method (1.4) based on the following conditions
(L):

(L1) There exists x∗ ∈ D with F (x∗) = 0, δ, β > 0 and x̃ ∈ D, with ∥x̃ − x∗∥ = δ, such
that there exists [x∗, x̃;F ]−1 ∈ L(Rm,Rm) with ∥[x∗, x̃;F ]−1∥ ≤ β.

(L2) There exists ω : R+ × R+ −→ R+ a non-decreasing continuous function in its two
variables, such that

∥[x, y;F ]− [u, v;F ]∥ ≤ ω(∥x− u∥, ∥y − v∥)

holds for each x, y, u, v ∈ D, with x ̸= y and u ̸= v.
(L3) The equation

(4.19) d(1 + λ)βω(2λt, (1 + 2λ)t) + (d− t)(1− βω0(t, δ + t) = 0

has at least one positive zero, and we denote by R the smallest positive zero.
Where d = ∥x0 − x∗∥ and ω0 is given by the relation

(4.20) ∥[x, y;F ]− [x∗, x̃;F ]∥ ≤ ω0(∥x− x∗∥, ∥y − x̃∥)

for each x, y ∈ D, with x ̸= y, being ω0 : R+ × R+ −→ R+ a non-decreasing
continuous function in its two variables.

(L4) B(x∗, R) ⊆ D and β (ω(2λR, (1 + 2λ)R) + ω0(R, δ +R)) < 1.
Notice that condition (4.20) is not additional to (3.11), because obviously, if an operator

divided difference is ω-continuous in D, condition (3.11), the operator divided difference
is ω0-center-continuous in x∗, x̃ ∈ D for each pair of different points x, y ∈ D. In prac-
tice the computation of function ω involves the computation of function ω0 as a special
case. However, we have ω0(s, t) ≤ ω(s, t) for each s, t ∈ R+ and the function

ω

ω0
can

be arbitrarily large ([6],[25]). Taking into account a result given in [6], by combining ω-
continuous and ω0-center-continuous conditions, we can to obtain a wider choice of initial
points to increase the accessibility of iterative process, tighter error distances and a more
precise uniqueness ball.

Next, we present an auxiliary perturbation result on the divided difference of order one
for the operator F .

Lemma 4.1. Suppose that (L) conditions hold. If y, z ∈ B(x∗, R), with y ̸= z, then there exists
[y, z;F ]−1 ∈ L(Y,X) and

(4.21) ∥[y, z;F ]−1∥ ≤ β

1− βω0(∥y − x∗∥, ∥z − x̃∥)
≤ β

1− βω0(R, δ +R)
.

Proof. Using (4.20), we obtain in turn

∥I − [x∗, x̃;F ]−1[y, z;F ]∥ ≤ ∥[x∗, x̃;F ]−1∥[x∗, x̃;F ]− [y, z;F ]∥
≤ βω0(∥x∗ − y∥, ∥x̃− x∗∥+ ∥x∗ − z∥)
< βω0(R, δ +R).

Now, from (L4), we have that βω0(R, δ + R) < 1. Then, by the Banach Lemma on
invertible operators [20], there exists the operator [y, z;F ]−1 so that (4.21) is satified. □
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Lemma 4.2. Suppose that (L) conditions hold and consider n ⩾ 1. If xn−1, xn−2 ∈ B(x∗, R),
with xn−1 ̸= xn−2, and yn−1, zn−1 ∈ D, then, sequence {xn} generated by the family of iterative
processes (1.5) is well defined and

∥xn − x∗∥ < M(R)∥xn−1 − x∗∥, where M(R) =
βω(2λR, (1 + 2λ)R)

1− ω0(R, δ +R)
.

Proof. Firstly, note that there exists [yn−1, zn−1;F ], since that yn−1 − zn−1 = 2λ(xn−2 −
xn−1) ̸= 0, and therefore yn−1 ̸= zn−1. Secondly, from the hypotheses given and applying
Lemma 4.1, it follows that An−1 is invertible and

∥A−1
n−1∥ = ∥ [yn−1, zn−1;F ]

−1 ∥ ≤ β

1− βω0(R, δ +R)
.

So that xn is well defined. Now, from (1.5), it follows

xn − x∗ = xn−1 −A−1
n−1F (xn−1)− x∗

= .A−1
n−1(An−1(xn−1 − x∗)− F (xn−1))

= A−1
n−1([yn−1, zn−1;F ] (xn−1 − x∗)− F (xn−1)− F (x∗))

= A−1
n−1([yn−1, zn−1;F ]− [xn−1, x

∗;F ])(xn−1 − x∗).

