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Abstract

Over the last decade, there has been a significant growth in the availability of cheap

raw spatial data in the form of GPS trajectories, activity/event locations, temporally de-

tailed road networks, satellite imagery, etc. These data are being collected, often around

the clock, from location-aware applications, sensor technologies, etc. and represent an

unprecedented opportunity to study our economic, social, and natural systems and their

interactions. For example, detecting hotspots (areas with unusually high concentration

of activities/events) from activity/event locations plays a crucial role in epidemiology

since it may help public health officials prevent further spread of an infectious disease. In

order to extract useful information from these datasets, many geospatial data tools have

been proposed in recent years. However, these tools are often used as a “black box”,

where a trial-error strategy is used with multiple approaches from different scientific

disciplines (e.g. statistics, mathematics and computer science) to find the best solution

with little or no consideration of the actual phenomena being investigated. Hence, the

results may be biased or some important information may be missed. To address this

problem, we need geospatial data science with a stronger scientific foundation to un-

derstand the actual phenomena, develop reliable and trustworthy models and extract

information through a scientific process.

Thus, my thesis investigates a wide-lens perspective on geospatial data science, con-

sidering it as a transdisciplinary field comprising statistics, mathematics, and computer

science. This approach aims to reduce the redundant work across disciplines as well

as define scientific boundaries of geospatial data science to distinguish it from being

a black box that claims to solve every possible geospatial problem. In my proposed

approaches, I used ideas from those three disciplines, e.g. spatial scan statistics from

statistical science to reduce chance patterns in the output and provide statistical ro-

bustness; mathematical definitions of geometric shapes of the patterns, which maintain

correctness and completeness; and computational approaches (along with prune and

refine framework and dynamic programming ideas) to scale up to large spatial datasets.

In addition, the proposed approaches incorporate domain-specific geographic theories

(e.g., routine activity theory in criminology) for applicability in those domains that are
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interested in specific patterns, which occur due to the actual phenomena, from geospa-

tial datasets. The proposed techniques have been applied to real world disease and

crime datasets and the evaluations confirmed that our techniques outperform current

state-of-the-art such as density based clustering approaches as well as circular hotspot

detection methods.
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Chapter 1

Introduction

Over the last decade, there has been a significant growth in the availability of cheap

raw spatial data in the form of GPS trajectories, activity/event locations, temporally

detailed road networks, satellite imagery, etc. Geospatial datasets, already being used

by over a billion people (e.g. Google Maps, Uber, etc.), are the basis of an ever growing

number of more technologies and applications. For example, vehicle GPS trajectories

together with engine measurement data are providing a new way to recommend environ-

mentally friendly routes. Similarly, self-driving cars, robots, drones, and many newer

mobile applications (e.g. virtual reality glasses, games, etc.) collect geospatial datasets

to accomplish their tasks. Increasingly, geospatial datasets are proving their potential

to revolutionize how we understand the physical world, know and communicate our

relation to places in that world, and navigate through those places.

1.1 Geospatial Data Science

In order to extract useful information from geospatial datasets, many geospatial com-

puting tools were proposed in the recent years. However, these tools are often used as

a “black box” using a trial-error strategy in which multiple approaches from different

scientific disciplines (e.g. statistics, mathematics and computer science) are used to find

the best solution with little or no consideration of the actual phenomena being investi-

gated. Hence, the results may be biased or some important information may be missed.

There is a need for an approach with a stronger scientific foundation, namely geospatial

1
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data science, to understand the actual phenomena, develop reliable and trustworthy

models and extract information through a scientific process. Geospatial data science

can be considered as a transdisciplinary field comprising statistics, mathematics, and

computer science. Scientific methods from these three disciplines can be used together

to leverage similar concepts to increase robustness of solutions while also reducing the

redundant work across disciplines.

Figure 1.1: Examples of approaches by their scientific foundations from mathematics,

statistics and computer science.

In Figure 1.1, representative approaches (e.g. SaTScan, DBSCAN), that are often

used for hotspot detection are compared relative to their emphasis in different scientific

domains. The figure depicts the three disciplines, namely mathematics, statistics and

computer science as three axes and summarizes their differing objectives (from a hotspot

detection perspective):

• Mathematics is focused on the correctness and completeness of approaches,

• Statistics is focused on eliminating chance patterns,

• Computer science is focused on scalability to large datasets.
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The proposed approaches in this thesis aim to achieve the objectives of these scien-

tific disciplines by ensuring solution correctness and completeness, providing statistical

significance testing to reduce chance patterns, and making algorithms scalable to large

geospatial datasets. As can be seen from the figure, some existing approaches may not

be able to achieve the goals of all three disciplines. For example, SaTScan, a state-

of-the-art software package that uses spatial scan statistics to detect circular hotspots,

gives importance to statistics for reducing chance patterns but its computational scal-

ability to large datasets is limited to a couple of thousand points and its completeness

(i.e. the robustness of its definitions) is limited due to its circle enumeration strategy

(a point at center and a point on the circumference of a circle). Similarly, DBSCAN,

a representative density based clustering method, uses an efficient and computationally

scalable algorithm to detect dense clusters in a point dataset. However, its mathemat-

ical completeness depends on user input variables (e.g. “Eps” and “k” values) and it

doesn’t use robust statistical approaches to eliminate chance patterns.

1.2 Geospatial Data-Driven Science

Geospatial problems are often the focus of research in fields such as epidemiology, crim-

inology or precision agriculture. We may call these geospatial data-driven sciences.

Geospatial data driven sciences can be seen as another way to approach geospatial

problems. Often geospatial datasets are collected from a variety of sources by domain

scientists trying to solve a specific problem in a specific application domain. Thus,

in addition to the considerations of geospatial data science, domain-specific theories

and insights may help shape the geospatial tools that domain scientists require in data

driven sciences. For example, in hotspot detection, there are many tools to detect the

locations with significant concentrations of activity.

• In criminology, domain specific theories, e.g. routine activity theory and crime

pattern theory, provide insights for the shape of an interesting hotspot pattern,

which leads to the definition of ring-shaped hotspots in Chapter 3.

• Diffusion theory in epidemiology may be said to emphasize hotspots of diseases

around the source of the disease, making circular hotspots more interesting than



4

arbitrary shapes.

• In the agriculture domain, one may be interested in the locations in a field where

crop health is significantly lower than other locations. For such cases, rectangular

hotspot detection, where each rectangle corresponds to a segment of the field, may

be interesting.

• Another example from transportation planning domain is that since pedestrian

fatalities occur on a road segment, using tools for circular or ring-shaped hotspot

in Euclidean space may not make sense for transportation planners. Thus, a lin-

ear/path hotspot detection method on a road network may be preferable to iden-

tify those road segments with significantly high pedestrian fatalities as described

in [12,13].

Therefore, domain specific theories may help domain scientists understand the actual

phenomena under study and often such tools may not make sense for another application

domain. In Figure 1.2, we update Figure 1.1 by adding domain specific theories as

another axis to emphasize the importance of applying domain specific theories and

constraints.

Figure 1.2: A Geospatial data driven science with the addition of domain specific the-

ories.
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1.3 Illustrative Application Domain: Environmental Crim-

inology

Environmental criminology is the study of crime, criminality, and victimization as they

relate to particular places and to the way that individuals and organizations shape their

activities spatially [14]. Two important spatial theories in environmental criminology are

routine activity theory, which suggests that the location of a crime is related to a serial

criminal’s frequently visited areas [15], and crime pattern theory, which extends routine

activity theory to a spatial model [16]. These theories are the basis for geographic

profiling by crime analysts, who use the locations of connected crime sites and then try

to analyze this spatial information to identify the underlying factors of a crime [17].

For this purpose, several analytical tools have been widely adopted by crime ana-

lysts [18, 19]. For example, crime hotspot analysis helps detect locations where crime

incidents tend to be concentrated [18]. These tools are useful for the prevention of crime

by deploying new police forces near hotspots, but they are not designed to predict the

potential residence of a serial criminal.

Geographic profiling, as defined in environmental criminology, aims to use the spatial

information of crime incidents to identify the most probable location of a criminal. It

can be thought of as a decision support mechanism for solving serial crimes. Its main

purpose is to decrease the area of interest, improve police reaction time and reduce the

overall effort to find a criminal. Decreasing the area of interest means identifying a

smaller area used by the criminal as his/her base of operations; this base can be the

criminal’s home, work or some other area that he/she visits frequently. The method

for decreasing the area of interest depends on two concepts, (i) distance decay and (ii)

buffer zone. Distance decay refers to the idea that crimes will decrease in frequency

the farther away an offender travels from home. In other words, distance decay is a

geographical expression of least effort (time, money, etc.) and results when an offender

shows preference for closer crime sites [1]. For example, 70% of arsons occur within two

miles of an arsonist’s home [20].

On the other hand, criminals tend not to commit crimes too close to home as this

may constitute a threat to their anonymity. This area around a criminal’s home is

referred to as the buffer/comfort zone [1, 17]. Geographic profiling uses the opposing
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effects of the buffer zone and distance decay to predict the home of a criminal and

usually denotes these crime patterns as doughnut hole patterns as shown in Figure 1.3.

Figure 1.3: Criminals typically do not commit crime close to home (inside the dashed

circle) and do not travel too far (beyond the ring) [1].

Currently, finding doughnut hole patterns in environmental criminology is a labor-

intensive task since these are often searched for manually (i.e. with paper maps and

pins) or using risk mapping tools (e.g. Rossmo’s formula [17], Rigel Software [21]),

which are not computationally efficient. Nevertheless, recently data volume is growing

much faster than the number of human analysts [22]. For example, crime reports in

a large city often exceed one million per year [23]. Thus, there is a growing need for

geospatial tools to assist human analysts at large agencies (e.g. state and federal level).

1.4 Challenges

Handling geospatial data with an interdisciplinary approach raises a number of chal-

lenges.

Computational Challenges: Spatial data imposes huge dataset sizes (e.g. petabytes

of GPS tracks and satellite imagery) due to the finer resolution of data that are col-

lected by ever-improved data collection devices. These datasets impose an exorbitant

computational cost for the current approaches. Thus, the proposed approaches should

incorporate computer science to scale up to large datasets.

Statistical Challenges: Analytics on spatial data may output too many spatial pat-

terns (e.g. hotspots) that may include false positives (e.g. patterns that occurred by
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chance). This is not desirable in some application domains. For example, falsely identi-

fying a location as a hotspot of a malicious event (e.g. disease, fatality, crime, etc.) may

result in stigmatizing, economic loss, along with social/political challenges. Therefore,

geospatial data science tools need to use statistics to eliminate chance patterns. Using

traditional statistical techniques to eliminate chance patterns is non-trivial since these

are designed for high dimensional vector space, not geographic space. Another approach

may be to use geostatistical tools to eliminate chance spatial patterns. However, such

tools assume the study area is an isotropic Euclidean space (i.e., every location is treated

equally). Yet, human activities/events often violate this isotropic Euclidean space as-

sumption due to underlying geographic features (e.g., road networks that humans travel

on). For example, people mostly travel on roads, which means the road network is an

underlying geographic feature that should be accounted for. Moreover, the isotropic

space assumption does not hold in certain domain-specific geographic theories (e.g.,

routine activity theory in criminology). For applicability in specific domains, geospatial

data science methods need to be able to accommodate such theories.

Mathematical Challenges: Geospatial data science tools should take the correctness

and completeness of the output into account. Correctness generally refers to the output

that aligns with the input thresholds and requirements. In other words, correctness

means all output satisfy the input criteria. Completeness means that all patterns that

satisfy the criteria are returned. Thus, if there exists a pattern that satisfies the input

criteria, it is not missed. Since completeness is hard to accomplish, many approaches use

some simplifying pattern definitions which may cause missing patterns. For example,

although the mathematical definition of a circle has three parameters, namely two center

coordinates (x, y) and a radius (r), SaTScan uses a simple enumeration consisting of just

two points, one at the center, and one on the perimeter, to reduce the infinite number

of possible circles. Since this approach may miss some patterns which satisfy the given

thresholds, it is not complete. Therefore, there is a need for tools which can use the

mathematical parameters of pattern shapes to ensure solution completeness. Finally,

current tools are affected by the scale of a study area. For example, a hotspot detection

method may miss spatial patterns at a county level but not at a state level even when

the input activities/events are the same. Thus, there is a need for tools which are not

affected by different scales.
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1.5 Thesis Contributions

In this thesis, geospatial data science problems are investigated from a transdisciplinary

data science perspective encompassing mathematics, statistics and computer science

disciplines which usually work in a siloed manner. In addition, the proposed approaches,

i.e. ring-shaped hotspot detection; geographically robust hotspot detection; and network

hotspots with holes incorporate some domain specific theories. The algorithms are not

only robust, but they also address the limitations of applying “black box” solutions to

domain-specific problems. Next, each chapter is briefly introduced.

• Chapter 2 takes a wide-lens perspective on geospatial data science, considering

it as a transdisciplinary field comprising statistics, mathematics, and computer

science. This approach aims to reduce the redundant work across disciplines as

well as to begin to define scientific boundaries of geospatial data science. Too often

geospatial tools are seen as black box solutions for any kind of geospatial problem.

This chapter also investigates the challenges arise from black box approach as well

as the trade-offs across the three disciplines. The chapter begins with introducing

the geospatial data science as a term, discusses previous problems as well as the

issues that are related to individual scientific disciplines. Then it provides insights

for geospatial data science to solve those problems.

• Chapter 3 discusses a novel hotspot detection technique called “Ring-Shaped

Hotspot Detection” which uses ideas from our three disciplines: e.g. “ring shape”

from geometry and a mathematical definition of rings to maintain correctness and

completeness, spatial scan statistics from statistics, and a prune and refine frame-

work from computer science. This approach also incorporates domain specific

theories i.e. routine activity and crime pattern theory. Informally, given a set

of activity points (e.g., crime, disease locations), Ring-Shaped Hotspot Detection

(RHD) finds ring-shaped areas where the concentration of activities inside is sig-

nificantly higher than that outside. RHD is societally important for applications

such as environmental criminology, epidemiology and biology to investigate pat-

terns of evasion. RHD is computationally challenging because of the large number

of candidate rings, non-monotonic interest measure and cost of the statistical sig-

nificance test. Previous approaches (e.g. spatial scan statistics tools) focus on
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simply-connected shaped areas (e.g. circles, rectangles) and can not detect statis-

tically significant rings. In the chapter, a novel algorithm is proposed to discover

statistically significant ring-shaped hotspots based on the ideas of dual grid based

pruning and best enclosing ring refining. Theoretical evaluation proves that the

proposed approach is a correct approach (i.e. all outputs satisfy input thresholds)

to detect ring-shaped hotspots. A case study on real disease data shows that

the proposed approach finds ring-shaped hotspots which were not detected by

the existing techniques. Cost analysis and experimental results on synthetic data

show that the proposed approach with algorithmic refinements yields substantial

computational savings.

• Chapter 4 takes state-of-the-art circular hotspot detection methods a step further

to provide a robust way of generating candidates by using the mathematical defi-

nition of circles in its enumeration method. The proposed approach uses diffusion

theory and is not affected by the sparseness of data and thus provides a richer

enumeration space compared to the related work. More specifically, given a set of

points in two dimensional space, a minimum radius, a minimum log likelihood ratio

and a significance threshold, Geographically Robust Hotspot Detection (GRHD)

finds hotspot areas where the concentration of points inside is significantly high.

The GRHD problem is societally important for many applications including envi-

ronmental criminology, epidemiology, etc. GRHD is computationally challenging

due to the difficulty of enumerating all possible candidate hotspots and the lack

of monotonicity property for the interest measure, namely the log likelihood ratio

test. Related work may miss hotspots when hotspots are divided by geographic

barriers (the road network, rivers etc.) or when hotspot centers are close to parks,

lakes, mountains, etc. To address these limitations, a novel approach is proposed

based on two ideas: cubic grid circle enumeration and a grid log likelihood ratio

upper bound. A case study on real crime data shows that the proposed approach

finds hotspots which cannot be discovered by the related work. Experimental re-

sults show that the proposed algorithm yields substantial computational savings

compared to the related work.

• Chapter 5 investigates ways to overcome the issues that assume the study area
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as an isotropic Euclidean space (i.e., every location is treated equally). Human

activities/events often violate this isotropic Euclidean space assumption due to un-

derlying geographic features. For example, people mostly travel on roads, which

means the road network is an underlying geographic feature that should be ac-

counted for. From a domain perspective, network hotspots with holes may occur

when a path is used frequently by the activity/event source (e.g. a serial criminal)

to travel to the location of the activities, resulting in a sparser concentration of

activities on the path but higher concentration of activities on the road segments

around the path. Informally this problem can be defined as follows; given a spatial

network and a collection of activities (e.g. crime locations), the problem of Min-

ing Network Hotspots with Holes (MNHH) finds network hotspots with doughnut

shaped spatial footprint, where the concentration of activities is unusually high

(e.g. statistically significant). MNHH is important for societal applications such as

criminology, where it may focus the efforts of officials to identify a crime source.

MNHH is challenging because of the large number of candidates and the high

computational cost of statistical significance testing. Previous work focused ei-

ther on geometry based hotspots (e.g. circular, ring-shaped) on Euclidean space

or connected subgraphs (e.g. shortest path), limiting the ability to detect statisti-

cally significant hotspots with holes on a spatial network. This chapter proposes a

novel Network Hotspot with Hole Generator (NHHG) algorithm to detect network

hotspots with holes. The proposed algorithm features refinements that improve

the performance of a näıve approach. Case studies on real crime datasets confirm

the superiority of NHHG over previous approaches. Experimental results on real

data show that the proposed approach yields substantial computational savings

without reducing result quality.

• Finally, chapter 6 concludes the thesis findings and identifies related areas that

remain open for future research.



Chapter 2

Geospatial Data Science: A

Transdisciplinary Perspective

2.1 Introduction

Despite the significant growth in geospatial data science applications, there is a limited

progress on scientific foundations of the geospatial data tools. Due to the lack of scientific

approaches, it is often more difficult to develop reliable and trustworthy geospatial

models and tools. We propose a definition of geospatial data science as a scientific

process of extracting valuable information from raw geospatial data with reasonable

effort. The specific properties of geospatial data, its volume, variety and velocity and

the implicit but complex spatial relationships limit the applicability of traditional data

science methods. In this chapter, we explore the emerging field of geospatial data science

from a transdisciplinary perspective across the three closely related scientific disciplines

of statistics, mathematics and computer science. Our proposed definition aims to reduce

the redundant work across siloed disciplines and promote better understanding of the

limits of geospatial data science as well as the expectations via examples.

This chapter provides a transdisciplinary scientific perspective for the geospatial data

science which promises to create new frontiers for the geospatial problems which were

previously studied with a trial and error approach. A well-known example from the past

illustrates how rigorous scientific methods may change a field. Alchemy, the medieval

forerunner of chemistry, once aimed to transform matter into gold [24]. Alchemists

11
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worked tirelessly for years trying to combine different matter and observe their effects.

This trial and error process was successful for finding new alloys (e.g., brass, bronze, etc.)

but not for creating another metal, i.e., gold. Later, the science of chemistry showed the

chemical reactions and their effects on elements, and successfully proved that an element

cannot be created by simply melting and combining other elements. We see similar

unrewarded efforts [25, 26] in the current trial and error approach to geospatial data

science. We believe that research in the field needs to be conducted more systematically

using methods scientifically appropriate for the data at hand. This chapter investigates

geospatial data science from a transdisciplinary perspective to provide such a systematic

approach with the collaboration of scientific disciplines namely mathematics, statistics

and computer science.

2.1.1 Motivation

Over the last decade, there has been a significant growth of cheap raw geospatial data

in the form of GPS trajectories, activity/event locations, temporally detailed road net-

works, satellite imagery, etc. [27, 28]. These data, which are often collected around

the clock from location-aware applications, sensor technologies, etc., represent an un-

precedented opportunity to study our economic, social, and natural systems and their

interactions.

Consequently, there has also been rapid growth in geospatial data science applica-

tions. Often, geospatial information retrieval tools have been used as a type of “black

box”, where different approaches are tried to find the best solution with little or no

consideration of the actual phenomena being investigated. Such approaches can have

unintended economic and social consequences. An example from computer science was

Google’s “Flu Trends” service, begun in 2008, which claimed to forecast the flu based

on people’s searches. The idea was that when people have flu, they search for flu-

related information (e.g., remedies, symptoms). Google claimed to be able to track flu

trends earlier than the Center for Disease Control. However, in 2013, the approach

failed to identify the flu season, missing the peak time by a large margin (e.g., 140

percent) [29,30,31].

This fail is but one example of how the availability of a computational tool does not

mean the tool is suitable for every problem. A recent New York Times article discussed
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similar issues in big data analysis from the statistics perspective, concluding, “[Statistics

is] an important resource for anyone analyzing data, not a silver bullet.” [32].

Similarly, geospatial data science applications need a strong foundation to under-

stand scientific issues (e.g., generalizability, reproducibility, computability and predic-

tion limits error bounds), which often makes it difficult for users to develop reliable

and trustworthy models and tools. Moreover, we need a transdisciplinary scientific ap-

proach that considers not only one scientific domain but multiple scientific domains for

discovering and extracting interesting patterns in them to understand past and present

phenomena and provide dynamic and actionable insights for all sectors of society [33].

2.1.2 Problem Definition

The term geospatial data science implies the process of gaining information from geospa-

tial data using a systematic scientific approach that is organized in the form of testable

scientific explanations (e.g., proofs and theories, simulations, experiments, etc.). A

good example is USGS and NOAAs analysis of geospatial and spatiotemporal datasets,

e.g., satellite imagery, atmospheric data sensors, weather models, etc. to provide ac-

tionable hurricane forecasts using statistics, machine learning (computer science) and

mathematical models [34,35].

The most important aspect of a scientific process is objectivity [36], meaning the

results should not be affected by peoples perspectives, interests, or biases . To achieve

objectivity, scientific results should be reproducible [37, 38]. In other words, using the

claims in a scientific study, the results should be consistent and thus give the same

results every time.

Although they vary by domain [39], for geospatial data science we provide the fol-

lowing steps (depicted in Figure 2.1), which can provide objectivity and reproducibility.
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Figure 2.1: Steps of geospatial data science.

The first step is the selection of a phenomenon to explain scientifically. In other

words, we decide which problem we want to explain. Next, sufficient data about the

phenomenon is collected to generate a hypothesis. The important aspect of this step is

that hypothesis generation should be objective and not biased by scientists’ perspectives

or interests. Experiments and simulations are then done to test the hypothesis. If the

hypothesis survives these tests, then a theory can be generated. Note that in some

domains, theories can be validated by mathematical proofs, and then confirmed by

experiments and simulations. Thus, scientific methods differ slightly from one scientific

domain to another. This scientific process will also draw boundaries of predictability

just as chemistry drew boundaries for creating matter (i.e. gold). Depending on the

data in hand, non-stationarity in time may impact the success of predictability. Thus,

past events may not always help predict the future. Similarly, black swan events, where

the occurrence of a current event deviates from what is expected, may escape the notice

of individual disciplines [40]. The proposed transdisciplinary approach encourages us to

investigate such events for better understanding the cause and predictability of black

swan events with a scientific approach.

2.1.3 Challenges

Geospatial data science poses several significant challenges to both current data scientific

approaches as well as individual scientific disciplines. First, the increasing size, variety

and update rate of geospatial data exceed the capacity of commonly used data science

approaches to learn, manage, and process them with reasonable effort [41, 42]. For

example, vehicle trajectory datasets that are openly published on the Planet GPX web

site include trillions of GPS points, each of which carries longitude, latitude, and time
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information [43].

Second, geospatial data often violate fundamental assumptions of individual tradi-

tional scientific disciplines. For example, in statistics, the independent and identically

distributed (i.i.d.) assumption of random variables, and the stationarity assumption

(whereby the mean, variance and autocorrelation are assumed to be stationary) do not

hold for geospatial data [42]. Similarly, in mathematics, regions with indeterminate

boundaries may not be represented with traditional topology and geometry although in

a geographical space indeterminate boundaries are needed since neighborhoods or urban

areas often do not have determinate (strict) boundaries [44, 45]. Also, graphs in math-

ematics cannot be used to represent spatial networks (e.g., road networks, rivers, etc.)

since these networks have location information as well as node specific constraints (e.g.,

turns, traffic lights, etc.) [46]. In addition, computer science often deals with one di-

mensional data while geospatial data often has two, three or more dimensions. A simple

example is “sorting”. In computer science, sorting may be done in one-dimensional vec-

tors. However, there is no simple notion of sorting multidimensional geospatial data [47].

A third challenge is that, due to imperfect data collection devices, geospatial datasets

often include missing or erroneous data [48]. To make things more complicated, there

are concerns from users about geo-privacy [49]. Thus, it is hard to provide robust

approaches that are generalizable.

Finally, the siloed nature of statistics, mathematics, and computer science research

leads to redundant and often incomplete work on data science problems.

2.1.4 Trade-Offs

Taking a transdisciplinary view of geospatial data science means we must deal with the

well-known trade-offs within individual disciplines, as well as with the many trade-offs

across disciplines.

Intra-Disciplinary Trade-offs: An example in statistics is the trade-off between bias

and variance, as shown in Figure 2.2. A bias error occurs when wrong assumptions

are used with the training dataset. In other words, during model learning we may be

overly cautious, causing our model to under-fit the data, which in turn leads to a high

prediction error rate. Variance error comes from the fact that even small variances

in the training data are considered for model building. Such an approach may cause
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overfitting as well as unnecessarily complex model building and thus poor prediction

performance.

Figure 2.2: The statistical bias and variance.

An example within the discipline of computer science is the trade-off between mem-

ory storage and response time. For example, a shortest path computation using Dijk-

stra’s algorithm [50] iteratively traverses the nodes and edges of the graph to compute

the shortest path. An alternative approach may be based on pre-computing and storing

the shortest paths in a database with an index on the pairs of start-node and destination.

This approach will simply use the index to retrieve the pre-computed shortest path to

quickly answer queries. The computation cost for shortest paths will be much lower;

however, it will require much larger storage for the database of pre-computed paths.

The computer science literature includes many algorithms, e.g., hierarchical Routing

and contraction hierarchies [51], which explore the trade-off between storing a subset

of pre-computed paths and on-the fly computation. Another computer science example

from distributed systems in computer science is the CAP theorem [52], which states

that one must choose between consistency and availability where the third concern is

the partition tolerance.

Beyond the trade-offs within individual disciplines, there are new transdisciplinary

trade-offs to consider across mathematics, statistics, computer science and data-driven

sciences (referred to as domain sciences).
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Data-Driven Domain Science Interpretation and Statistics (Uncertainty Quantifica-

tion): Data-driven domain science interpretation and statistical uncertainty quantifica-

tion have different objectives. For example, in the land cover classification problem, a

decision tree [53,54] or random forest [55] approach may be used to classify remote sens-

ing imagery to land cover type (e.g. wetland, dryland, forest, urban, rural, etc.) since

the resulting models (i.e. decision trees or random forests) are relatively easy for domain

scientists to interpret. However, neither the decision tree nor random forest approaches

quantify uncertainty or provide a statistical confidence level for predicted land-cover

classes. The alternative method is using statistical approaches such as Bayesian classi-

fiers [56]. These may provide uncertainty quantification and statistical confidence but

the results are not as easy to interpret due to their numerical nature. Thus, there is

a need for approaches that will provide uncertainty quantification as well as ease of

domain interpretation.

Computer Science and Statistics: Computational approaches such as data mining

and machine learning tools often provide computational scalability but they may not

quantify uncertainty as depicted in Figure 2.3. For example, the K-means algorithm [57]

for clustering, is computationally efficient as it converges quickly to a local minimum on

the error surface. However, it does not quantify statistical confidence in the discovered

clusters. For example, it cannot determine whether the clusters discovered by K-means

are better than those achieved by a random partitioning of the data set. In addition, it

does not provide guarantees on the solution quality. For example, it doesn’t tell us how

the quality of a local minimum recommended by the K-means procedure compares with

the quality of a global minimum on the error surface? On the other hand, the expecta-

tion maximization (EM) approaches [58] may iteratively converge to a global optimum

solution; however, they seldom provide guarantees on computational cost. They cannot

answer questions such as, “Is it guaranteed to terminate in a reasonable time (or will it

run for an infinite time)? What is the computational complexity of the EM algorithm?”

In addition, statistical approaches which aim to provide probability distributions as well

as evaluate the results with statistical significance levels often require hypothesis test-

ing [59], which increases the computational cost. Therefore, new research is required to

provide computational scalability and statistical uncertainty quantification at the same

time.
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Figure 2.3: The trade-off between computational scalability and statistical rigor.

Mathematics and Statistics: A pure mathematical optimization approach to esti-

mate parameters of a statistical (or machine learning) model may lead to overfitting [60],

which may cause the model to perform poorly on generalization for prediction on un-

seen datasets. Moreover, it may cause many statistical models (e.g., regression, decision

trees) to become excessively complex and hard to interpret. For example, in a regres-

sion model, given any set of data points, it is possible to find a polynomial function

that exactly passes through each point. This may cause overfitting and reduce the

prediction power of the model, since the dataset may have noisy points that bias the

results. In summary, there is a need for tools that preserve statistical interpretation and

mathematical completeness as well as prevent statistical models from becoming overly

complex.

