7 research outputs found

    On rigidity, orientability and cores of random graphs with sliders

    Get PDF
    Suppose that you add rigid bars between points in the plane, and suppose that a constant fraction qq of the points moves freely in the whole plane; the remaining fraction is constrained to move on fixed lines called sliders. When does a giant rigid cluster emerge? Under a genericity condition, the answer only depends on the graph formed by the points (vertices) and the bars (edges). We find for the random graph G∈G(n,c/n)G \in \mathcal{G}(n,c/n) the threshold value of cc for the appearance of a linear-sized rigid component as a function of qq, generalizing results of Kasiviswanathan et al. We show that this appearance of a giant component undergoes a continuous transition for q≀1/2q \leq 1/2 and a discontinuous transition for q>1/2q > 1/2. In our proofs, we introduce a generalized notion of orientability interpolating between 1- and 2-orientability, of cores interpolating between 2-core and 3-core, and of extended cores interpolating between 2+1-core and 3+2-core; we find the precise expressions for the respective thresholds and the sizes of the different cores above the threshold. In particular, this proves a conjecture of Kasiviswanathan et al. about the size of the 3+2-core. We also derive some structural properties of rigidity with sliders (matroid and decomposition into components) which can be of independent interest.Comment: 32 pages, 1 figur

    ON RIGIDITY, ORIENTABILITY AND CORES OF RANDOM GRAPHS WITH SLIDERS

    Get PDF
    International audienceSuppose that you add rigid bars between points in the plane, and suppose that a constant fraction q of the points moves freely in the whole plane; the remaining fraction is constrained to move on fixed lines called sliders. When does a giant rigid cluster emerge? Under a genericity condition, the answer only depends on the graph formed by the points (vertices) and the bars (edges). We find for the random graph G ∈ G(n, c/n) the threshold value of c for the appearance of a linear-sized rigid component as a function of q, generalizing results of [8]. We show that this appearance of a giant component undergoes a continuous transition for q ≀ 1/2 and a discontinuous transition for q > 1/2. In our proofs, we introduce a generalized notion of orientability interpolating between 1-and 2-orientability, of cores interpolating between the 2-core and the 3-core, and of extended cores interpolating between the 2 + 1-core and the 3 + 2-core; we find the precise expressions for the respective thresholds and the sizes of the different cores above the threshold. In particular, this proves a conjecture of [8] about the size of the 3 + 2-core. We also derive some structural properties of rigidity with sliders (matroid and decomposition into components) which can be of independent interest

    On rigidity, orientability and cores of random graphs with sliders

    Get PDF
    Suppose that you add rigid bars between points in the plane, and suppose that a constant fraction q of the points moves freely in the whole plane; the remaining fraction is constrained to move on fixed lines called sliders. When does a giant rigid cluster emerge? Under a genericity condition, the answer only depends on the graph formed by the points (vertices) and the bars (edges). We find for the random graph G ∈ G(n, c/n) the threshold value of c for the appearance of a linear-sized rigid component as a function of q, generalizing results of [7]. We show that this appearance of a giant component undergoes a continuous transition for q ≀ 1/2 and a discontinuous transition for q > 1/2. In our proofs, we introduce a generalized notion of orientability interpolating between 1-and 2-orientability, of cores interpolating between 2-core and 3-core, and of extended cores interpolating between 2 + 1-core and 3 + 2-core; we find the precise expressions for the respective thresholds and the sizes of the different cores above the threshold. In particular, this proves a conjecture of [7] about the size of the 3 + 2-core. We also derive some structural properties of rigidity with sliders (matroid and decomposition into components) which can be of independent interest

    ON RIGIDITY, ORIENTABILITY AND CORES OF RANDOM GRAPHS WITH SLIDERS

    No full text
    International audienceSuppose that you add rigid bars between points in the plane, and suppose that a constant fraction q of the points moves freely in the whole plane; the remaining fraction is constrained to move on fixed lines called sliders. When does a giant rigid cluster emerge? Under a genericity condition, the answer only depends on the graph formed by the points (vertices) and the bars (edges). We find for the random graph G ∈ G(n, c/n) the threshold value of c for the appearance of a linear-sized rigid component as a function of q, generalizing results of [8]. We show that this appearance of a giant component undergoes a continuous transition for q ≀ 1/2 and a discontinuous transition for q > 1/2. In our proofs, we introduce a generalized notion of orientability interpolating between 1-and 2-orientability, of cores interpolating between the 2-core and the 3-core, and of extended cores interpolating between the 2 + 1-core and the 3 + 2-core; we find the precise expressions for the respective thresholds and the sizes of the different cores above the threshold. In particular, this proves a conjecture of [8] about the size of the 3 + 2-core. We also derive some structural properties of rigidity with sliders (matroid and decomposition into components) which can be of independent interest
    corecore