Taking norms in the previous expression and applying conditions (3.11) and (4.20), we
obtain

∥xn − x∗∥ ≤ ∥A−1
n−1∥ω(∥yn−1 − xn−1∥, ∥zn−1 − x∗∥)∥xn−1 − x∗∥

≤ β

1− βω0(R, δ +R)
ω(λ∥xn−1 − xn−2∥, (1 + λ)∥xn−1 − x∗∥+ λ∥xn−2 − x∗∥)∥xn−1 − x∗∥

<
βω(2λR, (1 + λ)R+ λR)

1− βω0(R, δ +R)
∥xn−1 − x∗∥ = M(R)∥xn−1 − x∗∥.

So, the proof is complete. □

Taking into account the previous results, we need to require that yn−1, zn−1 ∈ B(x∗, R)
is verified when the hypotheses xn−1, xn−2 ∈ B(x∗, R) are true. Our immediate aim is
to analyze this condition. If we denote d = ∥x0 − x∗∥ and assume that x1, x2, . . . , xn−1 ∈
B(x∗, R) and the conditions of the previous results are satisfied, it follows that

∥yn−1 − x∗∥ ≤ (1− λ)∥xn−1 − x∗∥+ λ∥x∗ − xn−2∥ < R,

and

∥zn−1 − x∗∥ ≤ (1 + λ)∥xn−1 − x∗∥+ λ∥xn−2 − x∗∥ ≤ ((1 + λ)M(R) + λ) ∥xn−2 − x∗∥.
However, from the Lemma 4.2, we have

∥xn−2 − x∗∥ ≤ M(R)n−2∥x0 − x∗∥.
Therefore, as M(R) < 1 from condition (L4), we obtain

∥xn−2 − x∗∥ < ∥x0 − x∗∥ = d

and then, we can consider

∥zn−1 − x∗∥ < ((1 + λ)M(R) + 1)d = R

Obviously, we get d < R.
Then, R must be a positive root of the equation:

(4.22) ((1 + λ)M(R) + 1)d = R,

that is to say, the equation (4.19). Obviously, we get R > d.
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We can now show the main result of local convergence for method (1.5) using the (L)
conditions.

Theorem 4.4. Suppose that (L) conditions hold. If x−1, x0 ∈ B(x∗, R), with x−1 ̸= x0, ∥x0 −
x∗∥ = d and ∥x−1 − x∗∥ <

1

λ
(R− d), then, sequence {xn} generated for x−1, x0 ∈ B(x∗, R) by

the family of iterative processes (1.5) is well defined, remains in B(x∗, R), for each n = 0, 1, 2, ...,
and converges to x∗.

Proof. Taking into account that x−1, x0 ∈ B(x∗, R), from (1.5) and λ ∈ (0, 1], we have

∥y0 − x∗∥ ≤ (1− λ)∥x0 − x∗∥+ λ∥x−1 − x∗∥ < R

and
∥z0 − x∗∥ ≤ ∥x0 − x∗∥+ λ∥x−1 − x∗∥ < R.

So, y0, z0 ∈ B(x∗, R) ⊆ D. Moreover, as λ ∈ (0, 1], it follows that

z0 − y0 = 2λ(x0 − x−1) ̸= 0,

therefore, y0 and z0 are a pair of different points in B(x0, R) and, from Lemma 4.1, there
exists A0 = [y0, x0;F ]−1. So, x1 is well defined. Then, from Lemma 4.2, we have ∥x1 −
x∗∥ < M(R)∥x0 −x∗∥ < ∥x0 −x∗∥ = d < R. So, if x1 = x0 then xn = x∗, for all n ⩾ 0, and
the result is proved. In other case, x1 ̸= x0, we have x1, x0 ∈ B(x∗, R) and, moreover, we
obtain

∥y1 − x∗∥ ≤ (1− λ)∥x1 − x∗∥+ λ∥x0 − x∗∥ < R

and, from (4.22), we have

∥z1 − x∗∥ ≤ (1 + λ)∥x1 − x∗∥+ λ∥x0 − x∗∥ < [(1 + λ)M(R) + λ]d ≤ R.

So, y1, z1 ∈ B(x∗, R) ⊆ D. Moreover, as λ ∈ (0, 1], it follows that

z1 − y1 = 2λ(x1 − x0) ̸= 0,

therefore, y1 and z1 are a pair of different points in B(x∗, R) and, from Lemma 4.1, there
exists A1 = [y1, x1;F ]−1. Therefore, x2 is well defined.