Mathematics, Computer Science and Statistics: Mathematics and statistics often

have conflicting objectives. Basically, statistical inferences often involve quantifying

the uncertainties with confidence intervals and statistical significance values. On the

other hand, mathematics often deals with results’ completeness, optimality, etc. Many

statistical methods do not guarantee mathematical properties, e.g., completeness and

optimality. For example, consider SaTScan [10], an algorithm to find hotspots, i.e.,

circular areas within which the density of a phenomenon (e.g., disease, crime) is much

higher than the density outside. This method uses a statistical measure, e.g., a likelihood

ratio and p-value, to reduce chance patterns and quantify uncertainty. This software,
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widely-used in epidemiology for hotspot detection, enumerates circles using pairs of

points, where one point defines the center and the distance between the points defines

the radius. However, this approach doesn’t enumerate many other circles, such as

those defined by subsets of three points. It is likely to miss circular hotspots with

empty centers as it gives up mathematical completeness to reduce computational cost.

There is a need for approaches that preserve mathematical completeness while providing

computationally feasible and scalable solutions.

2.2 Background

Previous attempts to define geospatial data science (Table 2.1) often focused on pairs

of disciplines, e.g., statistics-computer science, mathematics-computer science, etc. We

argue that all three disciplines should be considered to provide an understanding of

naturally-occurring phenomena. Moreover, these disciplines should operate together so

that all may benefit from conceptual advances of common interest. For example, analyt-

ics on hyperspectral remote sensing imagery, which is used by earth science applications

(e.g., agronomy, geology, hydrology, etc.), applies computationally efficient and sta-

tistically robust algorithms for those high dimensional (e.g., hyperspectral) geospatial

datasets [61].

Table 2.1: Overview of the related work.

Approach High Dimensional Data Spatial Data

Siloed / Multi-Disciplinary Statistics, Mathematics,

Computer Science

Spatial statistics, Spatial

Data Mining, Machine

Learning

Transdisciplinary Theoretical Foundations of

Data Science Workshop

Proposed Approach

Recently, an NSF workshop on “Theoretical Foundations of Data Science (TFoDS)”

[31] attempted to provide a definition of “data science” that brings these three disci-

plines together. The workshop identified fundamental areas where collaboration among

computer scientists, mathematicians, and statisticians is necessary to achieve signifi-

cant progress. However, the focus of the workshop was not geospatial data generally
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but high dimensional data, and most of the discussion centered on very specific topic

areas i.e. computation-statistics tradeoff, randomized numerical linear algebra, signal

processing/harmonic analysis on graphs, nonconvex statistical optimization, combining

physical and statistical models, mixed type and multi-modality data, applied represen-

tation theory and non-commutative harmonic analysis, topological data analysis and

homological algebra, security, privacy, and algorithmic fairness [31].

Another recent development was the NSF Workshop on Geospatial Data Science in

the Era of Big Data and CyberGIS [62]. Its focus was high performance computing

and the computational aspects of geospatial data science. Topics included geospatial

big data capabilities (e.g., LiDAR, remote sensing, location-based social media) for

novel applications (e.g., urban sustainability), cloud computing, and tools for scalable

geospatial data analytics. One of the goals was to formulate a core set of questions and

problems of geospatial data science around these themes. The workshop addressed the

geospatial data science problem from a high-performance computing perspective but

did not address the broader set of questions that led us to our attempt here to define

geospatial data science.

2.3 Contributions, Scope, and Outline of the Chapter

This chapter takes a wide-lens perspective on geospatial data science. We believe that

geospatial data science is a transdisciplinary field comprising statistics, mathematics,

and computer science, and that it should be formally considered the foundation of

geospatial science. The aim is both to reduce redundant work across disciplines as well

as to define the scientific boundaries of geospatial data science so it is no longer seen

as a black box solution to every possible geospatial problem. In addition, we aim to

lay out some of the challenges that arise from the geospatial nature of the data. Hence,

in the following sections we investigate individual disciplines, their objectives as well as

the challenges they face to investigate the transdisciplinary definition of geospatial data

science.

Scope and Outline: In this chapter, we present geospatial data science as a transdis-

ciplinary scientific process. The proposed approach provides a discipline-of-disciplines
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perspective towards reducing redundant work and providing a more robust way to cre-

ate information from raw geospatial data. In addition, our approach aims to identify

the limits of geospatial data science predictability.

To emphasize the transdisciplinary perspective of geospatial data science, in the

following sections we provide examples from each discipline, namely statistics, math-

ematics and computer science that are cross-cutting with geospatial data science. As

summarized in Figure 2.4 for example, the study of indeterminate regions is both a

mathematics and a spatial statistics problem. Similarly, randomized algorithms can

be considered as a problem in computer science but also one that uses fundamental

ideas from spatial statistics. Finally, representative problem examples that all three

disciplines tackle are explained in more detail.

Figure 2.4: Comparison of disciplines via examples.
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2.4 Statistics

2.4.1 Traditional Statistics

Statistics studies data in the context of uncertainty, and it serves as an important

foundation of many data science tasks such as pattern recognition, prediction, and clas-

sification. Given observations collected from a part of a population, statistics reduces

uncertainty by making inferences on the entire population. It differs from probability

theory in that probability theory works with known probabilistic distributions to esti-

mate the probability of future observations while statistics starts with a collection of

past observations and estimates the unknown parameters of a probabilistic distribution

to make inferences.

In statistics, data collection is performed based on sampling theory [63], which pro-

vides a scientific framework to decide the population of concern, sampling approach

(e.g., random sampling), sampling size, etc. The collected observations are then used to

estimate parameter values of a target distribution model (e.g., Gaussian distribution).

The estimation can be performed using either a frequentist or a Bayesian approach [64].

A frequentist approach analyzes data as an integrated whole. It assumes each parameter

has a fixed value that does not change over time and that can be accurately estimated

as the number of observations increases to infinity. However, in real world scenarios, the

number of observations is limited and there is always an uncertainty associated with the

analysis given the incomplete data. In order to express this uncertainty, a frequentist

approach uses a confidence interval [65] to claim a minimum expected probability (e.g.,

95%) that the estimated parameters are true.

By contrast, a Bayesian approach assumes that each parameter comes from a prior

distribution. It considers data as a sequence of observations and continues to update

the estimation of parameters as new observations are available. Unlike a frequentist

approach, a Bayesian approach captures the change or evolution of parameters over a

sequence (e.g., time) of observations, and thus can further reduce the uncertainty in an

inference. However, a Bayesian approach requires an appropriate prior distribution as

input; otherwise it cannot give correct inferences.
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2.4.2 Traditional Statistics versus Spatial Statistics

One of the most common assumptions in traditional statistics is that observations are

identically and independently distributed (i.i.d.) [66]. The i.i.d. assumption is an im-

portant foundation of many data science methods. For example, in machine learning,

maximum likelihood estimation [67] is used to estimate the parameter values of a given

model, and the expressions of likelihood functions are often obtained based on this i.i.d.

assumption (e.g., Nave Bayes classifier, Expectation-Maximization). In fact, many clas-

sic statistics theorems come from the i.i.d. assumption, such as the well-known central

limit theorem [68], which states that the mean of a set of samples is approximately equal

to the mean of an entire population given a sufficiently large sample size.

Although it offers great convenience in traditional statistics, the i.i.d. assumption

is often violated in the geospatial domain. As the first law of geography states: “Ev-

erything is related to everything else, but nearby things are more related than distant

things” [69]. This fundamental observation on geospatial data breaks the i.i.d. as-

sumption of non-spatial data in traditional statistics. Spatial statistics deals with the

phenomenon of spatial auto-correlation through careful modeling of spatial relation-

ships among data samples. The following discusses two motivating examples of spatial

statistics.

Example 1: Pearson correlation on geospatial data: Figure 2.5a shows a distribution

of three types of diseases, abbreviated as TF, VSD, and ALL. Each instance of each

disease has a unique ID as marked in Figure 2.5a. From the distribution, we can see

each ALL instance has a nearby TF instance and VSD instance. For example, ALL1 is

adjacent to TF1 and VSD1. To measure the spatial correlation among the three types

of diseases, we need some parameters to express the spatial distribution. Figure 2.5b

shows a boundary fragmenting the study area. For each type of disease, we can consider

each fragment as a property of its spatial distribution, and each property value as

the count of instances of this disease within the fragment. Suppose the fragments

are concatenated into a vector following column-wise order (top-left → bottom-left

→ top-right → bottom-right). Thus, the vector of properties for ALL is [0, 0, 1, 1],

TF is [1, 2, 0, 0] and VSD is [0, 0, 1, 1]. With this spatial modeling based on boundary

fragmentation, the Pearson correlation ratio is −0.91 between TF and ALL, and 1

between VSD and ALL. This negative correlation between TF and ALL contradicts
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to our observation since their spatial adjacency is broken by the boundary between

fragments (Figure 3 2.5b). By contrast, the correlation between VSD and ALL is

positive because the spatial adjacency between VSD and ALL instances is preserved

by the arbitrary partitioning. These mutually contradictory correlations reveal the

uncertainty of results when traditional statistics is trivially applied to the geospatial

domain.

Figure 2.5: Distribution of disease.

Example 2: Agronomic field experiment design: Field experiments are used by agri-

cultural scientists to evaluate the performance and properties of crops under different

conditions (e.g., water, fertilizer) [25]. Traditional experiment designs assume obser-

vations are independent and that an expected value stays the same at different spatial

locations. However, in field experiments, these assumptions are often violated since

closer plants exhibit more similar properties, and soil properties vary at different loca-

tions, which lead to non-stationary expectations [25]. To address this problem, blocks

are used in field experiment design to reduce the effect of spatial auto-correlation and

heterogeneity. A block is a large spatial unit containing a set of plots. With a properly

chosen block size, the spatial-related properties (e.g., soil type) can be assumed to be

uniform within a block. Distances are added between blocks so that the spatial auto-

correlation between blocks is reduced. The choice of block size and distance between

blocks are critical parameters to reduce the errors caused by spatial effects. In practice,

they can be determined by spatial statistical analysis.
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2.4.3 Spatial Statistics

Geostatistics: Geostatistics [70] is concerned with point-reference data, which contains

a set of points with fixed locations and a set of attribute values. The goal of geostatistics

is to model the distribution of the attribute values and make predictions on uncovered

locations. Point-reference data has several inherent properties: 1) isotropy/anisotropy;

2) second order stationarity; and 3) continuity. In the context of isotropy, uniformity is

assumed in all directions, while under anisotropy, some statistical properties may vary

by direction. Second order stationarity is a weaker form of strong stationarity so it is also

referred to as weak stationarity. Instead of assuming a strong stationarity with invariant

density of distribution, second order stationarity assumes only invariant moments (e.g.,

mean, variance) across a spatial domain but covariance between locations depends on the

distance. The continuity property indicates the existence of spatial dependence on the

data. The degree of dependence can be quantitatively measured with input distance and

direction using a variogram or semivariogram. If we further assume isotropy, then the

variogram simplifies to a function of distance only. With the base assumptions on point-

reference data, the distribution of attribute values can be effectively modeled. A set of

statistical tools are provided by geostatistics and one of the most popularly used methods

is Kriging [71]. Kriging is a statistical model of interpolation that predicts attribute

values at unsampled locations (e.g., water quality estimation based on observations

from a set of monitoring sites). Co-Kriging [72], provides a multivariate extension of

ordinary Kriging. For a set of highly correlated attributes, Co-Kriging can improve

the prediction quality on a poorly sampled attribute using well sampled ones. Besides

spatial auto-correlation, spatial heterogeneity also needs careful consideration in many

applications (e.g., different types of underlying landscape). Special models, such as

GWR (geographically weighted regression) and spline, are available in geostatistics to

reflect the changes in statistical properties given the presence of spatial heterogeneity.

These models deploy a local view on the data and assign higher weights to neighboring

points to reduce the effect of heterogeneity.

Spatial point process: Unlike geostatistics, a spatial point process is not concerned

with attribute values but with the locations of points [73], specifically, their distribution.

Locations of a set of points can be generated based on different statistical assumptions

(e.g., random, clustered). The most common model assumed for a spatial point process
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is a homogeneous Poisson distribution, also known as complete spatial randomness

(CSR). In CSR, the total number of points follows a Poisson distribution and each

point is identically and independently distributed in a pre-defined spatial domain. A

variant of CSR is a binomial point process, in which the only difference is a fixed total

number of points. In many application domains, CSR or binomial point process is not

an appropriate assumption since points may have spatial autocorrelation or inhibition

characteristics. In such cases, other specialized models should be applied to better

approximate the exact distribution as shown in Figure 2.6. For spatial inhibition, a

Poisson hardcore process is widely used to generate a distribution that enforces mutual

repulsion among points. For spatial autocorrelation, a Matern cluster process can be

chosen to reflect the clustering characteristics. Similar cluster processes include Poisson

cluster process, Cox cluster process, Neyman-Scott process, etc. One of the most well-

known applications of a spatial point process is spatial scan statistics [74] in hotspot

detection. In spatial scan statistics, chance hotspots are removed through a statistical

significance test under a null hypothesis based on CSR. CSR is also used as a null

hypothesis for significance testing in Ripleys K function [75], which estimates the overall

clustering degree of a point distribution.

Figure 2.6: Forms of Spatial Point Processes.

Lattice statistics: A lattice is a representation of a discrete space, which is a finite

collection of grid cells in a spatial domain. In this case, lattice statistics concerns sta-

tistical processes in the field model. For continuous data (e.g., polygon), a W-matrix
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(continuity matrix) can be computed to transform the original data into a discretized

representation based on their spatial adjacency or proximity. Lattice statistics pro-

vides a set of models [76, 77], such as Moran’s I, Getis-Ord Gi*, Geary’s C, Gamma

index and LISA, to evaluate spatial autocorrelation on the field model. For example,

Moran’s I outputs an I-value within [−1,+1] to reflect a positive, none or negative spa-

tial autocorrelation in the input dataset. For value estimation and prediction, spatial

autoregressive models [78] are applied on discrete data, such as Markov random fields

(MRF), the simultaneous autoregressive model (SAR), and the conditional autoregres-

sive model (CAR). MRF models the evolution process of a phenomenon based on the

assumption that the property of a spatial location is spatiotemporally determined by

its neighbors with additional randomness. In the CAR model, a Markov property is

implied and the state of a location is affected by its direct neighbors, but not neighbors

of its neighbors. This property of CAR is called spatial memoryless. By contrast, SAR

does not assume any non-transitive spatial influences and considers autocorrelation in

a larger spatial domain. Therefore, CAR is a more appropriate choice for use cases

influenced by a local spatial process and SAR is a better assumption for a more global

spatial process. Another critical issue in lattice statistics is the impact of scale on spatial

analysis. With different aggregation levels of scale, the statistical analyses may have

distinct results. For example, variance of income aggregated on a neighborhood level

could be much smaller than that on a county level within the same state.

Spatial network statistics: A spatial network is a graph-based model with enriched

spatial information (e.g., turn, capacity). In a spatial network, events or objects are

mutually accessed through a set of connected edges instead of straight lines in the Eu-

clidean space. Statistics on spatial networks is a newly emerging area which has not been

as extensively studied as statistics on Euclidean space. In recent work, some statistical

models for object data, such as spatial autocorrelation, interpolation, and clustering

approaches have been extended to spatial networks. Spatial network statistics, as an

extension of spatial statistics on Euclidean space, can better model processes in urban-

ized places where objects and events spread along network edges (e.g., roads, rivers).

For example, in transportation planning, statistically significant hotspots of accidents

needs to be identified based on network space [79].
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2.5 Mathematics

Mathematics plays a critical role in all science and technology. It is fundamental to

a variety of traditional subjects such as physics, chemistry, and agriculture. In data

science, mathematics provides its core value in data representation and modeling as

well as the logic and proofs used to validate data science approaches. In this section, we

first introduce how mathematics is applied in traditional data science with a collection

of examples. Then, we discuss the limitations of applying traditional mathematical

models to spatial data and novel spatial models with examples.

2.5.1 Mathematics in Traditional Data Science

Data science utilizes a variety of subjects for accomplishing different data modeling and

processing tasks. Many types of data can be represented using linear algebra models.

Aligned two-dimensional data are typically modeled as a matrix. For example, an

image channel is represented as a matrix where each element indicates the value of a

pixel in the corresponding location. This representation is widely applied in precision

agriculture [80,81,82], which uses the remote sensing data consisting of multiple image

channels. Similarly, a graph can be represented as a neighborhood matrix as well, where

each row corresponds with a node in the graph and the elements in that row indicate

the connection from this node to all other nodes. A vector is always used to model an

object that has a set of features where each features is quantized as an element in the

vector. The operations on matrices and vectors also apply on the represented data. For

example, the similarity between two feature vectors can be measured by the distance

computed by the norms and the angle between them. Eigenvalue and Eigenvector are

used for studying the behavior of Markov chains [83, 84] which has been the core idea

of many approaches such as PageRank [85]. Principal Component Analysis (PCA) [86]

uses Eigenvalues and Eigenvectors for reducing the dimensionality of the data. Another

important application of linear algebra in data science is machine learning [87]. For

example, linear regression can be modeled as a linear system which can be solved by

multiple linear algebra approaches such as Gaussian elimination and multiplying by its

inverse [88]. Many data science approaches are derived based on linear algebra. As

an example, low rank matrix approximation based on Singular Value Decomposition
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(SVD) [89, 90] is applied in data compression, classification, regression, clustering, and

signal processing, etc.

Another subject in mathematics that is widely used in data science is information

theory. Entropy is a concept that originally comes from thermodynamics [91] which

measures the number of microscopic configurations that a thermodynamic system has.

Based on the essence of entropy, entropy in information theory [92] measures the ex-

pected value of the information contained in a message or the uncertainty of the data.

Data classification approaches such as decision trees use entropy to measure the infor-

mation gain [93, 94, 95] between two levels of the tree which offers a quantitative guide

of how the tree should grow. For example, a good growth of the tree is expected to

decrease the overall entropy.

Optimization is a highly interdisciplinary subject related to both mathematics and

computer science. It is applied to many critical societal applications. For example,

precision agriculture researchers need to allocate each field with a type of product to

achieve the optimal environmental and economic outcome, which requires to solve a

multi-variable optimization problem [96, 97]. Many machine learning approaches use

optimization techniques to achieve their goals such as finding the minimal value of the

cost function [98, 99]. For example, gradient descent, a popular technique used for

machine learning approaches, finds the minimum value of a cost function by iteratively

moving along the direction of the slope [100,101,102]. Finding the slope requires solving

differential equations [103] which is an important subject in mathematics. Differential

equations have many other applications in data science especially for spatial data since

they can be naturally differentiated into variations over space and time. For example,

the Soil and Water Assessment Tool (SWAT) [104, 105] is a software that embraces a

variety of environmental and agricultural models about the variations over space and

time which apply differential equations.

Another topic from mathematics, which is tightly related to computer science and

data science, is graph theory since many real phenomena can be naturally modeled by a

graph where the vertices represent the objects, and the edges represent the relationship

between objects. For example, internet can be modeled as a graph where [106,107] each

web site can be a vertex and the links can be edges outgoing from this vertex. In a

social network model [108,109], vertexes represent individuals, and edges represent the
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relationship between two individuals. There are also spatial data models based on graph

theory. Traditionally, road networks are modeled such that the intersections are vertices

and the roads are edges. A similar framework also applies to flight networks [110] and

oil pipeline networks [111], but the edges become the air routes and the pipelines.

Topology studies the properties that are preserved under deformations, including

stretching, twisting, and bending. Topological Data Analysis (TDA) [112] is an ex-

ample of applying topology in data science whose main goal is to study the geometric

characteristic of data via topology. For spatial data, they are largely used in modeling a

collection of relationships between real-world spatial objects. For example, Minneapolis

is inside of Minnesota state is an “inside” topological relationship.

2.5.2 Limitations of Applying Traditional Mathematical Models to

Spatial Data and Novel Spatial Models

We reviewed the mathematical subjects that have been applied in data science. However,

they have many non-negligible limitations when dealing with spatial data. An example

comes from the metric of objects. Suppose there are two spatial objects on a two-

dimensional plane, each presented by a two-dimensional coordinate; how do we order

them? One straightforward way is using their distance to the origin. Another popular

way is sorting by the angle between the line connecting the points and the origin and

an axis (i.e., x-axis or y-axis). However, there is no natural metric to order spatial

points. Thus, developing meaningful and efficient ordering metrics for spatial objects is

an important and challenging research topic.

In traditional topology, spatial regions are always modeled with determinate bound-

aries [45, 113]. It turns out that the traditional topological relationship models always

rely on the boundary. For example, the relationship inside is determined by whether

a spatial region falls completely within another region, and the relationship touches is

determined by whether the boundaries of two spatial regions are overlapped but not

their inside such as two neighbor states. However, in real-world scenarios, many spatial

regions are surrounded by indeterminate boundaries. For example, it is impossible to

clearly define the boundary between urban and rural areas. Research has been done to

narrow the gap between real-world relationships between spatial regions and traditional

topological models. One of the most popular models is the “Egg-Yolk” [45] model
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which provides a representation of regions with indeterminate boundaries based on the

framework of “RCC-theory” [113, 114]. It is a logically consistent and computationally

tractable model that represents a spatial region with indeterminate boundary by pairs

of regions with determinate boundaries (i.e. crisp regions).

Traditionally, spatial data have always been modeled on Euclidean space. This works

well for many problems such as those related to air and ocean. However, there are many

types of events/activities that can be associated with the transportation networks such

as traffic and crimes. Using traditional models based on Euclidean space significantly

affects the precision of the model and thereby the quality of the solution. As an illus-

tration, Figure 2.7 shows a map of the campus of University of Minnesota. The east

and west banks are connected by a bridge over the Mississippi river. The Euclidean

distance between the two red dots is short, yet the network distance computed from

the shortest path is much longer [50]. Suppose we want to approximate the travel time

between these two dots, the error using Euclidean distance will be huge.

Figure 2.7: An illustrative example showing the difference between distances in Eu-

clidean and network spaces.

Models based on network space can give a better distance approximation to some

extent. In the simplest way, a transportation network can be represented as a graph,

where each intersection is a vertex and each road segment is an edge associated with

a value representing the travel cost of that edge. The travel cost could be assigned

various values such as road distance, travel time, or fuel consumption. However, tradi-

tional graph models have several major limitations dealing with the massive information
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contained in spatial networks. For example, the traditional models simply treat inter-

sections as vertices but do not model the turns. However, left turns are usually less

costlier than right turns if driving on the left side [115]. This cost difference can have

a large impact for real-world applications. For example, UPS saved 10 million gallons

of fuel, emits 22 thousand tons less carbon dioxide, and delivers 350 thousand more

packages every year by avoiding left turn since the year of 2004 [115]. Figure 2.8 shows

an example of modeling the turns. The left figure shows a patch of map in Dinkytown,

Minneapolis. The middle figure shows a traditional model describing the streets where

the vertices are the intersections and the directed edges are the roads. The right figure

shows an example of modeling the intersection at N5 while keeping the turn information

by a set of connects. The other approaches include using hyper-edges along with hyper

graphs and annotating the graph with turn information.

Figure 2.8: An example of modeling the turns of a transportation network.

Another consideration is that in traditional graph models, each edge is associated

with a static value, which is not enough for modeling dynamically changing travel

costs. For example, the travel time for a highway around downtown varies a lot during

rush hour and non-rush hours. A Time-Expanded-Graph (TEG) [116] is one of the

approaches that is capable of modeling the dynamically changing weights on edges.

Figure 2.9 shows an example of TEG of a graph consisting of four nodes. The left

side shows the varying travel times associated with each edge in four timestamps. The

right side shows the TEG modeling this graph where each column represents the set

of vertices in one timestamp. Each edge connects the nodes that are reachable within
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a certain time. For example, edge < A1, B3 > indicates that if departing from Node

A at timestamp 1, one can arrive to Node B at timestamp 3. As can be seen, TEG

is much more complex compared to traditional static graph model, and thus leads to

harder computational challenges.

Figure 2.9: An example of Time-Expanded-Graph (TEG).

Moreover, in a traditional graph, the edges are considered atomic which cannot be

further fragmented. This feature works when using graphs to model non-spatial net-

works such as webpage networks and social networks since the edges virtually represent

the connection between objects. However, for spatial data models, the edges represent

roads on which the activities happen. If we treat edges as atomic, the location informa-

tion of the activities will be lost. A novel model called dynamic segmentation [117,118]

has been proposed to handle this limitation. In dynamic segmentation, the original

graph is segmented based on the locations of activities on the edges. Figure 2.10 shows

an illustrative example, using traditional graph model, edge < N1, N2 > is atomic and

the location information of activities A1, A2, A3, A4 are lost. In dynamic segmentation,

edge < N1, N2 > is segmented to < N1, A1 >, < A1, A2 >, < A2, A3 >, < A3, A4 >,

< A4, N2 >, and thus the locations of the activities are kept. Dynamic segmentation

outperforms traditional graph models especially when dealing with activities located on

a portion of a long road segment such as an highway. For example, in linear hotspots

detection, dynamic segmentation helps increase the precision of the hotspots and reveal

the ones that are missed using traditional models.
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Figure 2.10: An illustrative example of dynamic segmentation.

2.6 Computer Science

In this section, we start by discussing core questions and goals of computer science.

We then present some of the concepts, theories, models and technologies that computer

science has contributed to the field of data science. Finally, we discuss the limitations

of traditional data science with respect to spatial data and the computer science accom-

plishments that have attempted to address these limitations towards the realization of

geospatial data science.

2.6.1 Core Questions and Goals

Computer Science is both a scientific and an engineering discipline [119]. Hence, Com-

puter Science contributions encompass both theory (e.g. studying properties of com-

putational problems) and practice (e.g. systems design, data mining). However, the

scientific aspect of Computer Science is different from physical disciplines and is closer

to mathematics where the goal is to create representation models and study their prop-

erties. Many traditional data science questions are studied within the field of computer

science. Examples of these questions include: Is a given problem decidable (i.e. com-

putable)? Is there a polynomial time algorithm to solve a given problem? What is the

most efficient algorithm to perform the computations? Can the algorithm scale to large
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datasets? What is the trade-off between the computational scalability of the algorithm

and the statistical rigor?

2.6.2 Concepts, Theories, Models and Technologies

Many computer science concepts are leveraged in data science. Two major concepts are

the design of appropriate data structures and algorithms. Data structures are ways of

storing data so that they can be efficiently used. Examples of common data structures

include arrays, queues, linked lists, trees, and graphs. Algorithms [120] are well-defined

computational procedures that take a value (or a set of values) as input, and produce

a value (or a set of values) as output to solve a given problem (e.g., searching, sorting,

finding the shortest path between a source and a destination node in a transportation

graph).

In addition, Computer Science theories are also leveraged in traditional data sci-

ence. For instance, the Computational Complexity theory [121] focuses on classifying

computational problems according to their inherent difficulty. The theory introduces

mathematical models and techniques for studying computational problems and is usu-

ally used to establish proofs that for a given problem, no algorithm can run faster than

the current one.

Another major accomplishment relevant to data science is the development of database

management systems (DBMS), general-purpose software systems that facilitate the pro-

cesses of defining, constructing, manipulating, querying and sharing databases among

users and applications [122]. The most common type of DBMS is relational database

management systems (RDMS), which adopt the relational data model first introduced

in [123]. In this model, the database is represented as a collection of relations (i.e.,

tables), based on the concept of mathematical relations. Each row (i.e., tuple) typically

represents information about a real-world entity or relationship, while each column rep-

resents a given attribute describing that entity. SQL is the standard query language

for commercial RDBMSs and is based on relational calculus. Relational algebra is also

used as the basis of query processing and optimization in RDBMS [122]. Examples of

popular commercial RDBMS’ include IBM’s DB2, Oracle, Sybase DBMS, SQLServer,

Access, MySQL and PostgreSQL.

Cloud computing platforms make possible the processing of large data volumes in
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an efficient manner. Existing approaches to cloud computing provide a general frame-

work for a distributed file systems (e.g., Google file [124] system and HDFS [125]) and

processing these data sets based on replicas of data blocks (e.g., map-reduce [126],

Hadoop [125] and Spark [127]. For instance, the left side of Figure 2.11 shows the Intel

distribution for Apache Hadoop software components [2]. It also shows many compo-

nents running on top of the HDFS for distributed processing (MapReduce), workflow

(Oozie), scripting (Pig), machine learning (Mahout), SQL queries (Hive), and column

store storage (HBase). In addition to cloud computing platforms, there are also many

existing high-performance scientific computing cluster technologies as depicted in the

right side of Figure 2.11. These computing technologies include parallel file systems

(e.g., Lustre), batch schedulers (e.g., SLURM), MPI and OpenMP for internode and

intra-node parallelism, and numerical and domain specific libraries, on-top of which

applications are usually developed using languages such as FORTRAN and C/C++ [3].

Figure 2.11: Intel Distribution for Apache Hadoop software components compared with

the high-performance computing ecosystem. Figure adapted from [2] and [3].

Another major area of interest in computer science is data mining. Data mining

refers to the discovery and extraction of new and useful information (e.g., patterns or

rules) from large amounts of data. Typically, data mining has been mainly concerned

with the computational complexity of proposed discovery algorithms and less concerned

with the statistical robustness of these algorithms (e.g., bias, inference confidence, etc.).

Common data mining tasks include the discovery of association rules (e.g., which grocery

store items are frequently bought together?). Algorithms such as Apriori [128] and FP-

growth [129] have been proposed for efficiently mining association patterns. Data mining
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tasks also include the classification problem (e.g. classifying a pixel in a picture as dry

land versus wetland based on other pixel properties). Popular classification models

include decision trees for which computational algorithms such as ID3 [94] have been

proposed.

