634 research outputs found

    Toward Data Efficient Online Sequential Learning

    Get PDF
    Can machines optimally take sequential decisions over time? Since decades, researchers have been seeking an answer to this question, with the ultimate goal of unlocking the potential of artificial general intelligence (AGI) for a better and sustainable society. Many are the sectors that would be boosted by machines being able to take efficient sequential decisions over time. Let think at real-world applications such as personalized systems in entertainment (content systems) but also in healthcare (personalized therapy), smart cities (traffic control, flooding prevention), robots (control and planning), etc.. However, letting machines taking proper decisions in real-life is a highly challenging task. This is caused by the uncertainty behind such decisions (uncertainty on the actual reward, on the context, on the environment, etc.). A viable solution is to learn by experience (i.e., by trial and error), letting the machines uncover the uncertainty while taking decisions, and refining its strategy accordingly. However, such refinement is usually highly data-hungry (data-inefficiency), requiring a large amount of application specified data, leading to very slow learning processes -- hence very slow convergence to optimal strategies (curse of dimensionality). Luckily, data is usually intrinsically structured. Identifying and exploiting such structure substantially improves the data-efficiency of sequential learning algorithms. This is the key hypothesis underpinning the research in this thesis, in which novel structural learning methodologies are proposed for decision-making strategies problems such as Recommendation System (RS), Multi-armed Bandit (MAB) and Reinforcement Learning (RL), with the ultimate goal of making the learning process more (data)-efficient. Specifically, we tackle such goal from the perspective of modelling the problem structure as graphs, embedding tools from graph signal processing into decision learning theory. As the first step, we study the application of graph-clustering techniques for RS, in which the curse of dimensionality is addressed by grouping data into clusters via graph-clustering techniques. Next, we exploit spectral graph structure for MAB problems, representing online learning problems. A key challenge is to learn sequentially the unknown bandit vector. Exploiting the smoothness-prior (i.e., bandit vector smooth on a given underpinning graph), we study theoretically the Laplacian-regularized estimator and provide both empirical evidences and theoretical analysis on the benefits of exploiting the graph structure in MABs. Then, we focus on the theoretical understanding of the Laplacian-regularized estimator. To this end, we derive a theoretical error upper bound on the estimator, which illustrates the impact of the alignment between the data and the graph structure as well as the graph spectrum on the estimation accuracy. We then move to RL problems, focusing on the specific problem of learning a proper representation of the state-action (representation learning problem). Motivated by the fact that a good representation should be informative of the value function, we seek a learning algorithm able to preserve continuity between the value function and the representation space. Showing that state values are intrinsically correlated to the state transition dynamic structure and the diffusion of the reward on the MDP graph, we build a new loss function based on the newly defined diffusion distance and we propose a novel method to learn state representation with such desirable property. In summary, in this thesis we address both theoretically and empirically important online sequential learning problems leveraging on the intrinsic data structure, showing the gain of the proposed solutions toward more data-efficient sequential learning strategies

    Geospatial Data Science to Identify Patterns of Evasion

    Get PDF
    University of Minnesota Ph.D. dissertation.January 2018. Major: Computer Science. Advisor: Shashi Shekhar. 1 computer file (PDF); x, 153 pages.Over the last decade, there has been a significant growth in the availability of cheap raw spatial data in the form of GPS trajectories, activity/event locations, temporally detailed road networks, satellite imagery, etc. These data are being collected, often around the clock, from location-aware applications, sensor technologies, etc. and represent an unprecedented opportunity to study our economic, social, and natural systems and their interactions. For example, finding hotspots (areas with unusually high concentration of activities/events) from activity/event locations plays a crucial role in epidemiology since it may help public health officials prevent further spread of an infectious disease. In order to extract useful information from these datasets, many geospatial data tools have been proposed in recent years. However, these tools are often used as a “black box”, where a trial-error strategy is used with multiple approaches from different scientific disciplines (e.g. statistics, mathematics and computer science) to find the best solution with little or no consideration of the actual phenomena being investigated. Hence, the results may be biased or some important information may be missed. To address this problem, we need geospatial data science with a stronger scientific foundation to understand the actual phenomena, develop reliable and trustworthy models and extract information through a scientific process. Thus, my thesis investigates a wide-lens perspective on geospatial data science, considering it as a transdisciplinary field comprising statistics, mathematics, and computer science. This approach aims to reduce the redundant work across disciplines as well as define scientific boundaries of geospatial data science to distinguish it from being a black box that claims to solve every possible geospatial problem. In my proposed approaches, I used ideas from those three disciplines, e.g. spatial scan statistics from statistical science to reduce chance patterns in the output and provide statistical robustness; mathematical definitions of geometric shapes of the patterns, which maintain correctness and completeness; and computational approaches (along with prune and refine framework and dynamic programming ideas) to scale up to large spatial datasets. In addition, the proposed approaches incorporate domain-specific geographic theories (e.g., routine activity theory in criminology) for applicability in those domains that are interested in specific patterns, which occur due to the actual phenomena, from geospatial datasets. The proposed techniques have been applied to real world disease and crime datasets and the evaluations confirmed that our techniques outperform current state-of-the-art such as density based clustering approaches as well as circular hotspot detection methods