Then, by a mathematical inductive procedure, it is easy to check that for all n ⩾ 1 the
following items are verified:

(i) xn ∈ B(x∗, R),
(ii) yn, zn ∈ B(x∗, R) ⊆ D are a pair of different points,

(iii) ∥xn − x∗∥ < M(R)∥xn−1 − x∗∥ < M(R)n−1∥x1 − x0∥ < ∥x1 − x0∥.

Therefore, the sequence {xn} given by (1.5) remains in B(x∗, R). Moreover, as {∥xn −
x∗∥} is a strictly decreasing sequence of positive real numbers, it follows that {xn} con-
verges to x∗. □

Concerning the uniqueness of the solution x∗, we have the following result.

Theorem 4.5. Under the conditions (L) suppose that there exists R̃ ≥ R such that

(4.23) βω0(0, δ + R̃) < 1.

Then, x∗ is the unique solution of equation (1.1) in B(x∗, R̃) ∩D.
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Proof. Let y∗ ∈ B(x∗, R̃) ∩ D be such that F (y∗) = 0. Then, using (4.20), we get in turn
that

∥I − [x∗, x̃;F ]−1[x∗, y∗;F ]∥ ≤ ∥[x∗, x̃;F ]−1∥∥[x∗, x̃;F ]− [x∗, y∗;F ]∥
≤ βω0(∥x∗ − x∗∥, ∥x̃− y∗∥)
≤ βω0(0, δ + R̃) < 1.

Hence, there exists [x∗, y∗;F ]−1. Then, from 0 = F (x∗)− F (y∗) = [x∗, y∗;F ](x∗ − y∗), we
deduce that x∗ = y∗. □

5. NUMERICAL EXPERIMENTS

An important class of problems for ordinary differential equations consist of what are
called boundary value problems [1, 28]. A typical example is to find a solution of the
second-order differential equation

(5.24)
d2x(t)

dt2
= ϕ(t, x(t)),

where ϕ : Ω ⊆ [a, b]× R → R, a, b ∈ R which satisfies the boundary conditions

x(a) = A and x(b) = B.

Extensive discussions of (5.24), with applications to a variety of physical problems, can be
found in above mentioned references.

Next, we show the application of the previous study to the following boundary value
problem:

(5.25)
d2x(t)

dt2
+ x(t)2 + |x(t)|+ P = 0,

x(0) = 0 = x(1).

with P ∈ R.
To solve this problem by finite differences, we start by drawing the usual grid line with

grid points ti = ih, where h = 1/n and n is an appropriate integer. Note that x0 and xn

are given by the boundary conditions, then x0 = 0 = xn, and our work is to find the other
xi (i = 1, 2, . . . , n− 1). To do this, we begin by replacing the second derivative x′′(t) in the
differential equation with its approximation

x′′(t) ≈ [x(t+ h)− 2x(t) + x(t− h)]/h2,

x′′(ti) = (xi+1 − 2xi + xi−1)/h
2, i = 1, 2, . . . , n− 1.

So, we have the following system of non-linear equations

(5.26)


2x1 − h2x2

1 − h2|x1| − x2 − h2P = 0,

−xi−1 + 2xi − h2x2
i − h2|xi| − xi+1 − h2P = 0, i = 2, 3, . . . , n− 2,

−xn−2 + 2xn−1 − h2x2
n−1 − h2|xn−1| − h2P = 0.

We therefore have an operator F : Rn−1 → Rn−1 such that F (x) = Mx− h2φ(x), where

M =


2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2

 , φ(x) =


x2
1 + |x1|+ P

x2
2 + |x2|+ P

...
x2
n−1 + |xn|+ P

 , x =


x1

x2

...
xn−1
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Let x ∈ Rn−1 and and choose the norm ∥x∥ = max
1≤i≤n−1

|xi|. The corresponding norm

on A ∈ Rn−1 × Rn−1 is

∥A∥ = max
1≤i≤n−1

n−1∑
j=1

|aij |.

Moreover, we then use the divided difference of first order given by [u,v;F ] = ([u,v;F ]ij)
n−1
i,j=1 ∈

L(Rn−1,Rn−1), where

[u,v;F ]ij =
1

uj − vj
(Fi(u1, . . . , uj , vj+1, . . . , vn−1)− Fi(u1, . . . , uj−1, vj , . . . , vn−1)) ,

u = (u1, u2, . . . , un−1)
T and v = (v1, v2, . . . , vn−1)

T . Then, in this case we have

[x,y;F ] = M − h2 · Diag




x1 + y1
x2 + y2
. . . . . . . . .

xn−1 + yn−1

+


|x1|−|y1|
x1−y1

|x2|−|y2|
x2−y2

. . . . . . . . .
|xn−1|−|yn−1|
xn−1−yn−1




and, therefore, we obtain

∥[x,y;F ]− [u,v;F ]∥ ≤ h2(∥x− u∥+ ∥y − v∥) + 2h2.