2.6.3 Limitations of Traditional Data Science for Spatial Data and

Related Computer Science Accomplishments

Now we review the limitations of traditional data science with respect to spatial data

by focusing on three main areas of accomplishments, namely, spatial databases, spatial

cloud-computing platforms and spatial data mining.

Spatial Databases: Applications such as precision agriculture require special database

support to store, process and query spatial data (e.g., storing and querying the polygons

representing farm plots). Before the development of spatial databases, spatial queries

(e.g., Which galaxy pairs are within 30 arc seconds of each other? Which houses are most

likely to be flooded by global warming-induced sea-level rise?) required extensive pro-

gramming and suffered from long computation times due to the mismatch between 2D

spatial data and 1D data types (e.g., number) and indexes used by traditional database

systems (such as B+ Tree) [42]. In addition, a naive collection of spatial data types is

inadequate for multistage queries since the result of some queries (such as the union of

disjoint polygons) cannot naturally be represented as a point, line, or polygon. Spatial

databases (such as Oracle Spatial and PostGIS) introduced spatial data types (such

as OGIS simple features [130]), operations (such as inside and distance), spatial data

structures (such as Voronoi diagrams), and algorithms (such as shortest-path, nearest-

neighbor, and range query) to represent and efficiently answer multistage concurrent

spatial queries [42]. The reduced programming effort resulted in more compact code

and quicker response times. In addition, spatial indexes have also been added. Repre-

sentative indexes for point objects include Grid files, multidimensional grid files [131],

Point-Quad-Trees, and Kd-trees [132]. Representative indexes for extended objects in-

clude the R-tree structures [133]. The R-tree is a height balanced natural extension of

the B+ tree for higher dimensions [134]. Objects are represented in the R-tree by their

minimum bounding rectangles (MBRs). Non-leaf nodes are composed of entries of the

form (R, child-pointer), where R is the MBR of all entries contained in the child-pointer.
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Leaf nodes contain the MBRs of the data objects. To guarantee good space utilization

and height-balance, the parent MBRs are allowed to overlap. Many variations of the

R-tree structure exist whose main emphasis is on discovering new strategies to maintain

the balance of the tree in case of a split and to minimize the overlap of the MBRs in

order to improve the search time.

Spatial Computing Platforms: Support for spatial data (e.g., spatial indexes) was

also needed in cloud computing platforms to improve the I/O cost of spatial queries

(e.g., retrieving a set of farm polygons within a given spatial range). Representative

efforts for supporting spatial data in existing cloud computing platforms include [135]:

1) SpatialHadoop [136], which is a MapReduce extension to Apache Hadoop designed

specially to work with spatial data by providing specialized spatial data types, spatial

indexes, and spatial operations and 2) Hadoop GIS, a high performance spatial data

ware- housing system over MapReduce [137]. 3) GeoSpark [138], the spatial extension

for Apache Spark. Research on parallel R-tree construction on a GPU is also ongo-

ing [139]. At the Hadoop Distributed File System (HDFS) level, SpatialHadoop [136]

and Hadoop GIS [137] have added spatial indexes. At the scripting layer (e.g., Pig),

SpatialHadoop has added Open Geodata Interoperability Specification (OGIS) data

types and operators. GIS on Hadoop (Pang et al. 2013) has also added OGIS data

types and operators at the SQL query level (e.g., Hive). In addition to the spatial ex-

tensions of Hadoop, the GeoSpark [138] system has also extended Apache Spark with a

set of Spatial Resilient Distributed Datasets (SRDDs) that can efficiently load, process,

and analyze SBD. GeoSpark also introduced spatial indexes, spatial geometric opera-

tions that follows the Open Geospatial Consortium (OGC) standard, and spatial query

operations for SBD.

Spatial Data Mining: Spatial data mining [140] is the process of discovering inter-

esting and potentially useful patterns from spatial databases. For example, in precision

agriculture, given a UAV-captured image of a farm, one may want to classify the set of

pixels in the image based on crop type (e.g., corn, soybean, etc.).

However, the complexity of spatial data and implicit spatial relationships limits the

usefulness of conventional data mining techniques for extracting spatial patterns [28].

Specific features of geographical data that preclude the use of general purpose data

mining algorithms are: (1) the spatial relationships among the variables; (2) the spatial
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structure of errors; (3) the presence of mixed distributions as opposed to commonly

assumed normal distributions; (4) observations that are not independent and identically

distributed (i.i.d.); (5) spatial autocorrelation among the features; and (6) nonlinear

interactions in feature space. Figure 2.12 [4] illustrates an example of these limitations,

namely the existence of spatial auto-correlation, by comparing the output of traditional

decision trees with spatial decision trees for classifying wetland and dryland pixels in a

satellite image taken in the city of Chanhassen, MN. The classification model used 12

continuous explanatory features as input including multi-temporal spectral information

(R, G, B, NIR bands), and Normalized Difference Vegetation Index (NDVI) for the

years 2003, 2005, and 2008. Figure 2.12a shows the output of the traditional decision

tree algorithm. The legend of the prediction maps is shown in Figure 2.12c. The green

and red colors represent correctly classified wetland and correctly classified dryland.

The black and blue colors represent false wetland and false dryland.

Figure 2.12: Traditional Decision Tree versus Spatial Decision Tree Output for Classi-

fying data from satellite imagery [4].

As shown in Figure 2.12a, the prediction of the traditional decision tree model has

lots of salt-and-pepper noise due to high local variation of features within patches of

the same class. For example, the area in the yellow circle is a dry land area consisting

of trees. The black salt-and-pepper noise pixels inside the yellow circle corresponds to

locations without tree coverage. These pixels are mis-classified as wetland here due to
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the i.i.d assumption. In contrast, the spatial decision tree employs a model where the

tree traversal for a location is based on not only local bus also focal (i.e. neighborhood)

properties of the location thus accounting for spatial auto-correlation. Hence, as shown

in Figure 2.12b, the spatial decision tree model captures the local variations results in

much less salt-and-pepper noise in the same area.

In addition, the spatial data mining literature includes spatial hotspot analysis [10,

141, 142], discovering spatial co-location and co-occurrence patterns [143, 144, 145, 146,

147], network summarization [12,148,149], GPS track mining [150,151,152,153,154,155,

156,157,158,159], spatial outlier detection [160,161], spatial classification and regression

[54,162,163] and change footprint detection [164].

2.7 Conclusion

The specific properties of geospatial data; its volume, variety and velocity; and the

implicit but complex nature of spatial relationships are non-trivial considerations in all

geo-related research. We believe the current practice of independent research in siloed

fields is counterproductive and likely untenable in the long term. We are proposing

therefore that statistics, mathematics, and computer science all be considered integral

to geospatial data science. This chapter explored the emerging field of geospatial data

science from such a transdisciplinary perspective where these three closely related sci-

entific disciplines are considered as integral parts of geospatial data science rather than

individual siloed disciplines. Our proposed definition aims to reduce the redundant work

being done across silos and to understand the limits of geospatial data science.

In the future, we envision that geospatial data science will accomplish its tasks

while addressing users’ privacy and confidentiality concerns. In addition, there are

other issues that will need to be considered such as “the trade-offs across disciplines”;

“when to use high-dimensional tools and approaches for geospatial datasets”; “how to

apply spatial statistics, which assumes isotropic Euclidean space, on geospatial network

datasets (e.g., road networks affect isotropy in space)”; and “how to determine the

statistical distribution of geospatial datasets (e.g., GPS trajectories) in a study area?”

Finally, predictability and prediction error bounds should be considered since these will

provide confidence limits to future approaches of geospatial data science.



Chapter 3

Ring-Shaped Hotspot Detection

3.1 Introduction

Given a collection of geo-located activities (e.g., crime reports, disease locations), ring-

shaped hotspot detection (RHD) finds ring-shaped areas where the concentration of

activities inside the ring is significantly higher than outside.

Informally, the RHD problem can be defined as follows: given a set of geo-located

activities and thresholds on the size, interest measure (e.g. log likelihood ratio) and

statistical significance of a ring (e.g. p-value), find ring-shaped hotspot areas which

satisfy the thresholds. A simplified input and output of RHD is shown in Figure 3.1. In

this example, a set of 100 activities was generated in a study area of 135×135 unit space

(shown as dots). The other inputs are log likelihood ratio threshold θ = 50, statistical

significance threshold αp = 0.01, minimum ring width (ro − ri)min = 0.5, minimum

inner radius (ri)min = 10, and the number of Monte Carlo simulation trials is set to

m = 99. In Figure 3.1(b), the output is two ring-shaped hotspots (e.g. shaded areas)

that contain significantly high density of activities relative to outside (e.g. non-shaded

areas).

41
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(a) Input (b) Output

Figure 3.1: Simplified example of Ring-Shaped Hotspot Detection.

3.1.1 Application Domains

Ring-shaped hotspot detection is important for a variety of application domains where

finding a ring-shaped hotspot may help focus domain users’ efforts to a specific region.

For example, finding a ring-shaped hotspot may focus public security officials’ efforts

to the inner circle of a ring when searching for a possible crime source. Following are

some example application domains.

Environmental criminology: Analysts create geographic profiles of serial crimi-

nals by using the crimes sites to identify the most probable locations of serial criminals

and other crime sources. One of the geographic profiling methods [14,15,17] depends on

two concepts: (i) distance decay and (ii) buffer zone. Distance decay is a geographical

expression of least effort (time, money, etc.) and results when a serial criminal shows

preference for closer crime sites [1]. Conversely, serial criminals often do not commit

crimes too close to home as this may constitute a threat to their anonymity [1]. This area

around a serial criminal’s home is referred to as the buffer/comfort zone [1, 14, 16, 17].

Geographic profiling uses the opposing effects of the buffer zone and distance decay to

predict the location of a serial criminal [14,16]. Sometimes called a blackhole or dough-

nut, the pattern is approximated in this paper as a ring-shaped hotspot as illustrated

in Figure 3.2.
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Figure 3.2: Criminals typically do not commit crime close to home (inside the dashed

circle) and do not travel too far (beyond the ring) [1].

Epidemiology: If the source of the disease is a tower (or a chimney) which emits

the disease causing material (e.g. carcinogenic smoke, disease causing bacteria, etc.),

the number of disease cases may be less in closer locations to the source. Conversely,

the probability of transmission declines with distance from the source [165, 166]. The

interplay between these two may create a ring-shaped hotspot around the possible source

of a disease.

Animal Foraging: There are similarities between criminal behavior and predator

animal behavior. Predator animals do not travel too far for hunting due to the required

effort and time. Predator animals (e.g. bats) also do not hunt too hunt close to their

nests [167, 168]. The interplay between these two may give rise to ring-shaped areas of

hunting.

Invasive Species Biology: Upon arrival to a new habitat, many invasive species

(e.g. bumblebees) establish a nest and a territory around it. Over time, some individuals

(e.g. the offspring) leave to establish new nests outside the territory of the original

nest [169, 170, 171]. However, they do not go too far due to the least effort principle.

Thus, the interplay between these may create a ring-shaped region around the source

population of these species.

Geophysics: Meteor impact crater sites often have uplifted centers, broad flat

shallow crater floors, and terraced walls creating a shape similar to a ring. However,

those are often buried and hidden to the plain sight due to post impact sediments [172,

173]. Such meteor impact crater sites can be detected by interpreting the rings of

ground gravity and magnetic anomalies as shown in Figure 3.3 [5]. Although, those
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may be detected by plain eye for smaller sites of interest (as shown in Figure 3.3 [5]),

computational methods may be required for planetary scale analysis of gravitational

data or for regions where numerous meteor impacts overlap.

Figure 3.3: Gravity anomaly map of Chicxulub Crater shows ring-shaped anomalous

regions of gravity [5].

3.1.2 Challenges

Ring-Shaped Hotspot Detection (RHD) is a challenging problem since the number of

hotspots (e.g. reported crime cases may be the result of more than one criminal), their

locations and their sizes are not known beforehand, resulting in a prohibitively large

candidate enumeration space. In addition, a candidate ring with a smaller area may

have more activities than a candidate ring with a larger area (i.e. not monotonic).

Thus, pruning techniques that assume monotonicity are inapplicable for RHD. Finally,

statistical significance testing to remove chance patterns multiplies the cost.

Finally, geographic profiling and generating hypothesis on the possible source of the

activities (e.g. criminal’s location) is a challenging task due to the lack of datasets

describing the geographic distribution of activities/events. Therefore, this task is often

carried out by generating and ranking hypothesis using the data in hand.
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Figure 3.4: Related work classification.

3.1.3 Related Work and Their Limitations

Methods for hotspot detection can be roughly divided into two groups: (i) those that

do not test for statistical significance and (ii) those do test for statistical significance.

Hotspot detection methods which do not take statistical significance into account are

widely used in many domains [28, 164]. However, they may produce false positives.

While not a concern in all domains, those false positives may lead to social stigma and

major economic loss in some application domains (e.g. criminology, epidemiology). In

this paper, the aim is to remove the chance patterns and focus on techniques which take

statistical significance into account.

Figure 3.4 classifies statistically significant hotspot detection techniques in two

groups namely simply connected shapes and non-simply connected (e.g. rings) shapes.

The former used spatial scan statistics [10,174,175] to detect simply connected shapes [176]

such as circles and rectangles without any holes. In contrast, this paper explores tech-

niques to identify statistically significant hotspots with non-simply connected shapes,

i.e. rings with holes.
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(a) Input (b) SaTScan Output (c) RHD Output

Figure 3.5: Example Input, Output of SaTScan, and Output of Ring-Shaped Hotspot

Detection (best in color).

Figure 3.5 shows an example input and output of RHD comparing it with SaTScan [10],

which is a widely used application for circular hotspot detection in epidemiology. Fig-

ure 3.5(a) visualizes our example activity set that is previously shown in Figure 3.1.

Figure 3.5(b) shows the output of SaTScan with four circular hotspots which have low

log likelihood ratios. Since SaTScan is not designed to detect hotspots with holes, the

output does not align with the ring-shaped hotspots in the study area. In contrast,

RHD outputs two ring-shaped hotspot areas with high log likelihood ratios and the

shapes of these hotspots align with the ground truth.

Our preliminary work [141] proposed a Dual Grid Based Pruning Algorithm (DGP)

for the RHD problem. DGP was experimentally validated and a case study comparing

its output with SaTScan found that it yielded better results. This paper extends our

previous work by proposing algorithmic refinements that improve the scalability of our

preliminary DGP approach [141].

3.1.4 Contributions

Our new contributions are as follows:

• We present prune phase algorithmic refinements featuring different grid cell length

for the center and width of rings along with a multi cell length approach (DGP-M)

and local maxima elimination (DGP-L) (Section 3.4.1).
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• We also propose a new refine phase based on a best enclosing ring heuristic (DGP-

R)(Section 3.4.2).

• We analytically prove the correctness of the proposed algorithmic refinements

(Section 3.5.1) and we provide a cost analysis (Section 3.5.2).

• We present a new case study on real dataset that shows that the proposed DG-

PLMR (Dual Grid Based Prune with Local maxima elimination, Multi cell

length and Refine with best enclosing ring) algorithm outperforms the related

work (e.g., SaTScan)(Section 3.6).

• We present experimental results on synthetic data that validate the performance

of the algorithmic refinements. The results show that the proposed DGPLMR

algorithm is almost two orders of magnitude faster than the DGP algorithm in

preliminary work [141] (Section 3.7).

3.1.5 Scope and Outline

This work presents a computational approach for statistically significant ring-shaped

hotspot detection. Rings should be considered as an approximation of actual doughnut

patterns (generated by the interplay between distance decay and buffer zone) which con-

sist of nested closed curves. Therefore, non-concentric rings and nested closed curves are

outside the scope of our work. In this paper, underlying population and other variables

associated with an activity set are not considered. Also, input parameters are governed

by domain experts and this paper does not provide guidance on parameter (e.g. mini-

mum radius, etc.) value selection. The study area is assumed to be a two dimensional

isotropic Euclidean space and geographic barriers and transportation network are not

considered. In addition, techniques to detect linear [12], network or top-k hotspots are

not comparable to the proposed approach.

It is also worth noting that proposed approach uses simplifying assumptions (e.g.

isotropic Euclidean space) and approximations (e.g. approximating doughnut patterns

by rings) to scale up to large datasets (e.g. one million activity points). The results

should be reviewed by analysts in the context of additional domain information to

prevent potentially misleading results (e.g. biased and/or missed rings due to approxi-

mations). However, the post-processing steps (e.g. review of the output and removal of
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potentially misleading results) by analysts are out of the scope of this paper.

The paper is organized as follows: Section 3.2 presents basic concepts and problem

statement of Ring-Shaped Hotspot Detection (RHD). Section 3.3 reviews our prelim-

inary approach towards addressing the RHD problem [141]. Section 3.4 details the

proposed DGPLMR algorithm. Section 3.5 presents a theoretical and cost analysis.

Section 3.6 presents a case study comparing DGPLMR to a diffusion theory based out-

put (e.g., SaTScan) on a real disease dataset. The experimental evaluation is covered

in Section 3.7. Section 3.8 presents a discussion on techniques (e.g. DBSCAN [9]) with-

out statistical significance as well as a discussion on the post-processing of the output.

Section 3.9 concludes the paper and previews future work.

3.2 Basic Concepts and Problem Statement

3.2.1 Basic Concepts

Definition 1 An activity set A is a collection of geo-located activities. An activity

a ∈ A is associated with a pair of coordinates (x, y) representing its spatial location in

the study area S.

Definition 2 Study area S is the minimum bounding rectangle of A in the Euclidean

space.

Definition 3 From mathematical perspective, a concentric Ring is defined by four

parameters: the coordinates of its center (centR = [x, y]), an inner circle radius ri, and

an outer circle radius ro.

Mathematical definition of rings may introduce an infinite number of rings in a study

area which is computationally infeasible to enumerate. Therefore, for implementation

reasons, we introduce an implementation-specific (computational) 4P-CRing definition

next.

Definition 4 A 4P-CRing (denoted by R in this paper) is a shape formed by the set

difference of two concentric circles, i.e. R = circleo− circlei. A circlei can be uniquely

identified by any non-collinear three points (a1, a2, a3 ∈ A). A circleo can be identified
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for any activity point a4 ∈ A outside circlei, where a4 is on circleo and circleo is

concentric with circlei. An illustration of a 4P-CRing is shown in Figure 3.6.

Figure 3.6: An illustrative example of a 4P-CRing. Dots represent points, dashed circle

represent inner circle circlei and circle with a solid line represents outer circle circleo.

Spatial Scan Statistics

In hotspot detection, there are several questions that need to be addressed: (1) What is

the location of a hotspot? (2) Is there any difference between the distribution of points

inside the candidate hotspot vs. outside? (3) How can we make sure that the candidate

hotspot is not a chance pattern? Spatial scan statistics was developed to answer such

questions. It was proved to be the most powerful statistical test to detect hotspots in

an activity set [177].

The first question is addressed by enumerating the candidate hotspot locations.

These candidate hotspots may be rings, circles, rectangles, or jurisdictions (i.e. zip

codes). In this paper, our candidates are 4P-CRings as defined in Definition 4.

The second question is addressed by evaluating the candidate rings with a test

statistic function. In this paper, we use a “Log Likelihood Ratio” function similar to

related work [10].

The third question is answered by creating Hypothesis test and evaluating the can-

didate rings against a statistical significance threshold using a “Randomization Test”.

These tests are defined as follows (more details can be found in [178]):

Definition 5 Test Statistic: Log Likelihood Ratio (Log LRR) is the interest

measure used as the test statistic for a candidate ring [177, 178]. The equation can be

shown as:
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Log LRR = Log

 ( c
B

)c
︸ ︷︷ ︸

Int. of the Ring

×
(
|A| − c
|A| −B

)|A|−c
︸ ︷︷ ︸
Ext. of the Ring

×I()

 (3.1)

B = |A|×area(R)
area(S) . I() =

1, if c > B

0, otherwise

where B denotes the expected number of activities, c denotes the observed number

of activities in a candidate ring, |A| denotes the number of activities of set A. The

term I() is an indicator function. I() = 1 when the ring has more activity points than

expected (c > B), otherwise it is set to 0 to prevent the detection of low activity ring

areas [10].

For example, the area of the bottom left ring in Figure 3.5(c) is 1105 and area(S) =

135× 135 = 18225. Thus B = 1105×100
18225 = 6.06. In this ring, there are c = 50 activities

and I = 1 since 50 > 6.06.

Using Equation 3.1, Log LRR = Log

((
50
6.06

)50 × ( 100−50
100−6.06

)100−50
× 1

)
= 73.91

Definition 6 Monte Carlo Simulation (MCS) is a randomization test that is

used to get the distribution of the test statistic (Log LRR). First, m random point

sets (A1, A2, ..., Am) are generated in the study area S. For each A1, A2, ..., Am, new

rings are enumerated and the maximum Log LRR of each A1, A2, ..., Am is stored in

decreasing order in a list (Log LRMCS
R ) which is used as the distribution of the test

statistic under the null hypothesis.

Definition 7 Hypothesis Test: In RHD, the null hypothesis (H0) states that the

points are distributed randomly according to a homogeneous Poisson process over the

study area S. The alternative hypothesis (H1) states that the inside of a ring has a higher

number of points than outside [178]. Using the test statistic (Log LRR) of a ring and

the distribution of the test statistic (acquired by MCS), the statistical significance of that

ring is determined. The statistical significance (p-value) of R is computed by finding the

order of its Log LRR in the distribution of the test statistic (Log LRMCS
R ) and dividing

that position by m+ 1. Given a desired significance level (αp), if p-value ≤ αp, then H1

cannot be rejected.
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3.2.2 Problem Statement

The Ring-Shaped Hotspot Detection problem is formally stated as follows:

Given:

1. A set of activities A where each activity a ∈ A has x, y coordinates in a Euclidean

space,

2. A minimum ring width ((ro − ri)min) and a minimum ring inner radius ((ri)min)

3. A log likelihood ratio threshold (θ),

4. A spatial scan statistic p-value threshold (αp) and

5. A number of Monte Carlo simulation trials (m)

Find:

Ring-shaped hotspots (enumerated as 4P-CRings) in S with (ro−ri)R ≥ (ro−ri)min,

(ri)R ≥ (ri)min, p-valueR ≤ αp and Log LRR ≥ θ.
Objective: Computational efficiency.

Constraints:

1. Correctness of the result set.

2. Inner circles of the rings should have at least three points and outer circles should

have at least one point on their circumference.

3. Data which describes the underlying distribution of activities is not available.

4. Cardinality of A is large enough (|A| >> 4) to provide statistical significance.

Activity set A and activities a ∈ A are defined in Definition 1. θ indicates the

minimum desired log likelihood ratio and αp is the desired level of statistical significance

and m is the number of Monte Carlo simulations trials to determine the statistical

significance. Finally, the outputs are ring-shaped hotspots with the desired level of

significance and log likelihood ratio.

It is worth mentioning that the parameters should be chosen by domain users. Using

(ri)min and (ro − ri)min domain users can select the radii of generated rings depending
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on the nature of the activity. For example, in environmental criminology, crime analysis

shows that 82% of arsonists live within 0.5 to 2 miles of the crime sites [179]. This

domain knowledge may be used to determine (ri)min and (ro − ri)min. The above

problem statement includes parameters that limit the geographic size of a ring (e.g.

(ri)min and (ro − ri)min). However, a user may also need to limit the number of points

inside a ring for domain specific purposes. This can be supported by a post-processing

step that filters out the rings with higher/lower than the number of points required.

Example: Given the activity set depicted in Figure 3.5(a), the aim is to find ring-

shaped hotspots with a level of significance αp = 0.01, a log likelihood ratio θ = 50, and

a minimum inner radius (ri)min = 10. Figure 3.5(c) shows two rings returned by RHD

which satisfy the desired thresholds. Note that the result set includes many ring-shaped

hotspots, but in order to reduce the visual clutter, only one generated ring is shown for

each hotspot.

3.3 Preliminary Results - Dual Grid Based Pruning Algo-

rithm (DGP)

This section reviews our previous dual grid based pruning (DGP) approach to Ring-

Shaped Hotspot Detection (RHD) problem [141]. The intuition behind the DGP algo-

rithm’s pruning phase is to enumerate ring families (instead of individual rings) in

parametric space and eliminate those that do not satisfy the input thresholds (i.e.

(ro − ri)min, (ri)min, θ). Finally, activity points that are associated with a parametric

grid cell, which satisfy the thresholds, are used to enumerate actual 4P-CRings. Once

actual 4P-CRings are enumerated using those activity points, if they satisfy the input

thresholds, they are evaluated for their statistical significance. In the next subsections,

the basic concepts of the dual grid based pruning (DGP) algorithm are presented; then

an upper bound for the log likelihood ratio is shown and its correctness is proven.

Finally, the details and the execution trace of the DGP algorithm is presented.

3.3.1 Basic Concepts of DGP Algorithm

Definition 8 A geometric space grid (geo-grid) with cell length lg is a partitioning

of the study area S into two-dimensional geometric grids where each geo-grid cell (gc) is
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represented by its coordinate intervals ([xmin, xmax], [ymin, ymax]) and the count of

the points inside. The number of gc in S is N×N , where N = floor(side length(S)/lg).

Note that each activity point is associated with exactly one geo-grid cell gc.

Figure 3.7 shows our example activity set with 100 points that includes 2 ring-shaped

hotspots (with 50 and 25 activity points respectively). Suppose cell length is set to lg =

9. The geo-grid cells will keep the count of activity points. For example, the shaded geo-

grid cell in Figure 3.7 has an interval of ([xmin = 18, xmax = 27], [ymin = 18, ymax = 27])

and a count of 3 as shown on the fourth row of the table.

Figure 3.7: A sample geo-grid for the input activity set with 100 activity points. In this

example, cell length is set to lg = 9.

(a) A ring R (b) Min. bounding geo-

sub-grid(R)

(c) Max. bounded geo-

sub-grid(R)

Figure 3.8: Shaded cells show a sample minimal bounding geo-sub-grid(R) and a sample

maximal bounded geo-sub-grid(R) used for the computation of the upper bound log

likelihood ratio (Log L̂Rp).
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Definition 9 Minimal bounding geo-sub-grid: Given a ring and a geo-grid, a

minimal bounding geo-sub-grid(R) is defined as the collection of geo-grid cells gc that

overlap with R (e.g., shaded cells in Figure 3.8(b) represent a minimal bounding geo-

sub-grid for the ring in Figure 3.8(a)).

Definition 10 Maximal bounded geo-sub-grid: Given a ring and a geo-grid, a

maximal bounded geo-sub-grid(R) is defined as the collection of geo-grid cells gc that

is completely inside the ring (e.g., shaded cells in 3.8(c) represent a maximal bounded

geo-sub-grid for the ring in Figure 3.8(a)).

Suppose there is a ring in the study area. A minimal bounding geo-sub-grid(R)

and a maximal bounded geo-sub-grid(R) are valid for that ring if (a) at least one geo-

grid cell is completely inside the inner circle of a ring, and at least one geo-grid cell is

completely inside the area in between inner circle and outer circle of a ring and if (b)

the minimal bounding geo-sub-grid(R) has less than N ×N geo-grid cells. Note that

(a) can be satisfied by selecting the cell length as the smaller of lg ≤ (ri)min/
√

2 and

lg ≤ (ro − ri)min/
√

2, where (ri)min is the minimum inner circle radius of a ring and

(ro − ri)min is the minimum thickness of a ring, as defined in the problem statement in

Section 3.2.

Definition 11 A parametric space grid (param-grid) is defined by four parame-

ters, namely two-dimensional center coordinates ([xmin, xmax], [ymin, ymax]) (where xmax =

xmin + lg and ymax = ymin + lg), an inner radius [rmin
i , rmax

i ], and an outer ra-

dius [rmin
o , rmax

o ]. Given a cell length lg, the number of geo-grid cells is N × N ,

and the number of param-grid cells is N × N × N × N . In other words, a param-

grid discretizes the four dimensional parameter space into param-grid cells (pc) with(
[xmin, xmax], [ymin, ymax], [rmin

i , rmax
i ], [rmin

o , rmax
o ]

)
. A pc represents a collection of

rings if the conditions for minimal bounding geo-sub-grid(R) and maximal bounded

geo-sub-grid(R) are satisfied and {(xmin ≤ x ≤ xmax), (ymin ≤ y ≤ ymax), (rmin
i ≤

ri ≤ rmax
i ), (rmin

o ≤ ro ≤ rmax
o )}.
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Table 3.1: Geo-grid cells for lg = 1 generated for activity set in Figure 3.5(a).

[xmin, xmax] [ymin, ymax] Count

1,2 1,2 0

17, 18 27, 28 0

18, 19 14, 15 1

79, 80 72, 73 1

. . . . . . . . .

Table 3.2: Sample param-grid cells for lg = 1 generated for activity set in Figure 3.5(a).

xmin, xmax ymin, ymax rmin
i , rmax

i rmin
o , rmax

o Log L̂Rp

40, 41 40, 41 22, 23 29, 30 92.69

38, 39 41, 42 23, 24 26, 27 92.34

94, 95 94, 95 26, 27 28, 29 65.62

40, 41 35, 36 18, 19 31, 32 58.18

Table 3.2 illustrates several pcs for the activity set in Figure 3.5(a) when grid

cell length is set to lg = 1. For example, the top row in the table shows a pc with

([40, 41], [40, 41], [22, 23], [29, 30]).

