112 research outputs found

    A 4.8 kbps code-excited linear predictive coder

    Get PDF
    A secure voice system STU-3 capable of providing end-to-end secure voice communications (1984) was developed. The terminal for the new system will be built around the standard LPC-10 voice processor algorithm. The performance of the present STU-3 processor is considered to be good, its response to nonspeech sounds such as whistles, coughs and impulse-like noises may not be completely acceptable. Speech in noisy environments also causes problems with the LPC-10 voice algorithm. In addition, there is always a demand for something better. It is hoped that LPC-10's 2.4 kbps voice performance will be complemented with a very high quality speech coder operating at a higher data rate. This new coder is one of a number of candidate algorithms being considered for an upgraded version of the STU-3 in late 1989. The problems of designing a code-excited linear predictive (CELP) coder to provide very high quality speech at a 4.8 kbps data rate that can be implemented on today's hardware are considered

    A robust CELP coder with source-dependent channel coding

    Get PDF
    A CELP coder using Source Dependent Channel Encoding (SDCE) for optimal channel error protection is introduced. With SDCE, each of the CELP parameters are encoded by minimizing a perceptually meaningful error criterion under prevalent channel conditions. Unlike conventional channel coding schemes, SDCE allows for optimal balance between error detection and correction. The experimental results show that the CELP system is robust under various channel bit error rates and displays a graceful degradation in SSNR as the channel error rate increases. This is a desirable property to have in a coder since the exact channel conditions cannot usually be specified a priori

    Low bit rate speech coding methods and a new interframe differential coding scheme for line spectrum pairs

    Get PDF
    Ankara : Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 1992.Thesis (Master's) -- Bilkent University, 1992.Includes bibliographical references leaves 30-32.Low bit rate speech coding techniques and a new coding scheme for vocal tract parameters are presented. Linear prediction based voice coding techniques (linear predictive coding and code excited linear predictive coding) are examined and implemented. A new interframe differential coding scheme for line spectrum pairs is developed. The new scheme reduces the spectral distortion of the linear predictive filter while maintaining a high compression ratio.Erzin, EnginM.S

    Comparison of CELP speech coder with a wavelet method

    Get PDF
    This thesis compares the speech quality of Code Excited Linear Predictor (CELP, Federal Standard 1016) speech coder with a new wavelet method to compress speech. The performances of both are compared by performing subjective listening tests. The test signals used are clean signals (i.e. with no background noise), speech signals with room noise and speech signals with artificial noise added. Results indicate that for clean signals and signals with predominantly voiced components the CELP standard performs better than the wavelet method but for signals with room noise the wavelet method performs much better than the CELP. For signals with artificial noise added, the results are mixed depending on the level of artificial noise added with CELP performing better for low level noise added signals and the wavelet method performing better for higher noise levels

    Low bit rate speech transmission: classified vector excitation coding

    Get PDF
    Vector excitation coding (VXC) is a speech digitisation technique growing in popularity. Problems associated with VXC systems are high computational complexity and poor reconstruction of plosives. The Pairwise Nearest Neighbour (PNN) clustering algorithm is proposed as an efficient method of codebook design. It is demonstrated to preserve plosives better than the Linde-Buzo-Gary (LBG) algorithm [34] and maintain similar quality to LBG for other speech Classification of the residual is then studied. This reduces codebook search complexity and enables a shortcut in computation of the PNN algorithm to be exploited

    Quantisation mechanisms in multi-protoype waveform coding

    Get PDF
    Prototype Waveform Coding is one of the most promising methods for speech coding at low bit rates over telecommunications networks. This thesis investigates quantisation mechanisms in Multi-Prototype Waveform (MPW) coding, and two prototype waveform quantisation algorithms for speech coding at bit rates of 2.4kb/s are proposed. Speech coders based on these algorithms have been found to be capable of producing coded speech with equivalent perceptual quality to that generated by the US 1016 Federal Standard CELP-4.8kb/s algorithm. The two proposed prototype waveform quantisation algorithms are based on Prototype Waveform Interpolation (PWI). The first algorithm is in an open loop architecture (Open Loop Quantisation). In this algorithm, the speech residual is represented as a series of prototype waveforms (PWs). The PWs are extracted in both voiced and unvoiced speech, time aligned and quantised and, at the receiver, the excitation is reconstructed by smooth interpolation between them. For low bit rate coding, the PW is decomposed into a slowly evolving waveform (SEW) and a rapidly evolving waveform (REW). The SEW is coded using vector quantisation on both magnitude and phase spectra. The SEW codebook search is based on the best matching of the SEW and the SEW codebook vector. The REW phase spectra is not quantised, but it is recovered using Gaussian noise. The REW magnitude spectra, on the other hand, can be either quantised with a certain update rate or only derived according to SEW behaviours

    Frequency Domain Methods for Coding the Linear Predictive Residual of Speech Signals

    Get PDF
    The most frequently used speech coding paradigm is ACELP, famous because it encodes speech with high quality, while consuming a small bandwidth. ACELP performs linear prediction filtering in order to eliminate the effect of the spectral envelope from the signal. The noise-like excitation is then encoded using algebraic codebooks. The search of this codebook, however, can not be performed optimally with conventional encoders due to the correlation between their samples. Because of this, more complex algorithms are required in order to maintain the quality. Four different transformation algorithms have been implemented (DCT, DFT, Eigenvalue decomposition and Vandermonde decomposition) in order to decorrelate the samples of the innovative excitation in ACELP. These transformations have been integrated in the ACELP of the EVS codec. The transformed innovative excitation is coded using the envelope based arithmetic coder. Objective and subjective tests have been carried out to evaluate the quality of the encoding, the degree of decorrelation achieved by the transformations and the computational complexity of the algorithms
    corecore