So, ω(s, t) = h2(s+ t).

5.1. The semilocal case. In this problem we consider n = 10, P = 2, D = B(x0, 2)
and we refer to stage 1 when we take starting guesses x−1 = (1/2, ..., 1/2), and x0 =
(1/3, ..., 1/3). Then, by obtaining the bounds used in our theoretical study, one has α =
0.1667, β = 15.138021, η = 0.637074 and the existence ball radius can be seen in Table 1,
where we observe that as λ approximates to 0 the radius are better, which corresponds
with Newton’s method (λ = 0). Moreover in all cases the solution is unique in the whole
domain B(x0, 2).

λ q R

0.2 0.028919 0.6794
0.4 0.031467 0.6888
0.6 0.034015 0.6956
0.8 0.036564 0.7077

TABLE 1. Radii of existence ball for different values of λ and stage 1.

λ q R

0.1 0.022273 0.1969
0.3 0.023030 0.1974
0.5 0.023788 0.1979
0.7 0.024545 0.1984
0.9 0.025303 0.1989

TABLE 2. Radii of existence ball for different values of λ and stage 2.

Now, we refer to stage 2 when we take starting points

x−1 = (0.2, 0.4, 0.6, 0.8, 0.9, 0.8, 0.6, 0.4, 0.2),

x0 = (0.3, 0.5, 0.7, 0.9, 0.1, 0.9, 0.7, 0.5, 0.3).
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In this case, we obtain the parameters α = 0.1, β = 17.166258, and η = 0.1894 . So, Table 2
shows the corresponding values of the existence ball radii for stage 2. Note that the results
are similar to that of Table 1.

Moreover, we run the family of iterative processes (1.5) with Matlab 2018 by using as
stopping criteria ||xn+1 − xn|| ≤ 10−23 and we can check in Tables 3 and 4 the number
of iterations needed k, the distance between the last two iterates and the value of the
nonlinear operator F at the approximated solution.

λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8
k 5 5 6 6

||xn+1 − xn|| 6.2242e-29 6.2242e-29 2.5150e-40 2.3414e-40
||F (xn+1)|| 2.9284e-40 1.6978e-40 9.7575e-41 2.0877e-40

TABLE 3. Numerical results for stage 1.

λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7 λ = 0.9
k 6 6 6 6 6

||xn+1 − xn|| 3.0122e-36 3.0115e-36 1.983e-29 1.06895e-27 4.91376e-27
||F (xn+1)|| 1.24831e-40 8.79882e-41 1.04425e-40 1.0474e-40 6.76703e-41

TABLE 4. Numerical results for stage 2.
In Table 5 we can observe the approximated solution obtained for problem (5.25) with

different starting guesses, in both stages 1 and 2 the iterates converge to the same solution.

t x(t) t x(t)

0 0 0.6 0.275864
0.1 0.101628 0.7 0.240492
0.2 0.182137 0.8 0.182137
0.3 0.240492 0.9 0.101628
0.4 0.275864 1.0 0
0.5 0.287717

TABLE 5. Approximated solution for problem (5.25)

Now, we compare the results obtained in Table 3 and Table 4 with the ones obtained for
the already known uniparametric family of Secant-like methods whose iterative function
is given by (1.4), the corresponding results in Table 6 and 7 indicate that the new methods
introduced in this study are more competitive since with less iterations we reach same
accuracy.

λ = 0 λ = 0.4 λ = 0.6 λ = 0.8
k 7 7 7 6

||xn+1 − xn|| 8.5853e-36 2.0877e-37 1.1679e-25 3.0302e-28
||F (xn+1)|| 2.2799e-59 4.8636e-62 3.3351e-43 1.3818e-47

TABLE 6. Numerical results for stage 1 and family (1.4).
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λ = 0 λ = 0.4 λ = 0.6 λ = 0.8
k 7 7 7 7

||xn+1 − xn|| 4.8228e-27 2.6166e-29 2.3952e-31 2.8383e-35
||F (xn+1)|| 3.1482e-45 5.1081e-49 2.0493e-52 6.2289e-59

TABLE 7. Numerical results for stage 2 and family (1.4).

