2,455 research outputs found

    Matching under Preferences

    Get PDF
    Matching theory studies how agents and/or objects from different sets can be matched with each other while taking agents\u2019 preferences into account. The theory originated in 1962 with a celebrated paper by David Gale and Lloyd Shapley (1962), in which they proposed the Stable Marriage Algorithm as a solution to the problem of two-sided matching. Since then, this theory has been successfully applied to many real-world problems such as matching students to universities, doctors to hospitals, kidney transplant patients to donors, and tenants to houses. This chapter will focus on algorithmic as well as strategic issues of matching theory. Many large-scale centralized allocation processes can be modelled by matching problems where agents have preferences over one another. For example, in China, over 10 million students apply for admission to higher education annually through a centralized process. The inputs to the matching scheme include the students\u2019 preferences over universities, and vice versa, and the capacities of each university. The task is to construct a matching that is in some sense optimal with respect to these inputs. Economists have long understood the problems with decentralized matching markets, which can suffer from such undesirable properties as unravelling, congestion and exploding offers (see Roth and Xing, 1994, for details). For centralized markets, constructing allocations by hand for large problem instances is clearly infeasible. Thus centralized mechanisms are required for automating the allocation process. Given the large number of agents typically involved, the computational efficiency of a mechanism's underlying algorithm is of paramount importance. Thus we seek polynomial-time algorithms for the underlying matching problems. Equally important are considerations of strategy: an agent (or a coalition of agents) may manipulate their input to the matching scheme (e.g., by misrepresenting their true preferences or underreporting their capacity) in order to try to improve their outcome. A desirable property of a mechanism is strategyproofness, which ensures that it is in the best interests of an agent to behave truthfully

    Minimal Envy and Popular Matchings

    Full text link
    We study ex-post fairness in the object allocation problem where objects are valuable and commonly owned. A matching is fair from individual perspective if it has only inevitable envy towards agents who received most preferred objects -- minimal envy matching. A matching is fair from social perspective if it is supported by majority against any other matching -- popular matching. Surprisingly, the two perspectives give the same outcome: when a popular matching exists it is equivalent to a minimal envy matching. We show the equivalence between global and local popularity: a matching is popular if and only if there does not exist a group of size up to 3 agents that decides to exchange their objects by majority, keeping the remaining matching fixed. We algorithmically show that an arbitrary matching is path-connected to a popular matching where along the path groups of up to 3 agents exchange their objects by majority. A market where random groups exchange objects by majority converges to a popular matching given such matching exists. When popular matching might not exist we define most popular matching as a matching that is popular among the largest subset of agents. We show that each minimal envy matching is a most popular matching and propose a polynomial-time algorithm to find them

    Robust randomized matchings

    Full text link
    The following game is played on a weighted graph: Alice selects a matching MM and Bob selects a number kk. Alice's payoff is the ratio of the weight of the kk heaviest edges of MM to the maximum weight of a matching of size at most kk. If MM guarantees a payoff of at least α\alpha then it is called α\alpha-robust. In 2002, Hassin and Rubinstein gave an algorithm that returns a 1/21/\sqrt{2}-robust matching, which is best possible. We show that Alice can improve her payoff to 1/ln(4)1/\ln(4) by playing a randomized strategy. This result extends to a very general class of independence systems that includes matroid intersection, b-matchings, and strong 2-exchange systems. It also implies an improved approximation factor for a stochastic optimization variant known as the maximum priority matching problem and translates to an asymptotic robustness guarantee for deterministic matchings, in which Bob can only select numbers larger than a given constant. Moreover, we give a new LP-based proof of Hassin and Rubinstein's bound

    Matching Dynamics with Constraints

    Full text link
    We study uncoordinated matching markets with additional local constraints that capture, e.g., restricted information, visibility, or externalities in markets. Each agent is a node in a fixed matching network and strives to be matched to another agent. Each agent has a complete preference list over all other agents it can be matched with. However, depending on the constraints and the current state of the game, not all possible partners are available for matching at all times. For correlated preferences, we propose and study a general class of hedonic coalition formation games that we call coalition formation games with constraints. This class includes and extends many recently studied variants of stable matching, such as locally stable matching, socially stable matching, or friendship matching. Perhaps surprisingly, we show that all these variants are encompassed in a class of "consistent" instances that always allow a polynomial improvement sequence to a stable state. In addition, we show that for consistent instances there always exists a polynomial sequence to every reachable state. Our characterization is tight in the sense that we provide exponential lower bounds when each of the requirements for consistency is violated. We also analyze matching with uncorrelated preferences, where we obtain a larger variety of results. While socially stable matching always allows a polynomial sequence to a stable state, for other classes different additional assumptions are sufficient to guarantee the same results. For the problem of reaching a given stable state, we show NP-hardness in almost all considered classes of matching games.Comment: Conference Version in WINE 201

    Scaling Behavior in the Stable Marriage Problem

    Full text link
    We study the optimization of the stable marriage problem. All individuals attempt to optimize their own satisfaction, subject to mutually conflicting constraints. We find that the stable solutions are generally not the globally best solution, but reasonably close to it. All the stable solutions form a special sub-set of the meta-stable states, obeying interesting scaling laws. Both numerical and analytical tools are used to derive our results.Comment: 6 pages, revtex, 3 figures. To appear in J. de Physique I, vol 7, No 12 (December

    Adjusting Prices in the Many-to-many Assignment Game

    Get PDF
    Starting with an initial price vector, prices are adjusted in order to eliminate the demand excess and at the same time to keep the transfers to the sellers as low as possible. In each step of the auction, to which sellers should those transfers be made (minimal overdemanded sets) is the key definition in the description of the algorithm. Such approach was previously used by several authors. We introduce a novel distinction by considering multiple sellers owing multiple identical objects and multiple buyers with a quota greater than one consuming at most one unit of each seller’s good. This distinction induces a necessarily more complicated construction of the overdemanded sets than the constructions existing in the literature, even in the simplest case of additive utilities considered here. As the previous papers, our mechanism yields the minimum competitive equilibrium price vector. A procedure to find the maximum competitive equilibrium price vector is also provided.matching; stable payoff; competitive equilibrium payoff; optimal stable payoff; lattice social costs; pure comparative vigilance; super-symmetric rule
    corecore