Definition 12 Given a param-grid cell pc, the upper bound log likelihood ratio

(Log L̂Rp) can be computed as follows:

Log L̂Rp = Log
(
L̂Rint × L̂Rext × Î()

)
, where

L̂Rint =

(
U(c)

L(B)

)U(c)

, and

L̂Rext =


(
|A|−L(c)
|A|−U(B)

)(|A|−U(c))
, if L(c) ≥ U(B)

1, otherwise

Î() =

1, if U(c) > L(B)

0, otherwise

(3.2)

It can be stated that U(c) is an upper bound of c, L(c) is a lower bound of c, U(B)

is an upper bound of B, and L(B) is a lower bound of B.
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U(c) = # of points in minimal bounding geo-sub-grid(p)

L(c) = # of points in maximal bounded geo-sub-grid(p)

U(B) = area(minimal bounding geo-sub-grid(p))×|A|
area(S) < |A|

L(B) = area(maximal bounded geo-sub-grid(p))×|A|
area(S) > 0

The upper bound log likelihood ratio is applied if and only if the maximal bounded

geo-sub-grid(R) has at least one gc and the minimal bounding geo-sub-grid(R) has

less than N ×N geo-grid cells (gc).

L̂Rint and L̂Rext are the upper bounds of the two components in Equation 3.2,

representing the interior and the exterior of a ring respectively. The second component

of L̂Rext has two cases, conditioned on whether L(c) ≥ U(B). It is proved in Theorem 1

that this upper bound always gives a value higher than the actual Log LRR. The

indicator function Î() is similar to the indicator function in Equation 3.2 and is set to

I() = 1 when the upper bound of activity points is higher than the lower bound of the

expected activity points (U(c) > L(B)).

For example, on the top row of Table 3.2, upper bound log likelihood ratio Log L̂Rp

is computed by the following: U(B) = 7.11, L(B) = 5.31, L(c) = 37 and U(c) = 50.

Finally, Log L̂Rp = Log

((
50
5.31

)50 × ( 100−37
100−7.11

)100−50
× 1

)
= 92.69.

Lemma 1 For any ring R(x, y, ri, ro), Equation 3.2 is well defined if the cell length is

selected as lg ≤ (ro − ri)min/
√

2.

Proof 1 In Equation 3.2, L(B) and L(c) are defined by the maximal bounded geo-

sub-grid cells, and U(B) and U(c) are defined by the minimal bounding geo-sub-grid

cells. If L(B) = 0, then Log L̂Rp can’t be computed since L̂Rint in Equation 3.2

will be undefined. Thus, in order for L(B) > 0, there needs to be at least one gc

in the collection of maximal bounded geo-sub-grid cells. Therefore, lg should be set to

lg ≤ (ro − ri)min/
√

2.

Lemma 2 If a ring has c > B, then L̂Rint ≥
(
c
B

)c
.

Proof 2 If c > B, then c
B > 1. Since B ≥ L(B),

(
c
B

)c ≤ ( c
L(B)

)c
. Also, U(c) ≥ c,(

c
L(B)

)c
≤
(

U(c)
L(B)

)c
≤
(

U(c)
L(B)

)U(c)
and U(c) > L(B), thus L̂Rint ≥

(
c
B

)c
.
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Lemma 3 If c > B, then L̂Rext ≥
(
|A|−c
|A|−B

)(|A|−c)
.

Proof 3 In Likelihood Ratio equation [178], if c > B then (|A|−c) ≤ (|A|−B), implying
|A|−c
|A|−B > 1. Now consider two cases:

Case 1: L(c) ≥ U(B)(
|A|−c
|A|−B

)(|A|−c)
≤
(
|A|−L(c)
|A|−B

)(|A|−c)
(Since c ≥ L(c))

≤
(
|A|−L(c)
|A|−L(B)

)(|A|−c)
(Since B ≥ L(B))

≤
(
|A|−L(c)
|A|−L(B)

)(|A|−U(c))
= L̂Rext (since quotient is less than 1, and it is raised to a

smaller exponent)

Case 2: L(c) < U(B)

Since
(
|A|−c
|A|−B

)
< 1, then

(
|A|−c
|A|−B

)(|A|−c)
< 1 = L̂Rext.

To sum up, if c > B, then L̂Rext ≥
(
|A|−c
|A|−B

)(|A|−c)
.

Lemma 4 If c > B, then Î() = I().

Proof 4 If c > B, then I() = 1. Since U(c) ≥ c and L(B) ≤ B then U(c) ≥ L(B).

Using Definition 12, Î() = 1 and it can be concluded that Î() = I().

Theorem 1 For any ring R where c > B, Log L̂Rp ≥ Log LRR.

Proof. According to Lemma 2, Lemma 3 and Lemma 4, if c > B, then L̂Rint ≥
(
c
B

)c
,

L̂Rext ≥
(
|A|−c
|A|−B

)(|A|−c)
, and Î() = I(). Therefore, Log L̂Rp ≥ Log LRR.

3.3.2 Dual Grid based Pruning (DGP) Algorithm

Algorithm 1 shows the three phases of the DGP algorithm. The prune phase uses

a dual-grid which returns param-grid cells (pcs) and the associated activity points in

prunedSets. This information is then sent to the refine phase in order to find the

candidate rings. Finally, candidate rings are tested for statistical significance in the

Monte Carlo simulation phase.

A. Prune Phase: First, the study area is discretized into geo-grids and param-

grids (lines 1-2) and geo-grid cell count values are computed (line 3). Since all gcs are

equal-sized, baseline Bgc for an individual gc is then determined (line 4). For every
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param-grid cell (pc), the Log L̂Rp is computed (lines 5-8). In Line 6, it can be seen

that rcello can be as high as N/2. This restriction is to limit the rings’ radii inside S.

Also, number “3” in Line 6 is selected to prevent cell collection inside maximal bounded

geo-sub-grid from exceeding the cell collection inside minimum bounding geo-sub-grid

which may cause spurious upper bound likelihood ratios. Finally, if the upper bound

log likelihood ratio Log L̂Rp ≥ θ, then those pcs and prunedSets are sent to the refine

phase (lines 9-10).

Algorithm 1 Dual Grid Based Pruning Algorithm

Inputs are the same as in Problem Statement

A. Prune Phase:

Discretize S into [N ×N ] geo-grids using lg

Create param-grids with [N ×N ×N ×N ]

Associate counts c to geo-grid cells(gc)

Baseline (Expected) Bgc ← |A|/(N ×N)

for each param-grid cell pc do

for each rcelli ← 1 to N/2− 3 do

for each rcello ← (ri + 3) to N/2 do

pc← Log L̂Rp

if Log L̂Rp ≥ θ then prunedSet← all a ∈ pc

Send all pcs and prunedSets to refine phase

B. Refine Phase

circlei ← activity triplets ∈ A
if ri ≥ (ri)min then

circleo ← each a outside circlei thus create R

if (ro − ri) ≥ (ro − ri)min then

Compute Log LRR

if Log LRR ≥ θ then Add R to candidateRings

C. Monte Carlo Simulation Phase:

significantRings← rings R with p-value ≤ αp

Return significantRings
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B. Refine Phase: The DGP Refine Phase begins by enumerating every three non-

linear points to generate the inner circle (circlei) of a 4P-CRing (line 11). All points

outside circlei are used to generate the outer circle circleo, and thus R (lines 12-13). If

R is thicker than the specified ring width ((ro − ri)R ≥ (ro − ri)min), and ri is greater

than the required minimum inner circle radius ((ri)R ≥ (ri)min), Log LRR value for a

R is computed using its area and the number of activity points it contains (line 14). If

the Log LRR ≥ θ, then R is added to candidateRings (line 15).

Lemma 5 Given a set of activity points, DGP Refine phase is complete. An algorithm

is considered complete if it discovers any 4P-CRing that qualifies the input thresholds.

Proof 5 The proof is trivial. In Line 11 of Algorithm 1, all possible triple combinations

of points are traversed to create circlei of 4P-CRings. Similarly, in Line 13, for each

circlei, if ri ≤ (ri)min, all points outside circlei is used to enumerate circleos. Thus,

according to the Definition 4, since all possible 4P-CRings, which exceed the thresholds,

are enumerated, DGP Refine phase is complete.

Corollary 1 Using Lemma 5, DGP Algorithm is complete if prune phase is not used

and the entire input (i.e. activity set and thresholds) is given to the refine phase.

C. Monte Carlo Simulation Phase: A p-value is determined for the candidateRings

using m trials of Monte Carlo simulation. First, m random activity sets are generated.

For each random activity set, DGP runs and stores the highest Log LRR of every trial

(if no pc survives the prune phase for an Arand, its highest Log LRR is set to 1). These

m log likelihood ratio values are then ordered and compared with the Log LRR of

candidateRings. The order of Log LRR of candidateRings is divided by m+ 1 to get

the p-value of a 4P-CRing.

DGP Execution Trace: Figure 3.5(a) shows our input activity set with |A| = 100.

The Log LRR threshold θ is set to 50 and cell length is set to lg = 1 (for illustration

purposes). First, the prune phase creates geo-grids with 135×135 geo-grid cells (gc) and

param-grids with 135×135×68×68 param-grid cells (pc). Next, for each gc, the number

of activity points inside is determined. For example, the geo-grid cell ([18, 19], [14, 15])

has 1 activity point (Table 3.1). Then, B is determined by dividing the cardinality of

A by the total number of gcs. In this example B = 100/(135 ∗ 135) = 0.0055. Next,
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Log L̂Rp for each pc is computed. Table 3.2 shows sample pcs. For example, the param-

grid cell ([40, 41], [40, 41], [22, 23], [29, 30]) has Log L̂Rp = 92.69. This is done for each

pc (135×135×68×68). Finally, all pcs with Log L̂Rp ≥ θ and their associated activity

points are saved in prunedSets ⊂ A and sent to the refine phase. In Table 3.2, the top

row which is defined by a pc and the associated points are sent to the refine phase as

prunedSet.

In the refine phase, 4P-CRings are enumerated with the activity points in each

prunedSet. Next, actual Log LRR are computed and 4P-CRings with Log LRR ≥ θ are

saved in candidateRings. Table 3.3 shows sample candidateRings with Log LRR ≥ θ

returned by refine phase.

Finally, candidateRings are tested for statistical significance and the p-value of the

candidateRings determined. OnlyRs with p-value ≤ αp are saved as significantRings.

Figure 3.9 shows two output 4P-CRings with Log LRR = 73.91 and 64.19 respectively

and both of which have p-value = 0.01.

Table 3.3: Sample Output of the DGP for the activity set in Figure 3.5(a).

x y ri ro area(R) B c LogLRR

40.72 40.84 22.33 29.17 1106 6.06 50 73.91

40.72 40.84 22.33 29.17 1106 6.07 48 68.50

94.55 94.51 27.05 27.93 151.17 0.83 25 64.19

94.64 94.48 27.09 27.95 150.08 0.82 23 57.09

94.53 94.49 27.06 27.93 150 0.82 21 50.05

3.4 Proposed Approach

We found in our preliminary approach that in the prune phase of DGP algorithm,

selecting a coarse cell size may cause rings to be missed, while fine cell size incurs high

cost. Thus, we propose refinements for the prune phase of the DGP. Similarly, the

refine phase of the DGP algorithm uses an extensive candidate enumeration strategy

which causes many almost identical candidates to be enumerated and evaluated for each

prunedSet (e.g. |prunedSet|4 4P-CRings). Therefore, we also propose a new refine phase
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algorithm which addresses scalability issues by preventing enumeration of all possible

4P-CRings from a prunedSet.

Figure 3.9: Illustration of the output of DGP.

The proposed DGPLMR (Dual Grid Based Prune with Local maxima elimination,

Multi cell length and Refine with best enclosing ring) algorithm incorporates the fol-

lowing new algorithmic refinements: Different cell sizes for the center and width of a

ring, multi cell size for the width of a ring, local maxima elimination for pruned cells

and a new refine phase using a best enclosing ring algorithm.

3.4.1 Algorithmic Refinements for the Prune Phase

Different cell sizes for the center and width of the ring

In DGP, the cell length lg is constant. If lg is set coarser, due to the generation of

rings on the parametric grid space, rings may be missed if their actual widths are thin.

In Figure 3.10(a), lg = 9 and the upper bound log likelihood ratio computed for the

second row is 0 < θ. Thus the top right ring will be pruned by DGP. On the other

hand, if the lg is set finer, the generated number of cells increases. Since pruning returns

all parametric grid cells (pc) with Log L̂R ≥ θ, even for the same ring, many pcs and

prunedSets are sent to the refine phase. Therefore, selecting a too small cell length

causes redundant computation. For the same example, if the lg was selected as 1, both

of the rings would be detected by the algorithm by trading the speed due to the high
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number of cells to be created. This makes it hard to find a balance between a fine and

a coarse cell length and the user is forced to decide between speed and ring detection.

Our new approach uses different cell lengths for the center (lgc) and the width of the

ring (lgw). When creating rings using parametric space, lgc for the center of the ring

is kept coarse but lgw for the ring width is selected fine. In Figure 3.10(b), cell lengths

are selected as lgc = 9 and lgw = 1.

Note that in order for a ring to be represented by aminimal bounding geo-sub-grid(R)

there should be at least one geo-grid cell completely inside the inner circle of a ring (Def-

inition 9). Thus, cell length for the center (lgc) of the ring should be lgc ≤ (ri)min/
√

2.

Similarly, in order for the maximal bounded geo-sub-grid(R) to have cells completely

inside the ring (Definition 9), cell length for the center (lgw) of the ring should be

lgw ≤ (ro − ri)min/
√

2.

(a) Coarse cell length (lg = 9) (b) Multi cell lengths (lgc = 9 and lgw = 1)

Figure 3.10: Illustration of missing rings due to coarse cell length ( 3.10(a)) and using

multi cell lengths for the center (in the middle of shaded cells - shown in yellow) and

width (shaded cells - shown in green/blue) of the rings ( 3.10(b)) to detect those.
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Local Maxima Elimination

In DGP, if the cell length (lg) is smaller than the ri of the R, multiple param-grid

cells and multiple prunedSets may be returned for a single ring, causing redundant

enumerations. To handle this issue, a local maxima elimination approach is used to

remove redundant pcs from the result set of the prune phase.

A local maxima is a value of a function which is relatively maximum within a

neighborhood. In local maxima filtering, a technique used in aerial imagery, a local

maxima is defined as a pixel/pixel group which has a value greater than its surrounding

neighbors within a specified neighbor size [180].

In Figure 3.11(a), the cells tagged as 1, 2, 3, 4, 6, 7, 8, 9 are the neighbors of the cell

tagged as 5. Tags are added to the figure for convenience but not used in the algorithm.

Log L̂Rp of these 9 cells (Table 3.11(b)) show that all have Log L̂Rp ≥ θ. In the previous

DGP approach, these 9 cells would be returned to the refine phase even though they all

represent the same ring. In the new approach, local maxima cells are identified after

every iteration of the prune phase and the rest of the cells are eliminated from the result

set. In Figure 3.11(a), only pc tagged as 5 will be returned to the refine phase.

(a) Tags of the cells inside

the ring-shaped hotspot.

(b) Result of pruning phase (for a single run with lgw = 3

and lgc = 3 and θ = 50

Figure 3.11: Illustration of local maxima elimination approach. Param-cell pc with

tag = 5 will be returned after the local maxima elimination.

Lemma 6 When there are multiple cells inside the circlei of a ring, the cell which is

closer to (or includes) the actual center of the ring will have higher Log L̂Rp.
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Proof 6 Without loss of generality, let the cell with Tag 1 have the highest Log L̂Rp

in Figure 3.11. Then in order to have U(c)Tag1 ≥ U(c)Tag5 and L(c)Tag1 ≤ L(c)Tag5,

the inner radius should be rTag 1
i ≤ rTag 5

i or the outer radius should be rTag 1
o ≥ rTag 5

o

(suppose ri and ro are multiples of grid cells). Since Log L̂Rp is computed by U(c), L(c),

U(B) and L(B), either case will also require U(B)Tag1 ≥ U(B)Tag5 and L(B)Tag1 ≤
L(B)Tag5. But if rTag 1

i ≤ rTag 5
i or rTag 1

o ≥ rTag 5
o then it is impossible to have

U(B)Tag1 ≥ U(B)Tag5 and L(B)Tag1 ≤ L(B)Tag5 due to the area of the rings computed

using their radii. Thus the lemma is proved by contradiction. Therefore, when there are

multiple cells inside the circlei of a ring, the cell which is closer to (or includes) the

actual center of the ring will have the highest Log L̂Rp.

(a) Output of the first iteration

with lgw = 9 and lgc = 9

(b) Output of the second itera-

tion with lgw = 3 and lgc = 9

(c) Output of the final iteration

with lgw = 1 and lgc = 9

Figure 3.12: Illustration of multi cell length approach. Initially cell lengths are selected

as lgw = 9 and lgc = 9. Second row for the top right ring is shown for illustration

purposes. This ring will be missed since the first iteration will prune it out.
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Algorithm 2 DGP Algorithm with new Prune Phase

Inputs are the same as in Problem Statement

Select lgc and lgw using (ro − ri)min and (ri)min

Discretize S to [Nc ×Nc] grids using lgc

Discretize S to [Nw ×Nw] geo-grids using lgw and set Bcell

Create param-grid [Nc ×Nc ×Nw ×Nw] with lgw

for each param-grid cell pc in p1...n do

for each ri ← 1 to Nw/2− 3 do

for each ro ← (ri + 3) to Nw/2 do

pc← Log L̂Rp

for each pc with Log L̂Rp ≥ θ do

prunedSetp ← a1...|A| ∈ min.bou.geo-sub-grid

4.1.2 Local Maxima Elimination

for each pc with Log L̂Rp ≥ θ do

Define neighborhood of parametric cell pc

if L̂Rneighbor ≤ Log L̂Rp then

Remove pcneighbor and prunedSetneighbor

4.1.3 Multi Cell Size for the Width of the Ring

for each pc with Log L̂Rp ≥ θ and prunedSetp do

prunedSetprev = prunedSetp and prunedSetnew = ∅
while lgw ≥ (ro − ri)min do

if |prunedSetprev| == |prunedSetnew| then break;

lgw = lgw/3

Select S of prunedSetp as Sp

Discretize Sp to [Nw ×Nw] geo-grids

Create param-grid for [1× 1×Nw ×Nw]

for each ri ← 1 to (Nw − 3)/2 do

for each ro ← (ri + 3) to Nw/2 do

pcnew ← Log L̂Rpnew

if Log L̂Rpmax < θ then

Remove pc and prunedSetp;

prunedSetnew ← a1...|A| ∈ min.bou.geo-sub-grid

prunedSetF inal← prunedSetnew

if |prunedSetF inal| ≥ 4 then

Send prunedSetF inal to the Refine Phase
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Multi cell size for the width of the ring

In DGP, the cardinality of prunedSets depends on the cell length. When there are

activity points which will not contribute to the actual ring, the prunedSet may have a

larger size that will cause the refine phase to enumerate unnecessary rings. Our new

approach runs prunedSets through the prune phase multiple times. On every iteration,

lgw is divided by a constant (e.g. 1/3 to keep the center the same on each iteration),

the prune phase is re-run, and the cardinality of the prunedSet is compared with the

previous iteration. Once cardinality stabilizes or lgW ≤ (ro − ri)min, the iteration ends

and the prunedSet is sent to the refine phase if |prunedSet| ≥ 4. Figure 3.12 shows

sample iterations of this multi cell size approach. Since the cardinality of the prunedSet

in the third iteration (Figure3.12(b)) is the same for the second iteration (Figure3.12(c)),

the algorithm terminates. Note that the top right ring was missed in the first iteration

and did not appear in the result set; it is shown to illustrate the change of Log L̂Rp on

each iteration.

3.4.2 Refine Phase: A Best Enclosing Ring Heuristic

The DGP refine phase has a high computational cost since it enumerates 4P-CRings

using all possible triplets of activities in prunedSets (i.e, O(|prunedSet|4)). In order

to reduce this cost, we used a best enclosing ring heuristic for each prunedSet. In this

approach, we use the basic property of Voronoi diagrams that states for each Voronoi

vertex, there are 3 points that are equidistant to that vertex. In other words, those

Voronoi vertices are the centers of the circles that can be enumerated using those 3

points. Since the prune phase also returns a center range, we simply determine the

Voronoi vertices that fall into those center ranges and create inner circles with those

vertices and point triplets. In addition, we iteratively remove points and reconstruct

the Voronoi diagram to enumerate 4P-CRings not only with whole of the points but

also with the subsets of the points in prunedSet.

Note that there is a trade-off between scalability and quality of result set. This

approach is used to improve scalability by sacrificing the guarantee of having rings

which may have higher log likelihood ratio.

Definition 13 Voronoi Diagram: Given a prunedSet with |prunedSet| ≥ 4, a
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Voronoi diagram is a division of a 2 dimensional Euclidean space into Regioni=1...|prunedSet|

around each point ai ∈ prunedSet such that any arbitrary point (x) in Regioni is closer

to ai than any point in prunedSet [181]. Formally, V or(prunedSet) = {x : dist(ai, x) <

dist(aj , x) ∀ ai, aj ∈ prunedSet}.
For any Voronoi vertex vi, there are 3 points a1, a2, a3 that are equidistant to vi. A

circle passing through a1,2,3 has a center at vi. If any 4 points are co-circular, there is

a duplicate circle (same circle is enumerated twice). If any 3 points are collinear, vi is

a line (no circle is enumerated).

(a) prunedSet and the corresponding

Voronoi diagram

(b) Inner circles created in the first itera-

tion of the refine phase

Figure 3.13: Inner circles created in the first iteration of the refine phase. Blue dots

represent the points in prunedSet, red squares represent the Voronoi vertices. Inner

circles are created with the vertices inside the black square representing the center

interval returned by prune phase (best in color).

Algorithm 3 starts by creating a Voronoi diagram of the prunedSet (line 1). The

Voronoi vertices vi which lie on the center intervals returned by the prune phase are

then used as the center of 4P-CRings (lines 3-4). For these vertices vi, three closest

points a1,2,3 ∈ prunedSet are determined and used to create the inner circle (circlei)

(line 5). The points in the outer radius interval rmin
o , rmax

o , returned by the prune

phase, are used to create the outer circle (circleo) (lines 7-8). If circlei and circleo

satisfy the minimum ring width and minimum inner radius thresholds, the Log LRR
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of the 4P-CRing is computed and saved in the ringList (lines 9-10). Once all Voronoi

vertices v which lie on the center intervals are traversed to enumerate the 4P-CRings,

the points associated with these vertices are removed from the prunedSet, the Voronoi

diagram is reconstructed(lines 12-13) and the algorithm re-runs with the new Voronoi

vertices. Finally, the R with the highest Log LRR is returned (line 14).

Figure 3.13 illustrates the first iteration of the refine algorithm. Once the prunedSet

is returned by the prune phase (points are shown as blue dots), a Voronoi diagram is

created as shown in Figure 3.13(a) (voronoi vertices are shown as red squares). Inner

circles (circlei) of 4P-CRings are created using the Voronoi vertices which are inside

center intervals defined by pc. In Figure 3.13(b), the black squares represent the vertices

and the circles represent the circlei. Once circleis are created, circleos are created using

the points beyond these. Next, the Voronoi vertices which were used to enumerate circlei

are removed from the prunedSet and the Voronoi diagram is reconstructed. If any of the

new vertices fall inside the center interval, the same process is repeated to create new

4P-CRings. Once the prunedSet is empty or there is no vertex inside center interval,

the algorithm terminates and returns the R with the highest Log LRR.
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Algorithm 3 Refine Phase and Monte Carlo Sim. of DGPLMR

Input:

1) Param-grid cell pc and prunedSet,

2) A minimum ring width (ro − ri)min and inner radius (ri)min,

3) A log likelihood ratio threshold θ

Output:

Output is the same as Algorithm 1 (DGP

Refine Phase:

Create the Voronoi diagram of prunedSet

while prunedSet 6= ∅ do

for each Vertex v of the Voronoi diagram do

if xmin ≥ vx ≥ xmax and ymin ≥ vy ≥ ymax then

circlei ← three closest a ∈ prunedSet
while dist(a, v) ≥ rmin

o do

circleo ← farthest a ∈ prunedSet
Ring R← circlei, circleo and Log LRR

if (ro − ri)R ≥ (ro − ri)min and (ri)R ≥ (ri)min and Log LRR ≥ θ then

Save R in ringList

Remove a from prunedSet

Remove points associated with v

Reconstruct Voronoi diag. with new prunedSet

candidateRings← R with highest Log LRR

Monte Carlo Simulation Phase:

significantRings← R if p-value ≤ αp

Return significantRings

3.5 Theoretical Evaluation

In this section we analyze the correctness, and computational complexity of DGPLMR.

Prune Phase Algorithm (Algorithm 2) does not return an output and simply returns

prunedSets for the refine phase algorithm. Therefore, correctness of DGPLMR is proved

by the correctness of the Refine phase algorithm (Algorithm 3). A proof of completeness
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is not given since Local Maxima Elimination and the Best Enclosing Ring heuristic trade

completeness for scalability.

3.5.1 Correctness

Lemma 7 DGPLMR is correct. Correctness means that DGPLMR returns only the

4P-CRings with (ro − ri)R ≥ (ro − ri)min and (ri)R ≥ (ri)min, Log LRR ≥ θ and

p-value ≤ αp.

Proof 7 In Algorithm 3, each 4P-CRing is evaluated against (ro−ri)min, (ri)min and θ

thresholds on line 9, and any satisfying these is saved in candidateRings. Once the re-

fine phase is done, Monte Carlo simulation phase starts and candidateRings are evalu-

ated against the αp threshold on line 15. Finally, DGPLMR returns the candidateRings

with p-value ≤ αp. Thus DGPLMR is correct.

Lemma 8 Given a finite activity set A = a1, a2, ..., an, DGPLMR terminates in finite

time.

Proof 8 In Algorithm 2, the prune phase iterations on lines 5-7 of DGPLMR are

bounded by the number of param-grid cells and the algorithm will terminate after all

param-grid cells are visited. Also Multi Cell Size pruning will terminate once lgw <

(ro − ri)min since lgw is divided by a constant (e.g. 3) on every iteration (line 19).

In Algorithm 3, the refine phase of DGPLMR removes points a ∈ prunedSet on each

iteration of the loop (lines 6-11) and terminates when all a in the range of rmin
o and

rmax
o are visited. Also the prunedSet size decreases on each iteration (lines 2-13) and

it terminates when prunedSet = ∅. Since both phases terminate, DGPLMR terminates

in finite time.

3.5.2 Computational Analysis

Lemma 9 Given an activity set |A|, DGPLMR has a lower computational cost than

DGP, if N2
c ×N2

w ≤ N4 and N ≥ Nw.

Proof 9 The worst case computational cost of DGPLMR for a single run is O(N2
c ×

N2
w+|A|2 log |A|) whereas the worst case cost of DGP is O(N4+|A|5). Thus, DGPLMR
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prune phase is less costly than DGP prune phase. Moreover, |A|2 log |A| ≤ (|A− 1|)5,

meaning DGPLMR’s refine phase cost is less than DGP’s. Therefore, DGPLMR has a

lower computational cost than DGP if N2
c ×N2

w ≤ N4.

The DGP algorithm prune phase uses a dual grid based ring enumeration on a

geometric grid space of N2 and a parametric space of N4, where N2 is the number

of geo-grid cells created using the grid cell size lg. The worst case cost of DGP is

O(m × (N4 + |A|5)), if no pruning occurs and all activity points are returned to the

refine phase. In the best case, the cost will be O(m×N4) as the prune phase will not

return any prunedSet and the algorithm will terminate.

DGPLMR has a worst case cost of O(m × (N2
c ×N2

w + |A|2 log |A|), that is, when

the algorithm does not prune any points and the refine phase uses |A| to generate an

actual 4P-CRing. In the best case, the cost will be Ω(m×N2
c ×N2

w) as the prune phase

will not return any prunedSet and thus the refine phase will not run and the algorithm

will terminate.

Note that Nc and Nw are defined by lgc and lgw which are selected using the mini-

mum inner radius (ri)min and minimum ring width (ro − ri)min inputs. Thus, a careful

selection of these inputs is important since they affect the execution times. A summary

of the computational complexity of DGP and DGPLMR is given in Table 3.4.

Table 3.4: Computational complexity analysis

Algorithm Complexity

(best case)

Complexity

(worst case)

DGP [141] Ω(m×N4) O(m× (N4 + |A|5))
DGPLMR

(proposed approach in

this chapter)

Ω(m×N2
c ×N2

w) O(m× (N2
c ×N2

w + |A|2 log |A|))

3.6 Case Study

Statistically significant hotspot detection techniques based on diffusion theory, such as

SaTScan, find hotspots with simply connected (e.g. circles) shapes. However, in some

domains, activities may occur in a ring-shaped pattern. To evaluate our approach, we
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compared the output of SaTScan and DGPLMR on real world data using a continuous

Poisson process [10].