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    Problems in Control, Estimation, and Learning in Complex Robotic Systems

    Get PDF
    In this dissertation, we consider a range of different problems in systems, control, and learning theory and practice. In Part I, we look at problems in control of complex networks. In Chapter 1, we consider the performance analysis of a class of linear noisy dynamical systems. In Chapter 2, we look at the optimal design problems for these networks. In Chapter 3, we consider dynamical networks where interactions between the networks occur randomly in time. And in the last chapter of this part, in Chapter 4, we look at dynamical networks wherein coupling between the subsystems (or agents) changes nonlinearly based on the difference between the state of the subsystems. In Part II, we consider estimation problems wherein we deal with a large body of variables (i.e., at large scale). This part starts with Chapter 5, in which we consider the problem of sampling from a dynamical network in space and time for initial state recovery. In Chapter 6, we consider a similar problem with the difference that the observations instead of point samples become continuous observations that happen in Lebesgue measurable observations. In Chapter 7, we consider an estimation problem in which the location of a robot during the navigation is estimated using the information of a large number of surrounding features and we would like to select the most informative features using an efficient algorithm. In Part III, we look at active perception problems, which are approached using reinforcement learning techniques. This part starts with Chapter 8, in which we tackle the problem of multi-agent reinforcement learning where the agents communicate and classify as a team. In Chapter 9, we consider a single agent version of the same problem, wherein a layered architecture replaces the architectures of the previous chapter. Then, we use reinforcement learning to design the meta-layer (to select goals), action-layer (to select local actions), and perception-layer (to conduct classification)

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Robust resource management for time-critical tasks in the cloud-edge continuum

    Get PDF
    As an emerging distributed computing paradigm, the Cloud-edge continuum (CEC) leverages the strengths of both cloud computing and edge computing to provide efficient and effective services to end-users. CEC enables faster processing of data and provides multiple benefits, including scalability, data security, and improved quality of service. With the increasing demand for real-time data processing, the proliferation of the Internet of Things (IoT) devices, and the growing need for data privacy and security, CEC has been developing, evolving, and adapting quickly. Cloud computing provides scalable and flexible computing infrastructure, while edge computing offers low latency and location-awareness capabilities. How to schedule the tasks in a CEC among its exploding amount of resources is a challenge for both service providers and users. QoS (quality of service) or QoE (Quality of experience) are metrics that describe this process and are often adopted as the optimization objective. Among all kinds of resource management optimization approaches, learning-based task scheduling and offloading have gained popularity in recent years. To overcome these limitations, researchers have turned to machine learning techniques to develop more intelligent and adaptive resource management algorithms. However, the machine learning-based methods in CEC also face several challenges: 1. The performance of learning-based resource management is difficult to maintain when the pattern of time-critical tasks is dynamically changing;2. Learning-based resource management strategies are difficult to adapt when continuum resources are highly heterogeneous;3. Learning-based resource management suffers from low robustness when optimizing multiple objectives.My thesis tackles these challenges, and we propose a Meta-Learning-based resource management framework to deal with time-critical requests spanning from independent tasks to complex workflows in a dynamic cloud-edge continuum. Our goal is to improve the robustness and adaptivity of the resource management framework in highly changing environments

    Robust resource management for time-critical tasks in the cloud-edge continuum

    Get PDF
    As an emerging distributed computing paradigm, the Cloud-edge continuum (CEC) leverages the strengths of both cloud computing and edge computing to provide efficient and effective services to end-users. CEC enables faster processing of data and provides multiple benefits, including scalability, data security, and improved quality of service. With the increasing demand for real-time data processing, the proliferation of the Internet of Things (IoT) devices, and the growing need for data privacy and security, CEC has been developing, evolving, and adapting quickly. Cloud computing provides scalable and flexible computing infrastructure, while edge computing offers low latency and location-awareness capabilities. How to schedule the tasks in a CEC among its exploding amount of resources is a challenge for both service providers and users. QoS (quality of service) or QoE (Quality of experience) are metrics that describe this process and are often adopted as the optimization objective. Among all kinds of resource management optimization approaches, learning-based task scheduling and offloading have gained popularity in recent years. To overcome these limitations, researchers have turned to machine learning techniques to develop more intelligent and adaptive resource management algorithms. However, the machine learning-based methods in CEC also face several challenges: 1. The performance of learning-based resource management is difficult to maintain when the pattern of time-critical tasks is dynamically changing;2. Learning-based resource management strategies are difficult to adapt when continuum resources are highly heterogeneous;3. Learning-based resource management suffers from low robustness when optimizing multiple objectives.My thesis tackles these challenges, and we propose a Meta-Learning-based resource management framework to deal with time-critical requests spanning from independent tasks to complex workflows in a dynamic cloud-edge continuum. Our goal is to improve the robustness and adaptivity of the resource management framework in highly changing environments
    • …
    corecore