5.1.1. Remarks. 1.- Notice that if we take different starting guess making the non-differentiable
case more evident when some components of the initial points are negative and others
positive, that is,

x−1 = (−0.2,−0.4,−0.6,−0.8, 0.9, 0.8, 0.6, 0.4, 0.2),

x0 = (−0.3,−0.5,−0.7,−0.9, 0.1, 0.9, 0.7, 0.5, 0.3),

the iterative method converges to the same solution and we obtain similar results that
with previous initial guesses, the results can be checked in Table 8.

λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8
k 6 6 6 6

||xn+1 − xn|| 1.2281e-30 1.43003e-26 1.99746e-25 5.58169e-25
||F (xn+1)|| 1.17495e-58 8.05584e-55 1.57166e-52 1.22725e-51

TABLE 8. Numerical results for starting guess given in Remark with (1.5).

2.- Moreover, in this case we also check the approximated computational order of con-
vergence by obtaining in each iteration the following value:

(5.27) pn ≈ log(||xn+1 − xn)||/||xn − xn−1)||
log(||xn − xn−1)||/||xn−1 − xn−2)||

n = 2, 3, ...

In Table (9) we can check the behavior of the method studied in this work in the first
6 iterations, with λ = 0.4 and for starting guess given in previous remark. We notice
that in the last column the sequence of iterates converges to 2, that is the value of the
computational order of convergence. We compare the results with the ones obtained for
secant method (1.4) with same value of λ, see Table (10), one can check the improvement
obtained by the new iterative method.

n ||xn+1 − xn|| ||F (xn+1)|| pn
1 1.83974 0.02076
2 0.18714 0.00088
3 0.00871 2.98893e-7 1.34161
4 0.000003 4.7367e-14 2.55328
5 5.56006e-13 1.21735e-27 1.99856
6 1.43003e-26 8.05584e-55 1.99987

TABLE 9. Numerical results for the 6 first iterations by iterative method (1.5).
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n ||xn+1 − xn|| ||F (xn+1)|| pn
1 1.84328 0.02004
2 0.16339 0.00234
3 0.01681 0.000007 0.93858
4 0.00008 3.49104e-9 2.31441
5 3.97475e-8 8.18631e-15 1.46115
6 9.57931e-14 8.99367e-24 1.68193

TABLE 10. Numerical results for the 6 first iterations by iterative method (1.4).

5.2. The local case. In this case we consider P = 0. So, the solution of F (x) = 0 is
x∗ = (0, ...., 0) ∈ Rn−1. In order to obtain the local convergence ball for this problem
we take n = 10, D = B(x0, 2) and we refer to stage 3 when we take starting guesses
x−1 = (1/3, ..., 1/3), x0 = (1/5, ..., 1/5), and x̃ = (1/2, ..., 1/2). Then, the conditions
established in section 4 follow with δ = 0.1667, β = 14.2392 and the equation given in
(L3) gives us the local convergence radii that can be seen in Table 11, for different values
of parameter λ. We observe that as λ increases, so do the radius. Moreover in all cases the
solution is unique in the whole domain, being R̃ = 2 the uniqueness radius. Now, we refer
to stage 4 when we take starting points x−1 = (0.2, 0.4, 0.6, 0.8, 0.9, 0.8, 0.6, 0.4, 0.2)/3,
x0 = x−1/2, and x̃ = (x−1 + x0)/2. Then, the corresponding values for stage 4 can also
be seen in Table 12, being the parameters δ = 0.225 and β = 14.2553.

λ 0.2 0.4 0.6 0.8
R 0.3523 0.4138 0.5127 0.7612

TABLE 11. Radii of convergence ball for different values of λ and stage 3.

λ 0.1 0.3 0.5 0.7
R 0.2394 0.2688 0.3075 0.3616

TABLE 12. Radii of convergence ball for different values of λ and stage 4.

6. CONCLUSIONS

In this work, by using symmetric first-order divided differences, we establish a modi-
fication of a known family of secant-like iterative processes. From this modification, we
obtain a new family of secant-like iterative processes more efficient than the previous one,
since we get quadratic convergence with a similar operational cost. The local and semilo-
cal convergence study shows an improved behavior of secant-like methods analyzed in
previous papers. The theoretical results established are based in weaker assumptions for
the nonlinear operator that the ones used before. Moreover, numerical examples have
been developed to corroborate the theoretical results under new conditions for the op-
erators. The obtained results show the advantages of using this new family of iterative
methods.
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