We conducted our case study on a New York Bronx Legionnaire’s disease outbreak [6]

dataset as shown in Figure 3.14(a). The input activity set included 78 infected individ-

uals’ locations as well as the possible sources of the outbreak which were hand digitized

using the map in [6]. SaTScan returned two small circular hotspots (Figure 3.14(b)),

while RHD returned a single ring-shaped hotspot (Figure 3.14(c)) with a low p-value

(i.e. p-value= 0.001) and a high Log LRR (i.e. Log LRR = 34.55). Later, we validated

that the Opera House Hotel inside the inner circle of the ring was indeed the source of

the outbreak [7].

(a) Legionnaire’s in New York

(2015)

(b) Output of SaTScan (c) Output of RHD

Figure 3.14: New York Bronx Legionnaire’s disease cases (collected from the map in [6])

in 2015 and the output of SaTScan and RHD. RHD output validates the actual location

of the outbreak as Opera House Hotel [7].

3.7 Experimental Evaluation

The goal of the experiments was twofold: (a) a comparative analysis to evaluate the ef-

fect of the new algorithmic refinements of DGPLMR compared to DGP. (b) a sensitivity

analysis to determine the scalability and potential bottlenecks in DGPLMR.
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In the comparative analysis, five questions were asked: (1) What is the effect of the

activity set (|A|) size? (2) What is the effect of the number of activities in R? (3) What

is the effect of the selected cell size (lgc and lg)? (4) What is the effect of the number

of rings? (5) What is the effect of the log likelihood ratio threshold (θ)? The following

candidate algorithms were included in the comparative analysis:

Figure 3.15: Experimental Design

In sensitivity analysis we asked: “Where is the bottleneck in DGPLMR?” What is

the effect of number of activities in A, number of activities in R and cell length (lgc) on

the memory cost of DGPLMR?

3.7.1 Experimental Design & Data Sets

Activity sets were generated under a null hypothesis (Complete Spatial Randomness),

and ring-shaped hotspots were added (20% of the activity set size). The experimental

design is illustrated in Figure 3.15 and the parameter details are listed in Table 3.5.

The likelihood ratio threshold was user defined and set to θ = 2500. Experiments were

performed on a computer with Intel Xeon 2.67 GHz CPU and 4GB Java VM memory.
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Table 3.5: Experiment datasets generated for the Experimental Evaluation (S = 900×
900, m = 0).

Experiment

(Effect of)
|A|

|R|
(% of |A|)

# of

R
θ (ri)min (ro − ri)min

|A| (Comp) Vary 20% 1 2500 50 20

|R| 5000 Vary 1 2500 50 20

lg, lgc 5000 20% 1 2500 Vary Vary

# of R 5000 20% Vary 2500 50 20

θ 5000 20% 1 Vary 50 20

|A| (Sens.) Vary 20% 1 50000 50 20

σ2 (Sens.) Vary Vary 1 2500 50 20

• Dual Grid Based Pruning Algorithm (DGP) [141]

• DGP with Local Maxima Elimination(DGP-L)

• DGP with Multi Cell Length (DGP-M)

• DGP with Local Maxima Elimination and Multi Cell Length (DGP-LM)

• DGP with Best Enclosing Ring Refine Phase (DGP-R)

• DGP with All Algorithmic Refinements (DGPLMR)

3.7.2 Comparative Analysis

Effect of the number of activities in the activity set (|A|): First, activity set

sizes were varied from 3000 to 7000 activity points and the effect of the algorithmic

refinements on DGPLMR execution times were observed. Figure 3.16(a) shows that

each refinement improves execution time of DGPLMR and there is at least orders of

magnitude difference between the execution times of DGP and DGPLMR.

Effect of the number of activities in the ring |R|: Activity counts inside the rings

were varied from 500 to 1500. As can be seen in Figure 3.16(b), when the number of

activities in the ring is small (i.e. 500), none of the algorithms can detect the ring,
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because the pruning phase eliminates this ring using the θ threshold. Also it can be

concluded that DGPLMR runs fastest for all ring activity counts tested (|R|).

(a) Effect of |A| (b) Effect of |R|

(c) Effect of cell length (lg and lgc) (d) Effect of # of rings R

(e) Effect of θ

Figure 3.16: Comparative Analysis. Execution time for DGP (A), DGP with Local

Maxima Elimination (B), DGP with Multi Cell Size Approach (C), DGP with both

Local Maxima Elimination and Multi Cell Size Approach (D), DGP with Best Enclosing

Ring Heuristic (E) and DGPLMR with all algorithmic refinements (F) (best in color).

Effect of the cell length: We compared the effect of cell length. For DGP, DGP-L and

DGP-R, we varied cell length lg from 15 to 90, and for DGP-M, DGP-LM, DGPLMR
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we varied lgc from 15 to 90. It is worth noting that DGP-M, DGP-LM and DGPLMR

use another cell length for the width of the ring lgw which is selected the same as lgc

initially. In Figure 3.16(c), it can be seen that when the cell lengths are smaller (i.e. 15),

all algorithms’ execution times are higher due to the increased prune phase execution

time. Between length 30 and 75, there is a slight increase in execution times. When

the cell lengths are larger, prunedSet includes more points than the actual hotspot,

causing a longer execution time for the refine phase. The sharp decrease after 75 occurs

because the large cell size caused the prune phase to miss the rings and return an empty

prunedSet. It can be concluded that a careful selection of cell length is important for

the performance of the DGPLMR algorithm.

Effect of the number of rings: The number of rings was varied from 0 to 4 and the

activities outside these rings were generated using complete spatial randomness (CSR).

In Figure 3.16(d), when the number of rings is 0, all algorithms successfully end on

their prune phase. Also the number of rings does not affect the execution times of the

algorithms a lot. Finally, it can be seen that DGPLMR runs fastest followed by DGP-R.

Effect of the Log Likelihood Ratio Threshold θ: Log likelihood ratio threshold

θ was varied from 2250 to 3250 and the effect on execution times was observed. Fig-

ure 3.16(e) shows the results. It can be seen that DGPLMR benefits from θ most. Also,

when θ = 3250, all algorithms missed the ring in the activity set. Again DGPLMR is the

fastest performing algorithm but this experiment also shows that the careful selection

of θ is important to detect rings.

In summary, the experiments show that DGPLMR with prune phase algorithmic

refinements and the new refine phase outperforms DGP [141] by at least two orders

of magnitude. Also it can concluded that most savings are achieved by the new refine

phase algorithm.

3.7.3 Sensitivity Analysis

Effect of large activity sets (|A|): Activity sets with 500K to 1M points were

generated and DGPLMR was run with θ = 50000. Figure 3.17(a) shows that the

bottleneck of DGPLMR is the refine phase algorithm. The prune phase is not affected

by large |A| and performs faster.
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Figure 3.17: Sensitivity analysis of DGPLMR algorithm (best in color).

Effect of the variance of activity distribution of rings: To see the effect of

the underlying point process that generates rings, we created rings using Gaussian

distribution with different Gaussian steps of variance [182]. Initially, we created 4000

completely spatially random points in a study area with 900× 900 square units. Then

we created 1000 activity points in a R with ri = 45, ro = 54 as shown in Figure 3.18(a).

Next, we diffused each of these 1000 points via a random walk with Gaussian steps of

variance σ2 = 9 to create different activity sets with σ2 = 9, 18, 27, 36 and 45. Note

that by the time σ2 = 45, the amount of diffusion was sufficient to make those 1000

activity points form a circle instead of a ring as shown in Figure 3.18(b). Figure 3.17(b)

shows that the increased σ2 does not affect the prune phase. However, the sharp decrease

on the refine phase execution time after σ2 = 36 indicates that DGPLMR prune phase

did not return any prunedSet to the refine phase since the points in the ring diffused
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too much and their Log LRR did not exceed the θ = 2500 threshold.

(a) Activity set with a ring generated with

σ2 = 0

(b) Activity set after points are scattered

by a Gaussian σ2 = 45

Figure 3.18: Two of the activity sets that were used for the experiment on the variance

of activity distribution of rings (best in color).

Memory Cost Analysis: We also analyzed the memory cost of DGPLMR under

varying number of activities in A (Figure 3.17(c)), varying number of activities in R

(Figure 3.17(d)) and varying cell size (Figure 3.17(e)). We can see from Figure 3.17(c)

and Figure 3.17(d) that the DGPLMR prune phase does not affect memory when the

cell size is constant. In Figure 3.17(c), the memory cost increase of the prune phase after

|A| = 6000 indicates that increased number of activities in the study area caused the

prune phase to do several iterations with multi cell size pruning, increasing the number

of cells in memory. Also, in Figure 3.17(e), we can observe that smaller cell sizes cause

the prune phase to consume more memory. In contrast, larger cell lengths cause the

refine phase to use more memory to enumerate rings. Also the sharp decrease of refine

phase memory cost on lgc = 90 indicates that large cell sizes may cause missing rings.

In summary, sensitivity analysis shows that DGPLMR handles large activity sets in

reasonable time and memory usage.
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3.8 Discussion

Other Approaches: Traditional density based clustering techniques shouldn’t be ne-

glected although they do not take statistical significance into account. These techniques

lack a metric (e.g. log likelihood ratio test) for ranking candidate clusters which cause

adding a significance test non-trivial. Two representative density based clustering tech-

niques are DBSCAN [9] and CLIQUE [183]. DBSCAN employs user specified param-

eters to reduce the effect of noise and to detect cluster density, whereas CLIQUE uses

a grid based approach to find regions which are defined by their density. Although

these are computationally inexpensive and can easily find arbitrarily shaped clusters

in a space, since they lack a test for statistical significance, they sometimes produce

false positive results. This limits their applicability in domains such as epidemiology

and criminology where false positives can result in stigmatizing, economic loss, along

with social/political challenges. To reinforce our point, we present two more examples

that highlight the value of RHD over traditional clustering techniques i.e. DBSCAN.

In Figure 3.19(a), DBSCAN generated 4 clusters for a complete spatial random dataset

with 100 number of points since it lacks a statistical significance test whereas RHD with

DGPLMR output was an empty set since it eliminates chance patterns using a statisti-

cal significance test. We also ran DBSCAN for the same input in Figure 3.5(a). Again,

DBSCAN generated 4 clusters (3.19(b)) and these do not align with the ring-shaped

hotspots detected by RHD (Figure 3.5(c)).

Post-processing of the Output: DGPLMR returns all rings that satisfy the

thresholds in the Section 3.2. Just like popular statistically significant hotspot detection

methods (e.g. SaTScan [10]), our output sometimes includes a large number of rings

which may be overwhelming for users. In order to reduce the number of rings that

are returned by the proposed approach, several strategies can be used. First, likelihood

ratio and p-value thresholds may be chosen more selective. Second, rings can be ordered

by their log likelihood ratio values to select top few rings. Thus, analysts can focus on

the most interesting rings first. Third, the overlapping rings which may cause visual

clutter may be eliminated from the output. This can be done either by an iterative

manner as described in [10], or by a post-processing that may remove rings with the

same points or overlapping areas.
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(a) DBSCAN output for a random activity set
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(b) DBSCAN output for the activity set in Fig-

ure 3.1(a)

Figure 3.19: DBSCAN output for a random activity set and an activity set with rings

(best in color).

3.9 Conclusions and Future Directions

This work explored the problem of ring-shaped hotspot detection (RHD) in relation

to application domains such as criminology, biology, and epidemiology. A DGPLMR

(Dual Grid Based Prune with Local maxima elimination, Multi cell length and Refine

with best enclosing ring) algorithm is proposed which discovers significant ring-shaped

hotspots in a study area defined by an activity set. The proposed approach uses upper

bound log likelihood ratio pruning as well as algorithmic refinements to enhance its

scalability. Case study comparing the proposed method with a diffusion theory based

approach (i.e., SaTScan) on a real dataset is presented. Experimental evaluation using

synthetic datasets indicated that the proposed algorithmic refinements yield substantial

computational savings. In future, we plan to add the effect of the underlying population

in order to distinguish ring-shaped hotspots in rural areas from those in metropolitan

areas. In addition, temporal dimension and underlying factors (i.e. geographic barriers,

spatial networks) that generate irregular ring-shaped hotspots will be explored.



Chapter 4

Geographically Robust Hotspot

Detection

4.1 Introduction

Given a set of geolocated points (e.g. locations of a disease/crime), a minimum radius, a

minimum likelihood ratio and a significance threshold, Geographically Robust Hotspot

Detection (GRHD) finds hotspot areas where the concentration of points inside is sig-

nificantly higher than the number of points outside. This paper refers geographically

robustness as the ability of being insensitive to minor gaps (e.g, contiguous hotspots

separated by road segments, rivers, etc.) in the contiguity of the spatial pattern.

An example of a hotspot is shown in Figure 4.1. Example shows the London Cholera

Outbreak in 1854 including 491 deaths aggregated on 250 house locations (in red) and 8

water pump locations (in blue). The detected hotspot (in blue) has a high test statistic

value (i.e. log likelihood ratio) and a high statistical significance (i.e. p-value = 0.01).

As can be seen in Figure 4.1(b), the detected hotspot points out the infected water

pump, which may have caused the Cholera deaths.

4.1.1 Application Domain:

GRHD is important for application domains such as epidemiology, environmental crimi-

nology, ecology, medical imaging, biology, etc. where detection of circular hotspots may

81
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reveal important information for domain experts. There are three important concepts

related to the detection of hotspots in these domains: Elimination of chance hotspots

(prevent false positives), ability to detect a hotspot if it exists (geographically robust-

ness), modeling hotspots with respect to diffusion model.

Elimination of chance hotspots (i.e. false positive) is important since false positive

hotspots may result in poor allocation of resources and inefficient management in critical

situations (e.g. crime, epidemic). Moreover, chance hotspots may result in stigmatizing

as such locations will not be visited by people. Thus in these domains (i.e., epidemiol-

ogy, environmental criminology, etc.), in order to eliminate chance hotspots, statistical

significance test is done.

(a) Input Cholera Cases Dataset (b) Output of GRHD

Figure 4.1: 1854 London Cholera Outbreak [8]. The blue hotspot indicates the location

of the infected water pump.(best in color).

Another important concept in hotspot detection is the ability to detect a hotspot

if it really exists (geographically robustness). In some application domains, the cost of

failing to detect a hotspot although it really exists has important consequences (e.g.

unnecessary deaths). Thus a hotspot detection technique should manage to detect all

existing hotspots.

Spread of infectious diseases and crime is tend to be similar to the diffusion model

in physics and chemistry. Diffusion means that molecules or heat will move away from

their sources once they are discharged. Similarly, diffusion model provides a natural

way to describe the “circular diffusion” of cases (i.e. diseases, crimes). For example,
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most infectious diseases move from their source to physically nearest neighbors and

these transmit the disease to their nearest neighbors and so on, causing hotspots of

cases around the sources of diseases [184]. This also gives rise to circular footprints of

hotspots in isotropic geographies.

Next, two example application domains will be introduced to illustrate these three

important concepts.

Epidemiology is the study of distribution and determinants of disease spread

across human populations and the applications to prevent and control the spread of

a disease [185]. In epidemiology, infectious disease cases are known to follow diffusion

models. For example, malaria transmission tends to be spatially heterogeneous around

a radius [186]. The ability to detect (geographically robustness) these hotspots will help

officials to take the required precautions to prevent the diffusion of a disease and elimi-

nation of chance hotspots (prevent false positives) will prevent waste of resources. For

example, Ebola outbreak in 2014 raised concerns about the poor allocation of resources

and the late reaction of the officials [187].

Environmental Criminology is the study of criminal patterns and how crimes

are affected by the physical environment of the criminal [14]. An important theory

in environmental criminology namely “Crime Pattern Theory” states that most of the

serial crimes diffuse within a radius around an anchor point of a criminal [14]. The

ability to detect (geographically robustness) these hotspots of crimes will help officials

to decide where to deploy new units to prevent new crimes and will point out the “anchor

point” to determine the criminal’s location [18, 188]. Similarly, elimination of chance

hotspots (prevent false positives) will help security officials to focus their efforts to a

specific location and will prevent stigmatizing of neighborhoods. For example, a recent

study shows that property values are affected by crime hotspots [189].
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Figure 4.2: Related work of hotspot detection.

4.1.2 Challenges:

GRHD is challenging since it is hard to enumerate all possible candidate hotspots in

a study area. Additionally, the location and the radius of the hotspots are not known

beforehand which makes it difficult to select an enumeration technique. Once candidate

hotspot enumeration is done, those are evaluated by their test statistic with a log like-

lihood ratio test. There are two challenges associated with the log likelihood ratio test:

First, it requires a count of the points inside the enumerated candidate hotspot, causing

the whole point set to be scanned for each candidate. Second, it is anti-monotonic,

meaning a smaller candidate hotspot may have a higher log likelihood ratio than a

bigger one or vice versa. Thus, monotonicity based filtering techniques are inapplica-

ble. Furthermore, the test for statistical significance using randomization (Monte Carlo

simulation) multiplies the cost.

4.1.3 Related Work:

Figure 4.2 shows the related work for hotspot detection. There are many techniques to

find dense regions (i.e. hotspots) in a study area [9, 28, 183, 190]. For example, density

based clustering techniques (i.e. DBSCAN [9], CLIQUE [183], etc.) are capable of

finding arbitrarily shaped clusters and their ability to detect a hotspot is high. While

these techniques are inexpensive, they tend to generate many false positive hotspots

since they lack a statistical significance test. For example, in Figure 4.3 given an input

point set with 800 points with two circular hotspots of 200 points each, DBSCAN

produced 8 different clusters as shown in Figure 4.3(b).
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(a) Input (b) Output of DBSCAN (Eps = 2.5, k = 6).

Clusters in different colors.

(c) Output of SaTScan (d) Output of GRHD

Figure 4.3: Example output of Geographically Robust Hotspot Detection (GRHD) com-

pared to DBSCAN [9] and SaTScan [10] (best in color).

SaTScan [10], is widely used for the detection and evaluation of circular hotspots

of diseases in epidemiology. It uses spatial scan statistics, which is known as the most

powerful statistical test, to eliminate chance patterns (reduce false positives) [178]. How-

ever, its reliance on point-centered hotspots is bad under some geographic conditions.

For example, some geographic features such as road segments, rivers, etc. may cause

gaps or discontiguity on hotspots (see Figure 4.3(a)). Also, some geographic features
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(i.e. lakes, mountains, parks) close to the center of a hotspot may cause not to observe

points and therefore cause a hotspot with a sparse center. Therefore, SaTScan risks

failing to detect a hotspot (is not geographically robust) in those cases. Also, in some

cases SaTScan may return very small hotspots that occurred by chance (suppose two

or more points are exactly at the same location) since it lacks a minimum radius rmin

threshold.

In contrast, proposed approach for GRHD does not rely on points to enumerate

candidate hotspot centers and thus it is not affected by the sparseness around the

center when detecting a hotspot. Also it is not affected by the gaps or discontiguity

caused by the geographic features (road network, rivers, etc.). Therefore its ability to

detect a hotspot (if it exists) is better (geographically robustness) in those cases. It also

uses the spatial scan statistics to eliminate chance patterns (false positives). Moreover,

it uses a minimum radius rmin threshold, which eliminates very small hotspots that

occurred by chance.

4.1.4 Contributions:

This paper formally defines the problem of detecting geographically robust hotspots.

To solve this problem, a novel approach namely cubic grid circle algorithm (CGC) is

presented. CGC filter phase uses a cubic grid to filter points which will not contribute

to a hotspot and refine phase enumerates hotspots using a smallest enclosing circle

algorithm. A case study shows that CGC finds hotspots that are not discovered by

related work (i.e. SaTScan). Computational analysis and experimental results show

that CGC yields substantial computational savings compared to the related work.

4.1.5 Scope and Outline:

This paper focuses on geographically robust diffusion hotspots modeled as circles in a

two dimensional isotropic space. The underlying population and other variables asso-

ciated with the point set are not considered (these will be considered in future work).

There may be multiple hotspots in the study area and those are assumed to be non-

overlapping as described in the SaTScan user guide [10]. In addition, since this paper

is focused on circular hotspots as defined in diffusion model, rectangular [191] and/or
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snake-shaped hotspots as well as the predefined locations [192] are out of the scope.

Section 4.2 presents the basic concepts and problem statement of GRHD. Section 4.3

reviews the related work (i.e. SaTScan [10]) solution and describes the proposed Cubic

Grid Circle (CGC) algorithm. Theoretical evaluation of the proposed approach is cov-

ered in Section 4.4. Section 4.5 presents a case study comparing CGC with SaTScan on

a real crime data. The experimental evaluation is covered in Section 4.6. A discussion

on the shape of significant hotspot detection is presented in Section 4.7. Conclusions

and future work are covered in Section 4.8.

4.2 Basic Concepts and Problem Formulation

This section introduces basic concepts and defines the Geographically Robust Hotspot

Detection (GRHD) problem.

4.2.1 Basic Concepts

Definition 14 A point set P is a collection of geolocated points (i.e. crime, disease

locations). A point p ∈ P is associated with a pair of coordinates (x, y) representing

its spatial location in the study area S.

Definition 15 Study area S is the minimum orthogonal bounding rectangle of P in

the two dimensional Euclidean space. The area of S is denoted as areaS.

Definition 16 Given center coordinates (x, y), Circle C is the closed curve where

any point on its perimeter is equidistant with a radius r to its center. Each C has three

parameters: x, y coordinates of its center and its radius r. The area of C is denoted by

areaC .

Definition 17 Log Likelihood Ratio (Log LRC) is the interest measure that is used

as the test statistic for a candidate circle C [74, 177, 178]. The equation can be shown

as;

Log LRC = Log

(( c
B

)c
×
(
|P | − c
|P | −B

)|P |−c
× I()

)
(4.1)



88

B = |P |×area(C)
area(S) and I() =

1, if c > B

0, otherwise,

B is the expected and c is the observed number of points in a particular area, |P |
is the cardinality of P and I() is an indicator function. I() = 1 when the candidate

hotspot has more points than expected (c > B) and I() = 0 otherwise [10].

For example, the area of the circle on the right in Figure 4.3(d) is π ∗ r2 = 3.14 ∗
7.712 = 186.62 and area(S) = 50 × 50 = 2500. Thus B = 800×186.62

2500 = 59.72. In this

circle C, there are c = 199 points. Finally, I = 1 since 199 > 59.72.

Using Equation 4.1, Log LRC = Log

((
199
59.72

)199 × ( 800−199
800−59.72

)800−199
× 1

)
= 114.27

Definition 18 Monte Carlo Simulation (MCS) is a randomization test which is

used to get the distribution of the test statistic (Log LRC). MCS is done as follows; first,

m random point sets (Prandom1...m) are created in the study area S. For each Prandom1...m,

new circles are enumerated and the maximum Log LRC of each Prandom1...m is stored

in decreasing order in a list, namely Log LRMCS
C .

Hypothesis Test: In GRHD, the null hypothesis (H0) states that the points are

distributed randomly according to a homogeneous Poisson process over the study area

S. The alternative hypothesis (H1) states that the inside of a circle C has a higher

number of points than outside [178]. Using the test statistic (Log LRC) of a circle C

and the distribution of the test statistic (acquired by MCS), the statistical significance

of C is determined. The statistical significance (p-value) of a circle C is computed

by finding the position (order) of its Log LRC in the distribution of the test statistic

(Log LRMCS
C ) and dividing that position by m + 1. Given a desired significance level

(αp), if p-value ≤ αp, then H1 can not be rejected.

4.2.2 Problem Formulation

The Geographically Robust Hotspot Detection (GRHD) problem is formulated as fol-

lows:

Given:

1. A set of points P where each p ∈ P has x and y coordinate in a two dimensional

Euclidean space,
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2. A minimum radius rmin

3. A log likelihood ratio threshold (θ),

4. A p-value threshold(αp) and a number of Monte Carlo simulation trials (m)

Find: Circular Hotspots (C(x, y, r)) in the study area S with Log LRC ≥ θ and

p-value ≤ αp.

Objective: Computational efficiency and scalability

Constraints:

1. Correctness of the result set,

2. Detected circular hotspots do not overlap

The minimum radius rmin input is domain specific and is intended to eliminate

very small hotspots (several disease cases in a very small area -a house- may not be

interesting). θ indicates the minimum desired Log LRC for a circle C. and αp is

the desired level of statistical significance for a circle C. Depending on the domain, a

good practice is selecting the αp as either 0.01 or 0.001. m indicates the number of

Monte Carlo simulation trials and should be selected compatible to the desired level

of statistical significance (αp) [193]. The output of GRHD is non-overlapping circular

hotspots with r ≥ rmin meeting the desired significance and log likelihood ratio levels.

Non-overlapping constraint allows to get a single hotspot instead of multiple hotspots

given a subset of P [10].

(a) Input (b) Execution Trace (c) Output

Figure 4.4: Execution trace of SaTScan algorithm with points as centers (in color). Red

rows correspond the red circles in Figure 4.4(c) (best in color).
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Example: Suppose, given the point set in Figure 4.3(a), the aim is to find hotspots

with a minimum radius of rmin = 2.5, minimum log likelihood ratio θ = 100 and

minimum level of significance αp = 0.001, even if a geographic barrier (river, road

network, etc.) divides hotspots. Figure 4.3(d) shows the output of GRHD with two

hotspots with log likelihood ratio 155.17 and 114.27 respectively. These hotspots have

p-value= 0.001 indicating statistical significance at 99.9% confidence.

4.3 CGC Algorithm

In this paper, SaTScan serves as the baseline algorithm. First, SaTScan is reviewed in

detail, an illustrative execution trace is provided and its limitations are summarized.

Then a cubic grid circle algorithm (CGC) which is geographically robust (is not affected

by gaps or discontiguities) is introduced.

4.3.1 Baseline Approach: SaTScan Algorithm

In order to review SaTScan in detail, it is implemented according to its user guide

in [10]. The pseudocode of SaTScan, as shown in Algorithm 4, has three steps:

Step 1-Enumeration of Circles: The algorithm takes each p ∈ P and makes it

the center of a circle C(x, y, r). Next, the radius r of C(x, y, r) is determined by the

distance of the rest of the points to its center. This step is done for all possible pairs of

points in P (line 1-4).

Step 2-Log Likelihood Ratio Test: For each circle C, Log LRC is computed

by Equation 4.1 using areaC , areaS , the count of the number of points inside (c),

and the total number of points in the point set (|P |). Among the overlapping circles

generated, only the ones which have the highest log likelihood ratio are stored as the

candidateCircles (line 5-8).

Step 3-Monte Carlo Simulation & Hypothesis Test: For the circles C ∈
candidateCircles, a p-value is computed by Monte Carlo simulation. First, m random

datasets with Poisson distribution are generated. For each random dataset, new cir-

cles are enumerated and the maximum Log LRC of each random dataset is stored in

Log LRMCS
C in decreasing order. To find the significance of a C, the position of the

Log LRC associated with C is determined within the Log LRMCS
C list. This position
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is divided by (m+ 1) to determine the p-value (line 9-12). Finally, all non-overlapping

circles with p-value ≤ αp are returned by the algorithm (line 13).

Algorithm 4 SaTScan Algorithm

Input:

1) A point set P with points p(x, y),

2) A p-value threshold αp, and A number of Monte Carlo Simulation trials (m)

Output:

Non-overlapping circular hotspots C with p-value ≤ αp.

Algorithm:

Step 1: Enumeration of Circles

for each point pi ∈ P do

C ← coordinates of pi as center x, y

for each point pj ∈ {P − pi} do

C ← distance dpi,pj as r
Step 2: Log Likelihood Ratio Test

for each C created in Step 1 do

Compute B, c, and areaC

Log LRC ← Log Likelihood Ratio using Equation 4.1

Add C and Log LR to candidateCircles
Step 3: Monte Carlo simulation

for each Monte Carlo simulation trial1...trialm do

Create Prand and determine the max(Log LRtrial
C )

Insert max(Log LRtrial
C ) into the ordered Log LRMCS

C list

Determine the p-value of the circles

Return candidateCircles with p-value ≤ αp as significantCircles

SaTScan Execution Trace: Figure 4.4 shows a sample execution trace of SaTScan.

There are |P | = 800 points in the set P and S is 50 × 50 = 2500. The thresholds are

set to θ = 100 and αp = 0.001. Figure 4.4(a) shows the input dataset.

Step 1 generates all possible circles by assigning each p ∈ P to be the center of a

circle and then calculating the circle’s radius. For illustration purposes, only 10 out of

800× (800− 1) = 639200 circles are shown in Figure 4.4(b).
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Step 2 computes the Log LRC of each generated circle. First, the count (c) of the

points inside a circle C is determined by computing the distance of every point to the

circle center (a point whose distance is less than or equal to the radius r of a circle is

determined to be inside that circle). For each enumerated circle, expected number of

points B is computed using areaC , |P |, and areaS . Then, Log LRC of each circle is

computed using B, c, and |P |. These values are shown in Figure 4.4(b). The circles

in the white rows are overlapped with the circles with higher Log LRC . Thus they are

removed from the candidateCircles.

Step 3 determines the statistical significance of candidate circles using Monte Carlo

simulation. The p-values of 10 circles are shown in Figure 4.4(b). Red rows in Fig-

ure 4.4(b) correspond to the output (i.e. red circles) in Figure 4.4(c).

As demonstrated, SaTScan relies on points as the centers which causes it to miss

hotspots with sparse centers. In Figure 4.4(c), two hotspots are divided into multiple

portions. Although these can be spotted visually, the output of SaTScan does not align

with them and not satisfy θ = 100 threshold (although shown in Figure 4.4(c)). In

addition, SaTScan does not have a minimum radius. This may cause small hotspots

(if two points have the same location, detected hotspot will have areaC = 0 causing

LRC = ∞) in the output that may occurred by chance. In addition, due to the costly

circle enumeration and Log LRC computation, execution time of SaTScan becomes

exorbitant for large datasets.

4.3.2 Proposed Approach

In this paper, a cubic grid circle algorithm (CGC) is proposed in order to address the

following issues: (1) eliminate chance patterns, (2) detect non-contiguous (divided by

rivers, road segments, etc.) or sparse center hotspots, (3) eliminate very small hotspots,

(4) improve the scalability that is affected by the cardinality of P .

CGC consists of three phases. Filter phase enumerates hotspots in a parametric

space, filters those which do not survive an upper bound on likelihood ratio (Log L̂Rgrid)

and return filteredSets ∈ P . Refine phase enumerates actual hotspots using filteredSets

and returns a hotspot with the highest Log LRC for each filteredSet. Finally, Monte

Carlo simulation phase assesses the statistical significance of the enumerated hotspots.
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It should be noted that although the problem formulation states a non-overlapping con-

straint and refine phase returns only one hotspot for each filteredSet, the refine phase

can be tweaked to return all generated hotspots.

Basic Concepts:

Definition 19 A count grid with cell length lcell is a partitioning of the study area S

into a 2-dimensional grid where each cell is a square with an area of lcell × lcell. The

number of count grid cells is denoted by N ×N , where N = side length(S)/lcell. Each

count grid cell (cellcount) is defined by its coordinate intervals ([xmin, xmax], [ymin, ymax])

and the count (ccell) of the points inside.

Figure 4.3(a) shows a point set (P ) with 800 points in S = 50× 50 units. Suppose

lcell = 5, then N = 50/5 = 10 and the total number of the count grid cells is 10 ×
10 = 100. Figure 4.5(a) shows 8 cellcount with their point counts ccell. For example,

cellcount = ([16, 20], [16, 20])) has ccell = 14 as shown in the fifth row.

(a) Count Grid (b) Cubic Circle Grid

Figure 4.5: Count and Circle Grid cells for lcell = 5 (best in color).

Definition 20 A cubic circle grid is a three dimensional grid which represents sets

of circles in parametric space that are defined with two dimensional center coordinate

intervals ([xmin, xmax], [ymin, ymax]) and a radius interval [rmin, rmax]. Given an N ×N
count grid, a cubic circle grid is a N × N × N grid which parameterize the space into

cells with ([xmin, xmax], [ymin, ymax], [rmin, rmax]). Cubic circle grid cells are denoted by

cellcircle. A cellcircle represents a collection of circles with C(x, y, r) where (xmin ≤ x ≤
xmax), (ymin ≤ y ≤ ymax) and (rmin ≤ r ≤ rmax).
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Figure 4.5(b) lists several cubic circle grid cells for the dataset in Figure 4.3(a) when

lcell = 5. For example, the top row shows a cellcircle = ([16, 20], [26, 30], [6, 10]). Count

grid and cubic circle grid can be matched by the first two columns.

Definition 21 Given a count grid, a Minimum enclosing cell collection (MECC)

is a collection of cellcount which encloses a set of circles with radius r ≤ rMECC where

rMECC is the radius of the MECC. The green cells in Figure 4.6(a) represent an MECC

for any actual circle with r less than that of C shown in dashed red lines.

Definition 22 Given a count grid, a Maximum fit cell collection (MFCC) is

a collection of cellcount which can fit completely inside a circle with radius r where

rMFCC = b r
lcell
c and thus rMFCC ≤ r. The green cells in Figure 4.6(b) represent an

MFCC for a C shown in dashed red lines.

(a) MECC (b) MFCC

Figure 4.6: Illustration of minimum enclosing (MECC) and maximum fit cell collections

(MFCC) shown in green which represent a circle (in red)

Definition 23 The grid upper bound likelihood ratio (Log L̂Rgrid) is an upper

bound of the log likelihood ratio of the collection of circles which are defined by the

cubic circle grid cells. Given a cellcircle with ([xmin, xmax], [ymin, ymax], [rmin, rmax]),

Log L̂Rgrid equation is [141]:
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Log L̂Rgrid = Log
(
L̂Rint × L̂Rext × Î()

)
, where

L̂Rint =

(
U(c)

L(B)

)U(c)

, and

L̂Rext =


(
|P |−L(c)
|P |−U(B)

)(|P |−U(c))

, if L(c) ≥ U(B)

1, otherwise

Î() =

1, if U(c) > L(B)

0, otherwise

(4.2)

U(c) is an upperbound of c, L(c) is a lowerbound of c, U(B) is an upperbound of B and

L(B) is a lowerbound of B.

U(c) = Number of points in MECC and L(c) = Number of points in MFCC

U(B) = area(MECC)×|P |
area(S) and L(B) = area(MFCC)×|P |

area(S)

Note that the grid upper bound log likelihood ratio can be applied when MFCC has

at least one count grid cell and MECC has less than N ×N count grid cells.

L̂Rint and L̂Rext are the upper bounds of the two parts of the multiplication in the

Equation 3.1, representing the interior and the exterior of the circle, respectively. In

order to make the grid upper bound log likelihood ratio greater than the actual log

likelihood ratio of the hotspots represented by cellcircle, L̂Rint and L̂Rext are defined.

L̂Rint is always greater than ( c
B )c in Equation 3.1. L̂Rext is conditioned on whether

L(c) ≥ U(B) or not. The indicator function Î() is similar to the indicator function in

Equation 4.1 and is set to Î() = 1 when the U(c) is higher than the L(B) under the

hypothesis H0 [141]. Finally, it is worth mentioning that the cell length lcell makes the

upperbound tight/loose and limlcell→0(Log L̂Rgrid = Log LRC).

For example, in the second row of the table in Figure 4.5(b), Log L̂Rgrid is computed

by the following; U(B) = 72, L(B) = 8, L(c) = 15 and U(c) = 205. Log L̂Rgrid =

Log

((
205
8

)205 × (800−15
800−72

)800−205
× 1

)
= 665.93.

Cubic Grid Circle Algorithm (CGC): Algorithm 5 shows the three phases of

CGC. Next, these phases will be explained in detail.
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Algorithm 5 Cubic Grid Circle Algorithm

Input:

1) An point set P with points p(x, y),

2) A minimum circle radius rmin 3) A log likelihood ratio threshold (θ),

4) A p-value threshold αp and 5) A number of trials in Monte Carlo Simulation (m)

Output:

Circles C with r ≥ rmin, Log LRC ≥ θ and p-value ≤ αp

Algorithm:

Filter Phase: filteredSet← all p ∈MECC for a cellcircle with Log L̂Rgrid ≥ θ
Refine Phase: candidateCircles← C with Log LRC ≥ θ.
Monte Carlo Sim. Phase: resultSet← candidateCircles with p-value ≤ αp

Return resultSet

Filter Phase: The pseudocode for the filter phase is given in algorithm 6. First, S

is discretized into count grid and cubic circle grid using lcell = rmin
2 (lines 1-2). The cell

length lcell is selected by the given input rmin, because in order to detect all the hotspots

with r ≥ rmin at least one cell should fit completely inside the hotspot. Next, the number

of expected points inside a single cell is determined by Bcell ← |P |/(N×N) (line 3). Bcell

is used when computing the U(B) and L(B), since MECC and MFCC are constituted

of cells. For every cellcircle, Log L̂Rgrid are computed (lines 5-7). To prevent the

overlapping filteredSets, once Log L̂Rgrids are computed, the cellcircle with the highest

Log L̂Rgrid is stored in celltopcircle if Log L̂Rgrid

top
≥ θ (line 8) and points, which are

associated with celltopcircle, are stored as a filteredSet (line 9-10) and are removed from

P . This process is repeated until none of Log L̂Rcell ≥ θ or P = ∅ (lines 4-11). Finally,

filteredSets and cellcounts are sent to the refine phase.
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Algorithm 6 Filter Phase Algorithm of CGC

Input:

1) A log likelihood ratio threshold (θ)

2) lcell = rmin
2 for the cell size of count grid and circle grid

Output:

All filteredSets for each non-overlapping cellcircle with Log L̂Rgrid ≥ θ
Algorithm:

Create count grid with N ×N cells using lcell

Create cubic circle grid with N ×N ×N cells

Compute the expectation for a single cellcount by Bcell ← |P |/(N ×N)

while P 6= ∅ || Log L̂Rgrid

top
≥ θ do

for each cellcount in count grid do

for each r ← 1 to N/2 do

cellcount ← Log L̂Rgrid

celltopcount ← cellcount with the highest Log L̂Rgrid

if Log L̂Rgrid

top
≥ θ then

filteredSet1...k ← all p ∈MECC of the celltopcount

P ← [P − filteredSet]

Return cell1...kcount and filteredSet1...k

Lemma 10 Filter phase of the CGC Algorithm can detect a circular hotspot C with

r ≥ rmin, if lcell ≤ (rmin/2) and thus a count grid cell is completely inside C.

Proof 10 In the Equation 2, L(B) and L(c) are defined by the cells in MFCC. If at

least one cellcount is inside a hotspot, then Log L̂Rgrid > Log LRC . The proof lies in

U(B), U(c), L(B) and L(c). Suppose a cellcount is completely inside a hotspot. Then

U(B) ≥ B, since the area of MECC will be larger than areaC . Also, L(B) ≤ B,

since MFCC will be inside the circle and thus its area will be smaller than that of

areacircle. In the worst case, suppose U(c) = c and L(c) = c, then Log L̂Rgrid will still

be ≥ Log LRC since L(B) ≤ B and U(B) ≥ B. Therefore, if lcell ≤ (rmin/2), then

Log L̂Rgrid ≥ Log LRC .
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Figure 4.7: Illustration of the refine phase in CGC algorithm

Refine Phase: The pseudocode of the refine phase in algorithm 7 starts by ordering

the points in the filteredSet by their distance to the center of the cellcount (line 2).

Next, the minimum enclosing circle (C) of the filteredSet is determined [194](line 4). If

the center of C is inside the center interval of cellcount, the Log LRC is computed using

the count of the points inside (which is equal to the cardinality of filteredSet) and

the area of C (line 5-7). If the Log LRC is greater than the one computed previously

as Log LRprevious
C , it is saved (line 8-9). Next, the point farthest from the center of

the cellcount is removed from the filteredSet (line 10) and the algorithm repeats the

process of finding a new minimum enclosing circle for the new [filteredSet− pfarthest]
until |filteredSet| = ∅ or the radius of the generated C is r ≤ rmin (line 3-10). Finally,

the C with the highest Log LRC is saved in candidateCircles (line 11). This process

is done for all filteredSets returned by the filter phase (line 1-12).

An execution trace of the refine phase can be seen in Figure 4.7. Given the filteredSet

and cellcircle, the points are ordered by their distance and their smallest enclosing circle

is determined (second box). Once the Log LRC of this circle (shown in green) is com-

puted, the point farthest from the center of cellcount is removed from the set (shown in

red) and a new smallest enclosing circle is created using the rest of the points. This

process is repeated until the filteredSet = ∅.
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Algorithm 7 Refine Algorithm of CGC

Input:

1) A log likelihood ratio threshold (θ)

2) filteredSet1...k and cell1...kcount returned by the filter phase

Output:

A circular hotspot C for each filteredSet if Log LRC ≥ θ
Algorithm:

for each filteredSeti ∈ filteredSet1...k do

order p ∈ filteredSeti by distance to the center of cellicount

while filteredSeti 6= ∅ or ri ≥ rmin do

Ci ← SEC(filteredSeti, tmpSet) where tmpSet = ∅
if centeriC is inside the center interval of cellicount and ri ≥ rmin then

compute B and c

Log LRi
C ← Log Likelihood Ratio

if Log LRi
C ≥ Log LR

previous
C then

Log LRprevious
C = Log LRi

C and Cprevious = Ci

filteredSeti = filteredSeti − pfarthest

candidateCircles← Cprevious and Log LRprevious

Return candidateCircles

procedure SEC(filteredSet, tmpSet) [194]

if filteredSet == ∅ || |tmpSet| == 3 then

C ← computeCircle(tmpSet)

else

select a random p ∈ filteredSet
C ← SEC(filteredSet− p, tmpSet)
if p is not in C then

C ← SEC(filteredSet− p, tmpSet ∪ p)

end procedure

Monte Carlo Simulation Phase: During Monte Carlo simulation, the filter phase

and refine phase of CGC algorithm is run for each individual random datasets created
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for the Monte Carlo simulation and the highest Log LRC are stored and the circles’

p-values are determined using the ordered list of these highest Log LRC .

CGC Execution Trace: In Figure 4.8, the execution trace of CGC is illustrated

using the point set in Figure 4.3(a) with |P | = 800 points in an area S = 50×50 = 2500.

The log likelihood ratio threshold θ = 100 and the p-value threshold αp = 0.001. In

order to make the execution trace be easy to follow, the cell length is selected lcell = 5

for this example.

In the filter phase, the study area is partitioned into a count grid and a cubic

circle grid. For example, the cellcount ([36, 40], [36, 40])) has ccell = 8 (shown in red in

Figure 4.8(a). Suppose a cellcircle is created for coordinates ([36, 40], [36, 40], [6, 10]).

The MECC for this cell is shown in Figure 4.8(b) and the MFCC will be the red cell

in Figure 4.8(a). Using these, U(B) = 72, L(B) = 8, L(c) = 15 and U(c) = 205. and

Log L̂Rgrid = Log

((
205
8

)205 × (800−15
800−72

)800−205
× 1

)
= 665.93. Once all the L̂Rgrid are

computed, the cellcircle with the highest L̂Rgrid and the associated points are sent to

the refine phase and the filter algorithm repeats for the rest of the points in P .

In the refine phase, as shown in Figure 4.8(c), filteredSet is ordered distance wise

to the center of the cellcircle which was returned by the filter phase. Next, the minimum

enclosing circle of the filteredSet is determined and the Log LRC is computed as shown

in Figure 4.8(d). Then, the farthest point to the center of cellcircle is removed from the

filteredSet and a new minimum enclosing circle and its Log LRC is determined. This

process is repeated until filteredSet is empty or the minimum enclosing circle has a

radius r ≤ rmin. Now a list of Log LRC and circles enumerated using the filteredSet

are acquired as shown in Figure 4.8(f). Finally, the circle C with the highest Log LRC

is returned as a candidateCircle for Monte Carlo simulation. Monte Carlo simulation

then determines the p-value of each candidate circle. This process is similar to the filter

and refine phases except that random datasets are used as input. The final output of

CGC can be seen in Figure 4.8(g).
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(a) Count grid cells are shown

with red lines

(b) A sample cellcircle shown

as red cells.

(c) Points in filteredSet are

ordered distance-wise to the

center of cellcircle

(d) Minimum enclosing circle of the

filteredSet

(e) Minimum enclosing circle for a

new filteredSet

(f) Minimum enclosing circles and their

Log LRC for the filteredSet

(g) Output of CGC

Figure 4.8: Execution trace of the CGC algorithm (best in color).
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4.4 Theoretical Evaluation

4.4.1 Correctness of the CGC Algorithm

Lemma 11 CGC is functionally correct. Functional correctness means that CGC re-

turns only the circular hotspots with r ≥ rmin, Log LRC ≥ θ and p-value ≤ αp.

Proof 11 Circles generated by CGC are evaluated against the r ≥ rmin in Algorithm 7

Line 5 and against the Log LRC ≥ θ in Algorithm 7 Line 8 and only if they satisfy

the thresholds they are saved in candidateCircles. In the Algorithm 5 in Monte Carlo

simulation phase each candidateCircle is evaluated against the p-value threshold in

Line 3 and only the ones which satisfy αp are returned as the result set. Since CGC

returns the circles with r ≥ rmin, Log LRC ≥ θ and p-value ≤ αp, it is functionally

correct.

Lemma 12 Given a finite point set P , CGC terminates in finite time.

Proof 12 In algorithm 6, the iteration in Line 4 is bounded by the Log L̂Rgrid and |P |.
Since in every iteration the associated points with cells which exceed the θ threshold are

removed from P in Line 11, the limiterations→∞ P → ∅. In the case where none of the

cells exceed θ threshold loop stops again in Line 4. Thus algorithm 6 will terminate in

a finite time. In the refine phase, on every iteration of the loop in Line 3, the farthest

points are removed from the filteredSet in Line 10. Thus the loop will terminate

when the filteredSet = ∅. Since filter and refine phase terminate in finite time, CGC

terminates in finite time.

Theorem 2 CGC is a correct approach to detect statistically significant circular hotspots.

An algorithm is correct if it is functionally correct and it terminates in finite time.

Proof 13 Using Lemma 11, CGC is a functionally correct approach. Also using Lemma 12,

CGC will terminate in finite time. Thus, CGC is a correct approach to detect statisti-

cally significant circular hotspots.

4.4.2 Computational Analysis of the CGC Algorithm

The complexity of SaTScan is O(m × |P |3) (|P |2 to enumerate circles, |P | to count

points for each circle), where |P | is the cardinality of the point set and m is the number
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of Monte Carlo simulation trials.

In the filter phase of CGC, circles are enumerated using the count grid cells. Since

all count grid cells (N2) are traversed for all possible radii, the total cost of the filter

phase is O(N3) which is equal to the size of the cubic circle grid. Note that, grids

are created using lcell which is determined by the minimum radius rmin defined in the

problem statement. Therefore CGC filter algorithm execution time depends on the

careful selection of these inputs.

In the refine phase of CGC, circles are enumerated for each filteredSet using a small-

est enclosing circle algorithm of a linear cost O(|filteredSet|, then points are removed

one by one from the filteredSet and new circles are enumerated until filteredSet = ∅ or

r ≤ rmin. The total cost of removal and recompute is O(|filteredSet|log |filteredSet|).
In the worst case, |filteredSet| = |P | and the refine phase cost is |P |log |P | and in the

best case filteredSet = ∅ and the refine phase cost is O(1).

Thus, the worst case cost of CGC is O(m× (N3 + |P |log |P |)), if no filtering occurs

and all points are returned to the refine phase. In the best case, the cost will be

Ω(m × N3) as the filter phase will not return any filteredSet and the algorithm will

terminate. Note that since the datasets in the Monte Carlo simulation are created

randomly, depending on the θ, these do not survive filter phase and the algorithm

performance gets closer to the best case scenario.

4.5 Case Study

The proposed approach is evaluated qualitatively by comparing the CGC algorithm

output with SaTScan using continuous Poisson process [10] on a crime dataset shown

in Figure 4.9. The input point set in Figure 4.9(a) includes 64 unarmed robbery cases

in San Diego between March 2013 - 2014 [11]. The inputs are selected as rmin = 0.009

degrees, θ = 5 and αp = 0.01. Maps were prepared using QGIS’ OLP [195].

The two algorithms generated quite different results. It appears that SaTScan’s

reliance on point centered circles caused it to miss a significant hotspot and its output did

not satisfy the thresholds (Figure 4.9(b)). Also the output of the SaTScan includes small

hotspots consists of two/three points which couldn’t be filtered out. CGC algorithm

handles this issue by using rmin threshold.
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GRHD with the CGC algorithm discovered a hotspot (Figure 4.9(c)- shown in green)

which satisfies the input thresholds. Although, domain experts may interpret these

better, it can be stated that these crimes occurred along a road and this road surrounds

a residential area where the crimes are sparse. This type of crime pattern can be

seen in environmental criminology [14]. It should be noted that these crimes’ sources

are anonymized (for privacy issues), meaning that we can’t compare the results with

ground truth labels.

(a) Input crime dataset (b) Output of SaTScan (c) Sample Output of GRHD

Figure 4.9: Figure 4.9(a) shows 64 unarmed robbery crimes committed in San Diego in

2013 (blue dots) [11]. Figure 4.9(b) and Figure 4.9(c) compare the output of SaTScan

and GRHD with the CGC algorithm(red/green circles - best in color).

4.6 Experimental Evaluation

4.6.1 Experimental Design

The goal of the experiments was twofold: to evaluate the performance of the CGC

algorithm under different parameters and to compare its performance with SaTScan.

To achieve these goals, the following questions are asked: (1) How is the scalability and

the result quality of the proposed algorithm compared to its rivals (e.g. SaTScan)? (2)

How effective is the filter step in reducing the cost of CGC algorithm?

Experimental Design: Experiments are performed on synthetic datasets which

is created with varying number of points (default 5000) in a 1000 × 1000 study area.

In these datasets 20% of the points were generated to form a hotspot and the rest of

the points were created using complete spatial randomness (CSR). Inputs were; log
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likelihood ratio threshold θ = 1000, p-value threshold αp = 0.01 (99% confidence level)

and minimum circle radius rmin = 100. Performance of both algorithms was measured

in terms of CPU time. All experiments were performed on a MacBook Pro with a Intel

Core i7 2.2 GHz CPU and 4GB memory. To compare CGC and SaTScan algorithms,

both algorithms were implemented on Java platform and were executed 10 times for

each experiment. When implementing SaTScan, continuous Poisson process is selected

as defined in SaTScan user guide [10].

4.6.2 Experimental Results

Effect of the Number of Points in P : In this experiment, two sets of synthetic

points sets were created. The first set of point sets included points with cardinality

ranging from 20K to 60K which used to compare SaTScan with CGC. With the second

set of point sets, the scalability of CGC is tested with its Filter and Refine phases and

does not include SaTScan. For the point sets ranging from 20K, 30K, 40K, 50K, 60K,

θ is selected 104. For the point sets ranging from 200K, 300K, 400K, 500K, 600K, θ

is selected 106. Figure 4.10(a) shows that there is at least two orders of magnitude

difference between SaTScan and CGC execution times. Also in Figure 4.10(a), it can

be seen that CGC filter phase performs faster and most of the execution time is spent

on the refine phase. Overall CGC algorithm performs faster than SaTScan and the

savings increase when the point set size increases.
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(a) Large Dataset size |P | (b) Small Dataset size |P | (c) Log Likelihood Ratio

Threshold θ

(d) Cell Length for Filter Phase

lcell

(e) Number of Monte Carlo sim-

ulation trials m

Figure 4.10: Scalability of CGC with increasing (a), (b) number of points, (c) log

likelihood ratio threshold, (d) cell length and (e) number of Monte Carlo simulation

trials.

Effect of the Log Likelihood Ratio Threshold (θ): In this experiment, the

log likelihood ratio threshold (θ) is varied by 250, 500, 750, 1000, 1250 and 1500. In

Figure 4.10(c), there is no change on the execution times of SaTScan, since SaTScan

does not use any filter depending on θ. However CGC filter phase benefits from the θ

and savings increase with θ .

Effect of the Cell Length (lcell): In order to observe the effect of the cell length

lcell, cell length is changed by 25, 50, 75, 100, 125, 150. In Figure 4.10(d), since SaTScan

does not use any filtering method based on grid generation, cell length did not affect

SaTScan. For CGC algorithm, when the cell length is small, filter phase takes more

time and refine phase takes less time since the number of points in the filteredSet is

close to the actual points in the hotspot. On the other hand, when the cell length is
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large, filter phase takes less time but this time refine phase takes more time since the

filteredSet includes more points than the actual hotspot. It can be concluded that a

careful selection of cell length is important for the performance of the CGC algorithm.

Effect of the Number of Monte Carlo simulation trials (m): In this ex-

periment, m = 200, 400, 600, 800, 1000 random synthetic datasets with 5000 points in a

1000×1000 study area are generated. Other inputs were kept the same per experimental

design. Figure 4.10(e) shows the execution times for the Monte Carlo simulation trials.

As can be seen CGC performed at least two orders of magnitude faster than SaTScan

and in many trials CGC algorithm did not need to run the refine phase since most

of the random datasets did not have any circular hotspot which exceed the specified

θ = 100 and therefore filter phase did not generate any filteredSet. Therefore it can be

concluded that the grid circle upper bound log likelihood ratio filtering in the proposed

CGC algorithm improves its scalability. In summary, the experiments show that CGC

is more scalable than SaTScan for large point sets.

4.7 Discussion

It is worth mentioning that there are other techniques for the detection of statistically

significant hotspots which use predefined grids (e.g. overlap-multires partitioning [175],

predefined locations -counties/zip codes and aggregated number of points- [192] approx-

imation approaches [174]). These techniques are fast when the cardinality of the input

point set is higher than the number of grids. However, they are designed for rectan-

gular/square hotspot detection. Moreover, these approaches use grids as the shape of

the hotspot and their output is a “single” hotspot with the highest test statistic in the

study area. Therefore, these techniques were not considered in this paper. However,

it should be noted that CGC filter approach is not limited to circles and any shape

that can be defined by parameters can be evaluated with this approach. For example,

proposed CGC filter phase uses a cubic circle grid to enumerate circles using three pa-

rameters that define a circle, namely center coordinates and radius. Similarly, CGC

approach may be generalized to be used with other shape-specific (rectangle, square,

circle, ellipse, etc.) state-of-the-art methods to filter the candidate hotspots that do not

contribute to an actual hotspot.
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4.8 Conclusions and Future Work

This work explored the Geographically Robust Hotspot Detection (GRHD) problem,

which is important for societal applications e.g. epidemiology, environmental criminol-

ogy, etc. GRHD is challenging due to the difficulty of enumerating all possible hotspots

and the high computational cost of the statistical significance test. This paper pro-

posed a CGC algorithm which discovers statistically significant hotspots which couldn’t

be discovered previously by SaTScan. A case study demonstrated CGC’s superior per-

formance over SaTScan on a real crime dataset. Experiments also showed that the

proposed algorithm (CGC) is highly scalable.

In the future, we envision to improve geographical robustness by adding enhance-

ments to detect imperfect hotspots (i.e., half/quarter circles) where the points occur

along the coast lines, jurisdiction boundaries, roads etc. which may cause these hotspots

to be missed. In addition, we plan to add the effect of unhomogeneous point distribu-

tions caused by the characteristics of the geographic location (population, etc.). Also we

plan compare GRHD with other state-of-the-art methods [174, 191, 192, 196, 197] that

are designed to detect rectangular, elliptical and irregular shaped hotspots. Finally,

we plan to add expectation based Poisson statistics to improve the result quality and

scalability of our proposed approach.



Chapter 5

Mining Network Hotspots with

Holes

5.1 Introduction

Given a spatial network and a collection of activities (i.e. crime locations), the problem

of Mining Network Hotspots with Holes (MNHH) finds hotspots with doughnut shaped

spatial footprint on a spatial network (i.e. road network), where the concentration of

activities is unusually high (i.e. statistically significant).

The problem of Mining Network Hotspots with Holes (MNHH) has important soci-

etal applications in criminology, where identifying crime hotspots may improve police

response [198]. In environmental criminology, domain experts create geographic pro-

files of criminals using the locations of crimes and try to find where a serial criminal

frequently commutes, thereby focusing the efforts of police forces in the field [14]. Our

notion of Network Hotspots with Holes originates from two key concepts in criminology,

namely inner buffer zone (e.g. comfort zone) and distance decay [14]. Inner buffer zone

is an area around a criminal’s frequently visited locations, where crimes are less likely

due to the risks caused by reduced anonymity. Distance decay relates to a least effort

principle, where crimes occur relatively close to criminal’s frequently visited locations,

since traveling long distances requires time and money. The opposing effects of inner

buffer zone and distance decay create an activity zone with a doughnut shaped spa-

tial footprint around a path that a criminal usually travels. Fig.5.1 illustrates these

109
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concepts where the green squares represent activities (i.e. crime), the blue line shows

a path between home and work (blue squares), the black road segments represent the

inner buffer zone where the activities are less likely and the red road segments create

the activity zone (i.e. outer buffer) that we define as network hotspot with hole (NHH)

in this paper.

Figure 5.1: A path between home and work, an inner buffer zone where the activities

are sparse and an activity zone (i.e. outer buffer) that we are interested in.

Informally, the problem of Mining Network Hotspots with Holes (MNHH) can be

defined as follows: given a spatial network (e.g. road network), an activity set associated

with road segments (e.g. street robberies), a log likelihood ratio threshold (θ), a p-value

threshold (αp), a maximum outer buffer distance (t̂max) and a unit distance (ω), find

network hotspots with holes where the concentration of activities is significantly higher

than outside (p-value ≤ αp).

Challenges: MNHH is challenging due to the potentially large number of candidate

network hotspots with holes (O(N4)) in a given dataset of millions of road network nodes

(N). For large road networks (e.g. 108 road segments in the U.S.), this causes exorbi-

tant computation times as well as a prohibitively large enumeration space. Moreover,

the interest measure, “log likelihood ratio (Log LR)”, does not have a monotonicity

property, meaning that there is no order between the Log LR of a network hotspot with

hole (NHH) and another NHH it may contain. Thus, interest measure cannot be used

for computational speed-up. In addition, statistical significance test multiplies the cost.
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Related Work and their Limitations: Statistically significant hotspot detection ap-

proaches can be classified into two categories depending on the study area: Euclidean

space based and Network based approaches. Euclidean approaches include spatial scan

statistics and are widely used for the detection and evaluation of circular [10, 199], el-

liptical [200, 201], rectangular [202] and ring-shaped hotspots [141]. These techniques

are useful for understanding the distribution of disease [203], or detecting a disease out-

break or even identifying the location of a criminal (e.g. through ring-shaped hotspot

detection). However, criminal activities and other human activities diffuse along road

networks [204] and therefore Euclidean distances do not reflect actual travel distances

causing biased results. For example in Fig.5.2(a), the traveling distance from E5 node

to C7 node will not be the same as Euclidean distance due to the lake in between.

In addition, people’s activities are mostly dependent on their routine commutes (i.e.

home-work-recreation) instead of a single place. In Fig.5.3(a), SaTScan [10] outputs a

circular hotspot with a large space without activities with a low log likelihood ratio.

Similarly, in Fig.5.3(b), ring-shaped hotspot detection (RHD) outputs a hotspot with

low log likelihood ratio due to using Euclidean distance as well as assuming a single

center (i.e. crime base of a criminal). Thus, geometry-based techniques may not be

appropriate for modeling hotspots on road networks. A more detailed comparison of

the recent related work can be found in [203,205].

(a) Input (b) Output

Figure 5.2: An example input and output of our proposed approach for Mining Network

Hotspots with Holes. Edges represent streets and Nodes represent road intersections.
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A second category of hotspot detection is network-based. These methods leverage

the underlying spatial network, which improves the detection of activities that diffuse

along the spatial network [206,207,208]. However, these often focus on detecting paths

or road segments which have unusually high activities and require a hotspot to be

a connected subgraph (e.g. shortest path), causing them to miss network hotspots

with holes [12, 209, 210]. Fig.5.3(c) shows the output of a significant route discovery

approach which enumerates shortest paths between nodes and returns those that have

a significantly high number of activities [12]. The output fails to identify the significant

region of interest and includes 4 hotspots with low log likelihood ratios and high p-

values, indicating lack of significance.

(a) (b) (c)

Figure 5.3: Output of the related work for the input in Fig.5.2(a). SaTScan

(Fig.5.3(a)), Ring-Shaped Hotspot Detection (Fig.5.3(b)) and Significant Route Dis-

covery (Fig.5.3(c))

In contrast to previous methods, our Mining Network Hotspots with Holes (MNHH)

method can find statistically significant network hotspots with holes (e.g. Fig.5.2(b))

without requiring the output to be a connected subgraph.

Contributions: In this paper, we present the problem of Mining Network Hotspots

with Holes (MNHH) on a spatial network. To the best of our knowledge, the proposed

approach is the first to consider statistically significant hotspots with holes on a spatial

network. Specifically, our contributions are as follows:

• We introduce the problem of Mining Network Hotspots with Holes (MNHH) on a

spatial network and a Näıve Network Hotspot with Hole Generator (NäıveNHHG)
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algorithm to solve MNHH.

• We propose Smart Network Hotspot with Hole Generator (SmartNHHG) algo-

rithm which prevents redundant computations by dynamic programming.

• We present case studies comparing the proposed approach to geometry-based ap-

proaches (i.e., SaTScan, ring-shaped hotspot detection) on real crime datasets.

Note that the output patterns should not be considered the same (e.g. circles and

rings vs. network sub-graphs).

• Experimental results on real data show that SmartNHHG yields substantial com-

putational savings over NäıveNHHG without sacrificing result quality.

Scope: This work focuses on finding hotspots with holes on road networks where each

activity (i.e. crime event) is associated with a road segment (i.e. edge). This does not

imply that the original activities must necessarily have occurred at edges. Each activity

set is pre-processed to associate activities to the closest edge on the road segment. In

addition, other properties of road networks (e.g. speed limit, traffic density) are not

considered. In this work, the number of activities on the road network is fixed and

does not change over time. Finally, this paper does not provide guidance on parameter

(e.g. tmin, tmax) value selection. However, users may evaluate the spatial distribution

of events using centrographic statistics [19] and select parameters accordingly.

Outline: This paper is organized as follows: Section 5.2 presents the basic concepts

and problem statement for MNHH. Section 5.3 presents the Näıve and Smart Network

Hotspot with Hole Generator (SmartNHHG) algorithms. Section 5.4 presents case stud-

ies which qualitatively evaluate the output of SmartNHHG on real crime datasets. Ex-

perimental evaluation is in Section 5.5. Section 5.6 presents a discussion. Section 5.7

concludes the paper and previews future work.

5.2 Basic Concepts and Problem Statement

5.2.1 Basic Concepts

Definition 24 A spatial network G = (N,E) is a set of nodes (N) and edges (E)

where each node nv ∈ N is associated with coordinates (x, y) representing its location
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in an Euclidean space. E is a subset of the cross product N × N and an edge ei ∈ E,

which joins nodes nu and nv, is associated with a length lu,v ≥ 0.

In Fig.5.2(a) grey circles represent nodes (e.g. intersections), grey lines represent

edges (e.g. streets) and there are two geographic barriers (e.g. lake, mountain). The

length of the network is the sum of all edge lengths Ltotal =
∑
le∈G.

Definition 25 An activity set A is a collection of activities. An activity a ∈ A is an

object of interest associated with only one edge e ∈ E.

For example in Fig.5.2(a), the edge between nG2 and nG3 has 3 activities.

Definition 26 A shortest path pu,v is a sequence of nodes [n1, n2, ..., ni] such that

[e1, e2, ..., ei] ∈ E and ni ∈ N are distinct and the sum of edge lengths is minimized.

The length of a shortest path is Lp =
∑
le∈p.

For example, pA0,B2 = [A0, A1, A2, B2] and Lp = 3 in Fig.5.2(a).

Definition 27 Distance between a node ni and a path pu,v is d(ni, pu,v) = min(Lp(ni, nj ∈
pu,v)).

For example, d(D3, pA0,B2) = 3 in Fig.5.2(a).

Definition 28 A Network Buffer (NBu,v,t) is a closed set of nodes NNB ⊂ N and

edges ENB ⊂ E such that d(ni, pu,v) ≤ t, ∀ni ∈ NNB and t = kω for some k ∈ R+ and

a unit distance ω.

For example , in Fig.5.2(b), NBG4,G6,2 is the set of all blue/red nodes and all

blue/red/black edges.

Definition 29 A Network Hotspot with Hole (NHHu,v,tmin,tmax) is the closure [211]

(a set and its limit points that is denoted by Cl) of the set difference of outer buffer

NBu,v,tmax and inner buffer NBu,v,tmin, where tmin is the inner and tmax is the outer

buffer distance and the distance interval is closed i.e., inclusive of tmin and tmax.

Thus, NHHu,v,tmin,tmax = Cl(NBu,v,tmax \NBu,v,tmin). The sum of the length of the

edges in NHH is denoted by LNHH =
∑
le∈NHH.

In Fig.5.2(b), black edges represent the NBG4,G6,1 and red nodes and edges represent

the NHHG4,G6,1,2 around the path pG4,G6 with tmin = 1 and tmax = 2.
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Definition 30 Log Likelihood Ratio (Log LRNHH) is the test statistic for a can-

didate NHH. Since a NHH is on a road network, it uses LNHH, instead of the hotspot

area as used in [178]. The equation can be shown as:

Log LRNHH = Log

(( c
B

)c
×
(
|A| − c
|A| −B

)|A|−c
× I()

)
(5.1)

B = |A|×LNHH

Ltotal
and I() =

1, if c > B

0, otherwise,

B is the expected and c is the observed number of points for a NHH, |A| is the

cardinality of A and I() is an indicator function. I() = 1 when a candidate NHH has

more points than expected (c > B); otherwise I() = 0 [10].

For example, the sum of the lengths of the edges of NHHG4,G6,1,2 in Fig.5.2(b) is

LNHH = 19 and the total length of the spatial network is Ltotal = 158. Thus B =
50×19
158 = 6.012. In this NHH, there are c = 30 points. Thus, I = 1 since 30 > 6.012.

Using Eq. 5.1, Log LRNHH = Log

((
30

6.012

)30 × ( 50−30
50−6.012

)50−30
× 1

)
= 32.46

Definition 31 A Hypothesis Test determines whether a NHH occurred by chance or

not. The null hypothesis H0 states that the points are randomly distributed on a spatial

network and the alternative hypothesis H1 states that the candidate NHH has a signif-

icantly higher number of activities than outside. In order to determine the hypothesis

test result, the significance level ( p-value) of a NHH is computed by finding the order of

the actual Log LRNHH in the test statistic distribution (obtained by Monte Carlo simu-

lations) and dividing that position by m+ 1. If the p-value of a NHH is lower than the

desired threshold (αp), the H1 cannot be rejected, and we say that the candidate NHH

is a significant NHH. Note that these concepts are inherited from SaTScan [10].

5.2.2 Problem Statement

Formally, Mining Network Hotspots with Holes (MNHH) problem is as follows:

Given:

1. A spatial network G = (N,E) with activity count function a(u, v) ≥ 0 and length

function l(u, v) > 0 for each edge ei ∈ E,
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2. A log likelihood ratio threshold (θ) and a p-value threshold (αp),

3. A number of Monte Carlo simulation trials (m),

4. A maximum outer buffer distance (t̂max) and a unit distance (ω),

Find: Network hotspots with holes with Log LRNHH ≥ θ and p-value≤ αp.

Objective: Computational efficiency and correctness of the output.

Constraint: Nodes nj ∈ NHH may not be connected to each other.

Example: The graph in Fig.5.2(a) can be viewed as a road network, composed of

streets (edges) and intersections (nodes). The aim is to find network hotspots with holes

(NHH) that meet the given log likelihood ratio and significance levels (p-value threshold

θ). In environmental criminology, finding such a hotspot may have two benefits: (1) it

may focus the search for a criminal to the path at the center of NHH. (2) it may help

determine the locations to deploy new police patrols to prevent crime. In Fig.5.2(b),

NHHG4,G6,1,2 is returned since Log LRNHH = 32.46 and p-value= 0.01. Although the

output includes more NHHs, since the other NHHs were overlapping, we show only the

NHH with highest Log LRNHH to reduce the visual clutter.

5.3 Proposed Approach

In this section, we first describe a näıve version of our network hotspot with hole gen-

erator algorithm (NäıveNHHG). Then we present our SmartNHHG algorithm with re-

finements that include two novel dynamic programming approaches and a Monte Carlo

simulation speed-up. The proposed algorithms present steps for candidate enumera-

tion, candidate evaluation using Log LR and statistical significance test. It should

be noted that in some communities these steps are practiced separately. However, in

this work, we present algorithms that describe these processes together for the sake of

self-containment.

5.3.1 Näıve NHH Generator Algorithm

Algorithm 8 presents the pseudocode for the NäıveNHHG approach. The algorithm

begins by creating all pair shortest paths, Papsp, in the spatial network (step 1). Next,

each shortest path is used as a center to enumerate NHHs with different inner and outer
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buffer distances (tmin, tmax)(step 2). Finally, the statistical significance of each NHH is

evaluated by m Monte Carlo simulations and the significant NHHs are returned (as the

output).

NäıveNHHG Example: Table 5.1 shows a sample execution trace of NäıveNHHG.

The spatial network has 92 nodes, 158 edges, and 50 activities (green squares on the

edges). All edge lengths are set to 1 for illustration purposes. Inputs are set to log

likelihood ratio threshold θ = 30, p-value threshold αp = 0.01, maximum outer buffer

distance t̂max = 5 and unit distance ω = 1.

Algorithm 8 NäıveNHHG Algorithm

Input:

1) A spatial network G = (N,E) with activity count function a(u, v) ≥ 0 and length

function l(u, v) > 0 for each edge ei ∈ E,

2) A log likelihood ratio threshold (θ) and a p-value threshold (αp),

3) A maximum outer buffer distance (t̂max) and a unit distance (ω)

Output:

Network hotspots with holes (NHH) with p-value≤ αp

Algorithm:

Step 1: Generate all pair shortest paths Papsp

For each shortest path pu,v ∈ Papsp

Step 2: Enumerate candidate NHH with tmin and tmax

Step 3: Significant NHH← candidate NHHwith p-value≤ αp using m Monte Carlo

simulations

Return Significant NHH with Log LRNHH ≥ θ

In step 1 of Table 5.1, all pairs of shortest paths are computed as shown in the first

column (4 out of 2.5×104 are shown). In step 2, the NHHs are enumerated by using the

set difference of NB with tmin and tmax. Then, Log LRNHH are computed for each NHH

and NHHs with Log LRNHH ≥ 30 are stored as candidates. In step 3, the significance

of candidate NHHs are determined and significant NHHs are returned (as the output)

as shown in Fig.5.2(b). Although many NHHs were evaluated as significant, only the

NHH on the top row of Table 5.1 is returned since θ = 30. If a user is interested in all

significant NHH, θ threshold can be set 0. Also, one may notice that many NHHs were
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similar in the output. This issue is discussed in Section 5.6.

Table 5.1: An example execution trace of NäıveNHHG.

Enumerating Candidate NHH: Algorithm 9 shows the steps of candidate NHH enu-

meration on NäıveNHHG. For each shortest path (pu,v) in the set of all pair shortest

paths (Papsp) (line 1), candidate NHHs are enumerated as follows: First, inner and

outer NB are defined by tmin and tmax (line 2-3). Note that these values are changed

by unit distance ω on every iteration and even for a single pu,v ∈ Papsp, NHHs with

different tmin and tmax are enumerated. Next, for each node nj of pu,v, single source

shortest paths from that node to all other nodes in the spatial network are enumerated

(line 5). If the length of any of these shortest paths is less than the tmin, it is saved in

NBu,v,tmin . Similarly, if the length of any of these shortest paths is less than tmax, it is

saved in NBu,v,tmax (line 6-9). Finally, NHHu,v,tmin,tmax = Cl(NBu,v,tmax \NBu,v,tmin)

(line 10) and its Log LRNHH is computed using LNHH =
∑
le∈NHH and its activity

count. If Log LRNHH ≥ θ threshold, then the NHH is saved as a candidate (line 11).

This process is repeated for all paths in Papsp and tmin and tmax until t̂max.
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Algorithm 9 Enumerating Candidate NHH - NäıveNHHG

for each pu,v ∈ Papsp do

for each tmax = 2ω to t̂max do

for each tmin = ω to tmax do

for each nj ∈ pu,v do

for each Single Source Shortest Path pnj ,n ∈ Psssp do

if tmin > Lpnj ,n
then

NBu,v,tmin ← Edges and Nodes from pnj ,n

if tmax ≥ Lpnj ,n
then

NBu,v,tmax ← Edges and Nodes from pnj ,n

NHHu,v,tmin,tmax ← Cl(NBu,v,tmax \NBu,v,tmin)

Candidate NHH← NHH with Log LRNHH ≥ θ

In NäıveNHHG, candidate NHHs are enumerated by varying tmin and tmax for all

pairs of shortest paths. However, enumeration becomes exorbitant even for road net-

works of 102 nodes. To improve the scalability of NäıveNHHG, we analyzed NäıveNHHG

and determined the redundant computations. Next, we propose refinements to reduce

redundant computations but increase scalability.

5.3.2 Smart NHH Generator Algorithm

This section explains our smart approach for solving the MNHH problem. Our algo-

rithm features three key ideas for achieving computational savings while maintaining

result quality: Distance based dynamic programming, edge stitching and Monte Carlo

simulation speed-up.

Distance Based Dynamic Programming (DP) Approach:

Algorithm 10 shows the steps of distance based DP approach, which avoids redundant

calculation of NHHwith different tmin and tmax by enumerating NHHwith tmax−tmin =

ω (line 2-9) and then using the set union of these to create NHHs with different inner

and outer NB (line 10-12). A simplified example can be seen in Fig.5.4. In this example,

in order to enumerate NHHF4,F5,1,3 (on the right), the set union of NHHF4,F5,1,2 (on
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the left) and NHHF4,F5,2,3 (in the middle) is used. Thus, instead of running a new enu-

meration process for NHHF4,F5,1,3, the algorithm simply uses the previously computed

NHHF4,F5,1,2 and NHHF4,F5,2,3.

Figure 5.4: Distance based dynamic programming approach. To determine

NHHF4,F5,1,3, the set union of NHHF4,F5,1,2 and NHHF4,F5,2,3 is used (best in color).

Algorithm 10 Enumerating Candidate NHH - Distance Based DP Approach

for each pu,v ∈ Papsp do

for each tmax = 2ω to t̂max and tmin = tmax − ω do

for each nj ∈ pu,v do

for each Single Source Shortest Path pnj ,n ∈ Psssp do

if tmin > Lpnj ,n
then

NBu,v,tmin ← Edges and Nodes from pnj ,n

if tmax ≥ Lpnj ,n
then

NBu,v,tmax ← Edges and Nodes from pnj ,n

NHHu,v,tmin,tmax ← Cl(NBu,v,tmax \NBu,v,tmin)

for each tmax = 2ω to t̂max do

for each tmin = ω to tmax do

NHHtmin,tmax = NHHtmin+ω,tmax
⋃
NHHtmin,tmax−ω

Edge Stitching Approach:

Edge Stitching exploits a basic property of paths, i.e. every path consists of edges.

Thus, NHHs around single edges can be enumerated, then these can be stitched to

create NHHs around longer paths (avoid Line 1 of Algorithm 9). In Algorithm 11, first,
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all NHHs around single edges are enumerated (Line 1-9). Next, these NHHs are stitched

to create NHHs for longer paths (Line 10-14) as illustrated in Fig.5.5. In this example,

in order to create NHHG4,G6,1,2, NHHG4,G5,1,2 and NHHG5,G6,1,2 are stitched together.

Once we create the set union of these NHHs, edges and nodes that belong to NBG4,G6,1

are removed to determine NHHG4,G6,1,2 (in Fig.5.2(b)).

Figure 5.5: Edge stitching approach. To determine NHHG4,G6,1,2 (Fig.5.2(b));

NHHG4,G5,1,2 and NHHG5,G6,1,2 are stitched together and then the nodes and edges

of NBG4,G6,1 are removed (best in color).

Algorithm 11 Enumerating Candidate NHH - Edge Stitching Approach

for each ei ∈ E do

for each tmax = 2ω to t̂max do

for each tmin = ω to tmax do

for each Single Source Shortest Path from nu and nv pnj ,n ∈ Psssp do

if tmin > Lpnj ,n
then

NBu,v,tmin ← Edges and Nodes from pnj ,n

if tmax ≥ Lpnj ,n
then

NBu,v,tmax ← Edges and Nodes from pnj ,n

NHHu,v,tmin,tmax ← Cl(NBu,v,tmax \NBu,v,tmin)

for each pu,y ∈ Papsp do

for each tmax = 2ω to t̂max do

for each tmin = ω to tmax do

NHHu,y,tmin,tmax = Cl(NHHu,v,tmin,tmax

⋃
NHHv,y,tmin,tmax \NBu,y,tmin)

Candidate NHH← NHHu,y,tmin,tmax with Log LRNHH ≥ θ
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Monte Carlo Simulation Speed-Up:

The following three refinements are used to speed-up Monte Carlo simulations. First

refinement is to create all pair shortest paths once, and use them for each simula-

tion trial. NäıveNHHG runs for m times for Monte Carlo simulations. However,

the spatial network does not change between iterations. Thus, we prevent redundant

shortest path calculations in Monte Carlo Simulations. Second, if any NHHrandom has

Log LRrandom
NHH ≥ Log LRactual

NHH then that iteration terminates since there is no reason to

keep looking at all NHHs in that random dataset if a NHHrandom beats the maximum

of Log LRNHH from the actual dataset. Third, Monte Carlo simulation is terminated if

the p-value≥ αp because the αp threshold won’t be met at the end.

It should be noted that these and similar refinements are often used in related work

to speed-up the Monte Carlo simulation process [10, 12, 212]. Therefore, details of the

execution trace of those speed-up approaches are omitted from this paper.

5.4 Case study

We conducted two case studies to evaluate SmartNHHG qualitatively comparing its

output with the output of SaTScan [10] and a ring-shaped hotspot detection [141]

method using two real crime datasets (Fig.5.6(a) and Fig.5.7(a)). For both of the case

studies, we matched activities to edges as counts. The road network was obtained

from the US Census Bureau Tiger/Line Shapefile [213]. The map visualizations were

prepared using QGIS and Open Layers Plugin (www.qgis.org).

The first crime dataset in Fig.5.6(a) consists of 64 theft committed between 2013

and 2014 in South Side Neighborhood of Chicago, Illinois [214]. We set ω = 0.04 km,

t̂max = 0.6 km, θ = 20 and αp = 0.01.

The second crime dataset in Fig.5.7(a) consists of 128 burglary crimes committed

between 2013 and 2014 in Caballo Hills Neighborhood of Oakland, California [215]. We

set ω = 0.5 km, t̂max = 2.6 km, θ = 20 and αp = 0.03.

For the first crime dataset in Fig.5.6(a), SaTScan produced a small circular hotspot

as shown in Fig.5.6(b). This is due to the fact that those activities occurred close to

each other. For the second crime dataset in Fig.5.7(a), SaTScan’s output was a large

circular hotspot. Since SaTScan uses Euclidean distances to enumerate circles, none of
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the outputs for the case studies reflected the effect of the road network.

In Fig.5.6(c) and Fig.5.7(c), ring-shaped hotspots returned by RHD indicate single

center rings (i.e. a single crime source location) due to its enumeration method and

space (i.e. Euclidean). Although the output of RHD in Fig.5.6(c) aligns with the

activities in the study area due to the street morphology in Chicago, it produced very

different results for the burglary crimes in Oakland, California.

(a) (b)

(c) (d)

Figure 5.6: Case Study 1: Theft crimes in Chicago, Illinois. Fig.5.6(a) shows the input,

Fig.5.6(b) shows the output of SaTScan, Fig.5.6(c) shows the output of Ring-Shaped

Hotspot Detection and Fig.5.6(d) shows the output of SmartNHHG. Log LR values are

not comparable due to the Euclidean and Network spaces. (best in color).

As noted earlier, criminals are known to commit crimes around the routes they

often commute as described in environmental criminology [14]. Therefore, when we

take a look at the output of SmartNHHG in both case studies (Fig.5.6(d), Fig.5.7(d)

and Fig.5.7(e)), we see that the output aligns with such crime patterns. For example,
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blue paths at the centers of the NHHs in Fig.5.7(d) and 5.7(e) are the only routes to

reach those houses that burglary crimes occurred (i.e. activities) which may make sense

in the context of environmental criminology. Finally, it should be noted that our tool

should be considered as a decision support tool for the analysts and the results should be

analyzed by them in the context of additional domain information to prevent potentially

misleading results.

(a) (b) (c)

(d) (e)

Figure 5.7: Case Study 2: Burglary crimes in Oakland, California. Fig.5.7(a) shows the

input, Fig.5.7(b) shows the output of SaTScan, Fig.5.7(c) shows the output of Ring-

Shaped Hotspot Detection and Fig.5.7(d) and 5.7(e) shows the output of SmartNHHG.

Log LR values are not comparable due to the Euclidean and Network spaces.
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5.5 Experimental Evaluation

We also conducted an experimental evaluation to observe the effect of the algorithmic

refinements compared with the Näıve approach. The experiments were performed on

real-world data obtained from the City of Chicago portal [214]. The dataset contained

676 theft crimes that were committed in Chicago, Illinois, between 2013 and 2014. The

road network was obtained from the US Census Bureau Tiger/Line Shapefile [213]. For

each edge on the road network, activities were matched and their counts on edges were

aggregated. In the experiments, the number of Monte Carlo simulation trials was set to

m = 0, since we did not perform any experiments on m due to the fact that our Monte

Carlo simulation speed-up approaches were trivial and previously used in [12,212].

Effect of the number of Nodes: We varied the number of nodes from 750 to 1500,

causing the asymptotic increase on the all pair shortest paths, since total number of all

pairs will be
(
750
2

)
and

(
1500
2

)
respectively. We set the log likelihood ratio threshold to

θ = 20. We also selected the maximum outer buffer distance (t̂max = 5 km) and the

unit distance to ω = 1 km (note that these inputs will be selected by domain experts).

SmartNHHG is faster than the NäıveNHHG. Also we can observe that the computational

savings increase with increasing number of nodes thanks to SmartNHHG’s edge stitching

approach.

(a) (b) (c)

Figure 5.8: Scalability of SmartNHHG with increasing 5.8(a) number of nodes, 5.8(b)

number of activities 5.8(c), and unit distance (ω).

Effect of the number of Activity Points: We also varied the number of activities in

the activity set as shown in Fig.5.8(b). Since the algorithm uses only the activity count
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on each edge, this experiment did not affect the execution times of either algorithm.

However, SmartNHHG performs around three times faster than the NäıveNHHG. In

the future, we plan to leverage activity counts on edges to improve the scalability of

SmartNHHG.

Effect of unit distance ω: In this experiment, inputs are the number of nodes

|N | = 1000 and the maximum outer buffer distance t̂max = 5 km. The unit distance

ω was varied by 0.2, 0.4, 0.6, 0.8 and 1 km. In Fig.5.8(c), SmartNHHG is faster and

computational savings increase with smaller ω thanks to SmartNHHG’s distance based

dynamic programming approach.

In summary, experiments confirm that SmartNHHG performs faster than NäıveNHHG

thanks to the proposed algorithmic refinements.

5.6 Discussion

Techniques without Significance Test: This paper focuses on hotspot detection tech-

niques that use statistical significance to remove chance patterns but there are also

techniques that do not test for statistical significance. These techniques (i.e. DB-

SCAN [9], K-Means [57], KMR [216], Clumping [206]) are state-of-the-art to detect

clusters (i.e. a set of objects partitioned into a set of meaningful sub-classes) in a point

process. However, since they do not test for statistical significance, they are not suitable

for applications where false positive results may cause harm. For example, a neighbor-

hood falsely identified as a crime hotspot may become stigmatized, causing residents’

property values to drop. In addition, adding significance test to these approaches is often

non-trivial since they lack a metric (e.g. log likelihood ratio test) for ranking candidate

clusters. Thus, techniques without statistical significance test were not considered in

our work.

Post-Processing of the Output: Our proposed approach returns all possible NHH

given an activity set and a spatial network. However, during our experiments, we often

observed that multiple overlapping hotspots were returned on the same subgraph of

the spatial network. To reduce the visual clutter, we used two simple rules in our

visualizations: (1) For two pk and pl: If pl ⊂ pk and there are two significant NHHk

and NHHl and tkmin = tlmin and tkmax = tlmax, then only NHHk will be returned. (2) For
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a path p: If there are two significant NHHi, NHHj and timin ≤ tjmin and timax ≥ timax

then only NHHi will be returned.

5.7 Conclusion

This work explored the problem of mining network hotspots with holes in relation to

important application domains such as crime analysis. We proposed a Smart Network

Hotspot with Hole Generator algorithm that discovers multiple network hotspots with

holes (NHH) on a spatial network. The proposed approach uses distance based dynamic

programming and edge stitching approaches as well as Monte Carlo simulation speed-

ups to enhance its performance. We presented two case studies using crime activity sets

comparing our proposed approach with a ring-shaped hotspot detection method. Exper-

imental evaluation using real data indicates that the proposed algorithmic refinements

yield substantial computational savings without sacrificing result quality.

In future, we plan to explore refinements including sub-edge level NHH enumeration,

active node filtering and dynamic segmentation. We also plan to explore “emerging”

NHHs from spatiotemporal activity sets (i.e. time tags for the activities). Additionally,

factors (e.g. demographics, activity relationships [217], urbanization [218, 219]) that

generate NHH will be explored.



Chapter 6

Conclusions and Future Work

6.1 Key Results

Despite the significant growth in geospatial data science applications, relatively little at-

tention has been paid to formalizing the scientific foundation of geospatial data science.

The lack of scientifically consistent approaches has made it difficult to develop reli-

able and trustworthy geospatial models and tools. The specific properties of geospatial

data, its volume, variety and velocity and the implicit but complex spatial relation-

ships limit the applicability of traditional data science methods. This thesis defines

geospatial data science as a scientific process of extracting valuable information from

raw geospatial data with reasonable effort. My research explores this emerging field

from a transdisciplinary perspective across the three closely related scientific disciplines

of statistics, mathematics and computer science. I have also presented some challenges

that are related to geospatial data science and illustrated how these can be addressed via

examples and proposed tools. More specifically, the work addresses the computational

scalability issues by proposing fast algorithms that use either a prune and refine strategy

which prevents the unnecessary enumeration of uninteresting patterns or using dynamic

programming approaches. The issues that arise from chance patterns are addressed by

using a statistical approach, e.g. spatial scan statistics. Also, the mathematical com-

pleteness issue is addressed with a dual grid approach that enumerates pattern families

via their mathematical parameters. A summary of the contributions related to their

scientific disciplines is shown in Table 6.1.

128
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Table 6.1: Thesis contributions and their related geospatial data science focus.

6.2 Short Term Future Directions

In the short term, I plan to investigate several issues related to those individual fields

of geospatial data science as follows: (a) Parallelization of the proposed approaches for

greater computational scalability. (b) Richer enumeration space for better mathematical

completeness. (c) Using other statistical measures to provide tighter statistical signifi-

cance and eliminating more chance patterns (d) Using more domain related information

to identify new patterns.

Parallelization of the Proposed Approaches: As geospatial dataset sizes in-

crease and the number of observations grows ever larger, parallelization may need to

be considered for greater scalability. However, there are challenges that need to be ad-

dressed to pinpoint the algorithm bottlenecks and overcome the issues that arise from

the synchronization across multiple iterations of the algorithm. I plan to deploy our

algorithm either on Apache Spark, which uses an in-memory approach, or the Hadoop

Map-Reduce framework. One approach may be to parallelize the prune phase para-

metric grid cell computations in a mapping phase and merge the results in the reduce

phase. Note that the previous experiments on the proposed approaches showed that
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finer resolutions in grid cell sizes makes the prune phase output close to the output

after the refine phase. Thus, using a parallelization approach with extremely fine cell

sizes on the prune phase may make it possible to eliminate the need for a refine phase.

Richer Enumeration Space: The proposed approaches described in this thesis

use a generic approach for prune phases but refine phases define rings and circles as

having a specific number of points on their perimeter. Thus, approaches with a richer

refine phase may be needed to give a more complete set of patterns. An argument can

be made that using a prune phase with finer resolutions as defined above may solve

the problem by approximating the rings and circles in parameter space to the actual

patterns in the study area. Also, while my research approach uses concentric rings

and perfect circles, I may consider approaches that use non-concentric rings as well as

distorted circles to achieve a richer enumeration space.

In addition to creating a richer enumeration space for ring shaped and geographi-

cally robust hotspot detection (in Euclidean space), we can also enrich the enumeration

space for finding network hotspots with holes. In the current work, shortest paths are

used at the center of a hotspot pattern. However, in a real world scenario, shortest paths

may not reflect actual driver behavior because real-world drivers consider not only the

length of their trip but also other factors (e.g., rush hour, road construction, etc.) that

may affect their trip duration. Thus, it may be beneficial to explore simple-path based

network hotspots with holes. Current approaches for enumerating all simple paths in

a graph fall roughly into three categories: (i) approaches that use the power of adja-

cency matrices, (ii) approaches that use depth/breadth first search (DFS/BFS) with

backtracking and (iii) approaches that use cut vertices (i.e. articulation points) and

bi-connected components. Adjacency-matrix based methods have high cost of matrix

multiplications and equal edge weight assumptions, DFS/BFS with backtracking meth-

ods consider only a single node pair on each iteration, and the methods that use cut

vertices assume there are enough cut vertices to reduce the enumeration cost. However,

cut vertices are rare in transportation networks. My approach would be based on a

divide and conquer paradigm leveraging graph-partitioning into hierarchical fragments,

then computing all simple paths inside fragments and between fragments, and then us-

ing the output of these sub-problems to enumerate all possible simple paths between

any pairs of locations. The total cost of computing simple path-based network hotspots
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with holes depends not only on the cost of all simple paths for a node pair, but also on

the cost of testing for statistical significance. Thus, to further reduce the total compu-

tational cost of the divide and conquer approach, I hope to investigate ways to prune

out node pairs that are not going to contribute to the final output as well as reduce the

cost of statistical significance testing.

Other Statistical Measures: In this thesis, the proposed approaches use spatial

scan statistics with a log likelihood ratio to eliminate the chance patterns. Spatial scan

statistics, as is, uses a Monte Carlo simulation framework using randomization. Often,

this approach causes the algorithms to run thousands of times to identify the test statis-

tic distribution with random datasets. Promising future areas of investigation include

ways to terminate Monte Carlo simulation once chance patterns are eliminated; Bayesian

spatial scan statistics to evaluate the posterior probabilities of candidate hotspot re-

gions; and methods that use other statistical measures to identify the locations with

high number of activities. For example, Getis Ord Gi* as well as Local Moran’s I sta-

tistical measures can be used to filter out unnecessary candidates from a dataset which

can later be evaluated for a specific type of pattern.

Domain Specific Pattern Detection: My dissertation research investigated

hotspot patterns using theories from environmental criminology (e.g. routine activity

theory and crime pattern theory) and epidemiology (diffusion theory). Those theories

were the basis of our work for defining the shapes of the patterns. In fact, there are

many theories as well as patterns to be investigated for specific application domains. Ta-

ble 6.2 lists examples of evasion related patterns that can be found in various real-world

settings. The first row (in red) refers to the patterns already studied in this thesis but

the other evasive patterns in the table have yet to be studied. For example, one could

identify the neighborhoods that people intentionally avoid (e.g. for having heavy traffic

or being “sketchy”), as well as evasive individuals (e.g. criminals who avoid checkpoint

locations, taxi drivers who avoid specific risky neighborhoods, etc.) by comparing the

GPS trajectories with the corresponding shortest paths. Similarly, by analyzing GPS

trajectory datasets, irregular behaviors could be detected such as visits to unknown

locations during abnormal times.
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Table 6.2: Patterns of evasion that could be studied in different domains.

6.3 Long Term Future Directions

In this thesis I did not discuss the effect of the size of the study area on the output

patterns. Current analytic tools are often affected by the scale, causing them to miss

patterns when the scale of the study area changes. For example, a hotspot detection

method may miss spatial patterns at a county level but not at a state level even when

the input activities/events are the same. Such effects can not only be seen in hotspot

detection methods but also seen in many other geospatial pattern tools such as co-

location and outlier detection. Since mathematical completeness is one of the goals of

geospatial data science, the scale should not affect the result quality. Thus, there is a

need for a deeper investigation of statistical measures as well as computational methods

to reduce the effect of scale.

Finally, current tools and approaches are often data-driven and empirical, but this

does not mean that they respect the laws of physics. In other words, identifying patterns

using only the data in hand may result in patterns which violate the laws of physics. To
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compensate, the result sets may need to be reviewed by analysts for such considerations.

Incorporating laws of physics will likely play an increasingly important role in data

driven transdisciplinary geospatial data science research, as seen, for example, in the

new “nexus” initiatives proposed recently to study food, energy, and water systems.
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[6] New york bronx legionnaire’s outbreak summer 2015. http://www.nyc.gov/

html/doh/html/diseases/cdlegi.shtml. Accessed: 2015-12-10.

[7] Hotel that enlivened the bronx is now a “hot spot” for le-

gionnaires’. http://www.nytimes.com/2015/08/11/nyregion/

death-toll-from-legionnaires-disease-outbreak-in-bronx-rises-to-12.

html?_r=0. Accessed: 2015-12-10.

[8] John Snow. On the mode of communication of cholera. John Churchill, 1855.

134



135

[9] Martin Ester et al. A density-based algorithm for discovering clusters in large

spatial databases with noise. pages 226–231. AAAI Press, 1996.

[10] M Kulldorff. Satscan user guide for version 9.0, 2011.

[11] Robbery (w/o weapon) cases in san diego in 2013. http://www.sandiego.gov/

police/services/ewatch.shtml, Accessed: 2015-03.

[12] Dev Oliver et al. Significant route discovery: A summary of results. In GIScience,

pages 284–300. Springer, 2014.

[13] Xun Tang, Emre Eftelioglu, Dev Oliver, and Shashi Shekhar. Significant linear

hotspot discovery. IEEE Transactions on Big Data, 2017.

[14] Paul J Brantingham and Patricia L Brantingham. Environmental criminology.

Sage Publications Beverly Hills, CA, 1981.

[15] Lawrence E Cohen and Marcus Felson. Social change and crime rate trends: A

routine activity approach. American sociological review, pages 588–608.

[16] PJ Brantingham and PL Brantingham. Environment, routine and situation: To-

ward a pattern theory of crime. Advances in criminological theory, 5:259–294,

1993.

[17] D.K.Rossmo. Geographic profiling. CRC press, 1999.

[18] John Eck et al. Mapping crime: Understanding hotspots. 2005.

[19] Ned Levine. Crime mapping and the crimestat program. Geographical Analysis,

38(1):41–56, 2006.

[20] David J Icove and MH Estepp. Motive-based offender profiles of arson and fire-

related crimes. FBI law enforcement bulletin, 56(4):17–23, 1987.

[21] Rigel software web site. http://www.rigelanalyst.net. Accessed: 5/1/2016.

[22] National Research Council. Big Data: A Workshop Report. The National

Academies Press, Washington, DC, 2012.



136

[23] Fbi uniform crime reports data portal. https://www.fbi.gov/about-us/cjis/ucr.

Accessed: 5/1/2016.

[24] William R. Newman and Lawrence M. Principe. Alchemy vs. Chemistry: The

Etymological Origins of a Historiographic Mistake. Early Science and Medicine,

3(1):32–65, jan 1998, arXiv:1011.1669v3.

[25] Pierre Legendre, Mark R T Dale, Marie-josée Fortin, Philippe Casgrain, Source

Ecology, and No Dec. Effects of Spatial Structures on the Results of Field Exper-

iments EFFECTS OF SPATIAL STRUCTURES ON THE RESULTS. Source:

Ecology Ecology, 85(12):3202–3214, 2011.

[26] Fulvio Mazzocchi. Could big data be the end of theory in science? EMBO reports,

page e201541001, 2015.

[27] H Miller. Geographic Data Mining and Knowledge Discovery. New York, page 20,

2004.

[28] Shashi Shekhar, Michael R. Evans, James M. Kang, and Pradeep Mohan. Identify-

ing patterns in spatial information: A survey of methods. Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, 1(3):193–214, 2011.

[29] Declan Butler. When Google got flu wrong. Nature, 494(7436):155–156, feb 2013.

[30] David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani. The Parable

of Google Flu: Traps in Big Data Analysis. Science, 343(6167):1203–1205, mar

2014.

[31] Organizers P Drineas, X Huo, and Executive Summary. Workshop on Theoretical

Foundations of Data Science ( TFoDS ), pages 1–20. apr 2016.

[32] Gary Marcus and Ernest Davis. Eight (No, Nine!) Problems With Big Data. The

New York Times, pages 1–6, 2014.

[33] Ming-hsiang Tsou. Big data : techniques and technologies in geoinformatics, vol-

ume 5683. CRC Press, 2014, arXiv:1011.1669v3.



137

[34] Axel Graumann, Tamara Houston, David Levinson, Neal Lott, Sam McCown,

Scott Stephens, and David Wuertz. Hurricane Katrina: A climatological perspec-

tive: Preliminary report. Technical report no. 2005-01., 1, 2006.

[35] National hurricane center. http://www.nhc.noaa.gov/. Accessed: 3/1/2017.

[36] Lorraine Daston. Objectivity. the Mit Press, 2007.

[37] Dr. Chris Drummond. Replicability is not reproducibility: Nor is it good science,

pages 1–4. Number 2005. jun 2009.

[38] R.˜D. Peng. Reproducible Research in Computational Science. Science,

334(6060):1226–, dec 2011, 0901.4552.

[39] H G Gauch. Scientific method in practice. Cambridge University Press, 2003.

[40] Nassim Nicholas Taleb. The black swan : the impact of the highly improbable,

volume 2. Random house, 2007, arXiv:1011.1669v3.

[41] R Evans Michael, Oliver Dev, Zhou Xun, and Shekhar Shashi. Spatial Big Data.

Big Data, pages 149–176, 2014.

[42] S Shekhar, Z Jiang, R Y Ali, E Eftelioglu, X Tang, V M V Gunturi, and X Zhou.

Spatiotemporal data mining: A computational perspective. ISPRS International

Journal of Geo-Information, 4(4):2306–2338, 2015.

[43] Osm planet gpx web site. http://planet.openstreetmap.org/gps/. Accessed:

03/01/2017.

[44] Eliseo Clementini and Paolino Di Felice. An algebraic model for spatial objects

with indeterminate boundaries. Geographic objects with indeterminate boundaries,

2:155–169, 1996.

[45] A. G. Cohn and N. M. Gotts. The ’Egg-Yolk’ Representation of Regions with

Indeterminate Boundaries. Proceedings of the GISDATA Specialist Meeting on

Geographical Objects with Undetermined Boundaries, 2:171–187, 1996.
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[116] Ekkehard Köhler, Ekkehard Köhler, Katharina Langkau, Katharina Langkau,

Martin Skutella, and Martin Skutella. {Time-Expanded} Graphs for {Flow-

Dependent} Transit Times, pages 49–56. Number 03 in Lecture Notes in Computer

Science. Springer Berlin Heidelberg, sep 2002.

[117] Chapter Description and Chapter Objectives. Introduction to Geographic Infor-

mation Systems. McGraw-Hill Higher Education Boston, 2005.

[118] Kenneth J Dueker Ric and Vrana. Dynamic Segmentation Revisited: A Milepoint

Linear Data Model. GIS-T ’92 Conference, 4(2):1–14, 1984.

[119] Paul Abrahams. President’s letter. Communications of the ACM, 30(6):472–473,

jun 1987.

[120] T Cormen, R Rivest, and C Leiserson. Introduction to Algorithms. MIT press,

1989.

[121] David S Johnson and C.H. Papadimitriou. Computational Complexity. John Wiley

and Sons Ltd., 1985.

[122] Ramez Elmasri and Shamkant B Navathe. Fundamentals of Database Systems,

volume 28. Pearson, 7 edition edition, jun 2003, arXiv:1011.1669v3.

[123] E F Codd. A Relational Model of Data for Large Shared Data Banks. Com-

munications of the Association for Computing Machinery, 13(6):377–387, 1970,

arXiv:1011.1669v3.

[124] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system,

volume 37, page 29. ACM, 2003, z0024.

[125] D Borthakur. The hadoop distributed file system: Architecture and design,

Hadoop Project Website,. Hadoop Project Website, 11(2007):21, 2007.



145

[126] J Dean and S Ghemawat. Simplified data processing on large clusters. Sixth Symp.

Oper. Syst. Des. Implement., 51(1):107–113, 2004, 10.1.1.163.5292.

[127] Apache spark - lightning-fast cluster computing. https://spark.apache.org. Ac-

cessed: 3/1/2017.

[128] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining associa-

tion rules in large databases. In Proceedings of the 20th International Conference

on Very Large Data Bases, VLDB ’94, pages 487–499, San Francisco, CA, USA,

1994. Morgan Kaufmann Publishers Inc.

[129] Heikki Mannila. Mining Frequent Patterns without Candidate Generation A

Frequent-Pattern Tree Approach.pdf, volume 29, pages 53–87. ACM, 2004.

[130] Open geo spatial portal. http://www.opengeospatial.org/. Accessed: 3/1/2017.

[131] Y.-K.a Whang K.-Y.a Song I.L.-Y.c Lee J.-H.a b Lee. A Physical Database Design

Method for Multidimensional File Organizations. Information Sciences, 102(1-

4):31–65, 1997.

[132] Wolfgang Kainz and Wolfgang Kainz. The Design and Analysis of Spatial Data

Structures, volume 5. Addison-Wesley Reading, MA, 1991.

[133] Antonin Guttman. R-trees: a dynamic index structure for spatial searching, vol-

ume 14. ACM, 1984, ISBN 0-89791-128-8.

[134] Shashi Shekhar, Sanjay Chawla, Siva Ravada, Andrew Fetterer, Xuan Liu, and

Chang Tien Lu. Spatial databases accomplishments and research needs. IEEE

Transactions on Knowledge and Data Engineering, 11(1):45–55, 1999.

[135] Michael R Evans, Dev Oliver, Kwangsoo Yang, Zhou Xun, and Shekhar Shashi.

Enabling Spatial Big Data via CyberGIS: Challenges and Opportunities. Cy-

berGIS: Fostering a New Wave of Geospatial Innovation and Discovery, d(Table

1):1–16, 2014.

[136] Eldawy Ali and Mohammad Mokbel. SpatialHadoop.



146

[137] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,

and Joel Saltz. Hadoop GIS. Proceedings of the VLDB Endowment, 6(11):1009–

1020, aug 2013.

[138] Jia Yu, Wu Jinxuan, and Sarwat Mohamed. GeoSpark: A Cluster Computing

Framework for Processing Large-Scale Spatial Data, pages 4–7. Number 3. ACM,

2015.

[139] S K Prasad, S Shekhar, M McDermott, X Zhou, M Evans, and S Puri. GPGPU-

accelerated interesting interval discovery and other computations on GeoSpatial

datasets - A summary of results, page 7. BigSpatial ’13. ACM, 2013.

[140] S. Shekar and S. Chawla. Spatial Databases: A Tour. Prentice Hall, 2003.

[141] Emre Eftelioglu, Shashi Shekhar, Dev Oliver, Xun Zhou, Michael R. Evans, Yiqun

Xie, James M. Kang, Renee Laubscher, and Christopher Farah. Ring-Shaped

Hotspot Detection: A Summary of Results. In 2014 IEEE International Confer-

ence on Data Mining, pages 815–820, 2014.

[142] Emre Eftelioglu, Shashi Shekhar, James M Kang, and Christopher C Farah. Ring-

shaped hotspot detection. IEEE Transactions on Knowledge and Data Engineer-

ing, 28(12):3367–3381, 2016.

[143] James P Rogers and James A Shine. Sustained Emerging Spatio-Temporal Co-

occurrence Pattern Mining : A Summary of Results, pages 106–115. IEEE, 2006.

[144] Mete Celik, Shashi Shekhar, James P. Rogers, James A. Shine, and Jin Soung

Yoo. Mixed-drove spatio-temporal co-occurrence pattern mining: A summary of

results, pages 119–128. dec 2006.

[145] Yan Huang, Shashi Shekhar, and H. Xiong. Discovering colocation patterns from

spatial data sets: a general approach. Tkde, 16(12):1472–1485, 2004.

[146] Pradeep Mohan, Shashi Shekhar, James A Shine, and James P Rogers. Cascading

spatio-temporal pattern discovery: A summary of results. In SDM, pages 327–338.

SIAM, 2010.



147

[147] P. Mohan, S. Shekhar, et al. Cascading spatio-temporal pattern discovery. Knowl-

edge and Data Engineering, IEEE Transactions on, 24(11):1977–1992, 2012.

[148] Michael R Evans, Dev Oliver, Shashi Shekhar, and Francis Harvey. Summariz-

ing trajectories into k-primary corridors: a summary of results, pages 454–457.

SIGSPATIAL ’12. ACM, 2012.

[149] Dev Oliver, Abdussalam Bannur, James M Kang, Shashi Shekhar, and Renee

Bousselaire. A k-main routes approach to spatial network activity summariza-

tion: A summary of results. In Data Mining Workshops (ICDMW), 2010 IEEE

International Conference on, pages 265–272. IEEE, 2010.

[150] Chao Chen, Daqing Zhang, Pablo Samuel Castro, Nan Li, Lin Sun, and Shijian

Li. Real-time detection of anomalous taxi trajectories from GPS traces, volume

104 LNICST of Lecture Notes of the Institute for Computer Sciences, Social In-

formatics and Telecommunications Engineering, pages 63–74. Springer Berlin

Heidelberg, dec 2012.

[151] Zhouyu Fu, Weiming Hu, and Tieniu Tan. Similarity Based Vehicle Trajectory

Clustering and Anomaly Detection , volume 2, page 8. IEEE, 2005.

[152] Zhenhui Li, Ming Ji, Jae-gil Lee, Lu-an Tang, Yintao Yu, Jiawei Han, and Roland

Kays. MoveMine : Mining Moving Object Databases, pages 1203–1206. ACM,

2010.

[153] Wei Liu. Discovering Spatio-Temporal Causal Interactions in Traffic Data

Streams, pages 1010–1018. ACM, 2011.

[154] Wanli Min, Laura Wynter, and Yasuo Amemiya. Road Traffic Prediction with

Spatio-Temporal Correlations Road Traffic Prediction with Spatio-Temporal Cor-

relations. IBM Research Report, 24275(4):RC24275 (W0706–018) June, 2007.

[155] Dimitris Sacharidis, Kostas Patroumpas, Manolis Terrovitis, Verena Kantere,

Michalis Potamias, Kyriakos Mouratidis, and Timos Sellis. On-line discovery

of hot motion paths, pages 392–403. ACM, 2008.



148

[156] Jung-im Won, Sang-wook Kim, Ji-haeng Baek, and Junghoon Lee. Trajectory

Clustering in Road Network Environment (09).pdf, pages 299–305. IEEE, 2009.

[157] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. Driving with knowledge

from the physical world, pages 316–324. Number 5. ACM, 2011.

[158] Daqing Zhang, Nan Li, Zhi-Hua Zhou, Chao Chen, Lin Sun, and Shijian Li. iBAT,

page 99. UbiComp ’11. ACM, 2011.

[159] Yu Zheng. Compute with spatial trajectories. Springer Science & Business Media,

2011.

[160] S Shekhar, C T Lu, and P Zhang. Detecting Graph-Based Spatial Outliers: Algo-

rithms and Applications, pages 371–376. ACM, 2001.

[161] S Shekhar, C Lu, and P Zhang. A unified approach to detecting statial outliers.

GeoInformatica, 7(2):139–166, 2003.

[162] Zhe Jiang, Shashi Shekhar, Pradeep Mohan, Joseph Knight, and Jennifer Corco-

ran. Learning spatial decision tree for geographical classification: a summary of

results, pages 390–393. ACM, 2012.

[163] Zhe Jiang, Shashi Shekhar, Xun Zhou, Joseph Knight, and Jennifer Corcoran.

Focal-test-based spatial decision tree learning. IEEE Transactions on Knowledge

and Data Engineering, 27(6):1547–1559, jun 2015.

[164] Xun Zhou et al. Spatiotemporal change footprint pattern discovery: an inter-

disciplinary survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, 4(1):1–23, 2014.

[165] Richard S Ostfeld, Gregory E Glass, and Felicia Keesing. Spatial epidemiology:

an emerging (or re-emerging) discipline. Trends in ecology & evolution, 20(6):328–

336, 2005.

[166] Steven Le Comber et al. Geographic profiling as a novel spatial tool for targeting

infectious disease control. International journal of health geographics, 10(1):1–8,

2011.



149

[167] Nigel E Raine, D Kim Rossmo, and Steven C Le Comber. Geographic profiling

applied to testing models of bumble-bee foraging. Journal of the Royal Society

Interface, 6(32):307–319, 2009.

[168] Steven C Le Comber, Barry Nicholls, D Kim Rossmo, and Paul A Racey. Geo-

graphic profiling and animal foraging. Journal of Theoretical Biology, 240(2):233–

240, 2006.

[169] Alan R Putnam and William B Duke. Allelopathy in agroecosystems. Annual

review of phytopathology, 16(1):431–451, 1978.

[170] Wenche E Dramstad. Do bumblebees (hymenoptera: Apidae) really forage close

to their nests? Journal of Insect Behavior, 9(2):163–182, 1996.

[171] Mark D Stevenson, D Kim Rossmo, Robert J Knell, and Steven C Le Comber.

Geographic profiling as a novel spatial tool for targeting the control of invasive

species. Ecography, 35(8):704–715, 2012.

[172] David MH Baker, James W Head, Caleb I Fassett, Seth J Kadish, Dave E Smith,

Maria T Zuber, and Gregory A Neumann. The transition from complex crater

to peak-ring basin on the moon: New observations from the lunar orbiter laser

altimeter (lola) instrument. Icarus, 214(2):377–393, 2011.

[173] Bevan M French. Traces of catastrophe: A handbook of shock-metamorphic effects

in terrestrial meteorite impact structures. 1998.

[174] Deepak Agarwal et al. Spatial scan statistics: approximations and performance

study. In Proceedings of the 12th ACM SIGKDD international conference on

KDD, pages 24–33. ACM, 2006.

[175] Daniel B Neill and Andrew W Moore. Rapid detection of significant spatial

clusters. In Proceedings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 256–265. ACM, 2004.

[176] James Munkres. Topology (2nd Edition). 2 edition, January 2000.

[177] Martin Kulldorf. Spatial Scan Statistics: Models, Calculations and Applications,

pages 303–322. Springer, 1999.



150

[178] Martin Kulldorff. A spatial scan statistic. Communications in Statistics-Theory

and methods, 26:1481–1496, 1997.

[179] Katarina Fritzon. An examination of the relationship between distance travelled

and motivational aspects of firesetting behaviour. Journal of Environmental Psy-

chology, 21(1):45–60, 2001.

[180] Kim Dralle and Mats Rudemo. Stem number estimation by kernel smoothing of

aerial photos. Canadian Journal of Forest Research, 26(7):1228–1236, 1996.

[181] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong

Schwarzkopf. Computational geometry. Springer, 2000.

[182] Rudolf Gorenflo and Francesco Mainardi. Random walk models for space-

fractional diffusion processes. Fract. Calc. Appl. Analysis, 1(2):167–191, 1998.

[183] Rakesh Agrawal et al. Automatic subspace clustering of high dimensional data for

data mining applications, volume 27. ACM, 1998.

[184] Gerald F Pyle. Applied medical geography. VH Winstond and Sons, 1979.

[185] Ray M Merrill. Introduction to epidemiology. Jones & Bartlett Publishers, 2013.

[186] Jacklin F Mosha et al. Epidemiology of subpatent plasmodium falciparum infec-

tion: implications for detection of hotspots with imperfect diagnostics. Malar J,

12(221):10–1186, 2013.

[187] Alexandra Sifferlin. The 5 Biggest Mistakes in the Ebola Outbreak. Time Mag-

azine, http://time.com/3426642/the-5-biggest-mistakes-in-the-ebola-outbreak-so-

far/, Sept 25 2014.

[188] Leslie W Kennedy and David R Forde. Routine activities and crime: An analysis

of victimization in canada*. Criminology, 28(1):137–152, 1990.

[189] Lyndsay N. Boggess, Robert T Greenbaum, and George E Tita. Does crime

drive housing sales? evidence from los angeles. Journal of Crime and Justice,

36(3):299–318, 2013.



151

[190] Dong-Wan Choi et al. A scalable algorithm for maximizing range sum in spatial

databases. Proceedings of the VLDB Endowment, 5(11):1088–1099, 2012.

[191] Daniel B Neill. Expectation-based scan statistics for monitoring spatial time series

data. International Journal of Forecasting, 25(3):498–517, 2009.

[192] Daniel B Neill. Fast subset scan for spatial pattern detection. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 74(2):337–360, 2012.

[193] Kurt Binder. Introduction: Theory and technical aspects of Monte Carlo simula-

tions. Springer, 1986.

[194] Emo Welzl. Smallest enclosing disks (balls and ellipsoids). Springer, 1991.

[195] Open street map web site. http://www.openstreetmap.org/.

[196] Daniel Neill. An empirical comparison of spatial scan statistics for outbreak de-

tection. International Journal of Health Geographics, 8(1):20, 2009.

[197] Daniel B Neill. Detection of spatial and spatio-temporal clusters. PhD thesis,

University of South Carolina, 2006.

[198] J Fitterer, TA Nelson, and F Nathoo. Predictive crime mapping. Police Practice

and Research, 16(2):121–135, 2015.

[199] Emre Eftelioglu, Xun Tang, and Shashi Shekhar. Geographically robust hotspot

detection: A summary of results. In ICDM International Workshop on Spatial

and Spatiotemporal Data Mining (SSTDM), 2015.

[200] Kulldorff et al. An elliptic spatial scan statistic. Statistics in medicine,

25(22):3929–3943, 2006.

[201] Xun Tang et al. Elliptical hotspot detection: A summary of results. In ACM

SIGSPATIAL Workshops, 2015.

[202] Daniel B Neill and Andrew W Moore. A fast multi-resolution method for de-

tection of significant spatial disease clusters. In Advances in Neural Information

Processing Systems, page None, 2003.



152

[203] Tony H Grubesic, Ran Wei, and Alan T Murray. Spatial clustering overview

and comparison: Accuracy, sensitivity, and computational expense. Annals of the

Association of American Geographers, 104(6):1134–1156, 2014.

[204] Daniel JK Beavon, Patricia L Brantingham, and Paul J Brantingham. The influ-

ence of street networks on the patterning of property offenses. Crime prevention

studies, 2:115–148, 1994.

[205] Jane Law, Matthew Quick, and Ping Chan. Bayesian spatio-temporal modeling

for analysing local patterns of crime over time at the small-area level. Journal of

quantitative criminology, 30(1):57–78, 2014.

[206] Atsuyuki Okabe, Kei-Ichi Okunuki, and Shino Shiode. The sanet toolbox: new

methods for network spatial analysis. Transactions in GIS, 10(4):535–550, 2006.

[207] Atsuyuki Okabe and Kokichi Sugihara. Spatial analysis along networks: statistical

and computational methods. John Wiley & Sons, 2012.

[208] Shino Shiode and Narushige Shiode. Network-based space-time search-window

technique for hotspot detection of street-level crime incidents. International Jour-

nal of Geographical Information Science, 27(5):866–882, 2013.

[209] Lei Shi and Vandana P Janeja. Anomalous window discovery for linear intersecting

paths. Knowledge and Data Engineering, IEEE Transactions on, 23(12):1857–

1871, 2011.

[210] Marcelo Azevedo Costa, Renato Martins Assunção, and Martin Kulldorff. Con-

strained spanning tree algorithms for irregularly-shaped spatial clustering. Com-

putational Statistics & Data Analysis, 56(6):1771–1783, 2012.

[211] Kazimierz Kuratowski. Topology, volume 1. Elsevier, 2014.

[212] David JC MacKay. Information theory, inference and learning algorithms. Cam-

bridge university press, 2003.

[213] Us census bureau tiger/line shapefiles, Accessed: Dec 9, 2015.



153

[214] City of chicago data portal. https://data.cityofchicago.org/Public-Safety/Crimes-

2001-to-present/ijzp-q8t2. Accessed: 12/1/2014.

[215] City of oakland data portal. https://data.oaklandnet.com. Accessed: 1/5/2016.

[216] Dev Oliver et al. A k-main routes approach to spatial network activity summa-

rization. Knowledge and Data Engineering, IEEE Transactions on, 26, 2014.

[217] Diansheng Guo. Local entropy map: A nonparametric approach to detecting

spatially varying multivariate relationships. International Journal of Geographical

Information Science, 24(9):1367–1389, 2010.

[218] Mary K Wolfe and Jeremy Mennis. Does vegetation encourage or suppress urban

crime? evidence from philadelphia, pa. Landscape and Urban Planning, 2012.

[219] Alex Hirschfield et al. How places influence crime: The impact of surrounding

areas on neighbourhood burglary rates in a british city. Urban Studies, 2013.


