5 research outputs found

    Families of sequences with good family complexity and cross-correlation measure

    Full text link
    In this paper we study pseudorandomness of a family of sequences in terms of two measures, the family complexity (ff-complexity) and the cross-correlation measure of order \ell. We consider sequences not only on binary alphabet but also on kk-symbols (kk-ary) alphabet. We first generalize some known methods on construction of the family of binary pseudorandom sequences. We prove a bound on the ff-complexity of a large family of binary sequences of Legendre-symbols of certain irreducible polynomials. We show that this family as well as its dual family have both a large family complexity and a small cross-correlation measure up to a rather large order. Next, we present another family of binary sequences having high ff-complexity and low cross-correlation measure. Then we extend the results to the family of sequences on kk-symbols alphabet.Comment: 13 pages. Comments are welcome

    On the complexity of a family based on irreducible polynomials

    Get PDF
    Ahlswede, Khachatrian, Mauduit and Sárközyy introduced the f-complexity measure ("f" for family) in order to study pseudorandom properties of large families of binary sequences. So far several families have been studied by this measure. In the present paper I considerably improve on my earlier result in [7], where the f-complexity measure of a family based on the Legendre symbol and polynomials over Fp is studied. This paper also extends the earlier results to a family restricted on irreducible polynomials

    On the Collision Property of Chaotic Iterations Based Post-Treatments over Cryptographic Pseudorandom Number Generator

    Get PDF
    International audienceThere is not a proper mathematical definition of chaos, we have instead a quite big amount of definitions, each of one describes chaos in a more or less general context. Taking in account this, it is clear why it is hard to design an algorithm that produce random numbers, a kind of algorithm that could have plenty of concrete appliceautifat (anul)d bions. However we must use a finite state machine (e.g. a laptop) to produce such a sequence of random numbers, thus it is convenient, for obvious reasons, to redefine those aimed sequences as pseudorandom; also problems arise with floating point arithmetic if one wants to recover some real chaotic property (i.e. properties from functions defined on the real numbers). All this considerations are synthesized in the problem of the Pseudorandom number generators (PRNGs). A solution to these obstacles may be to post-operate on existing PRNGs to improve their performances, using the so-called chaotic iterations, i.e., specific iterations of a boolean function and a shift operator that use the inputted generator. This approach leads to a mathematical description of such PRNGs as discrete dynamical systems, on which chaos properties can be investigated using mathematical topology and measure theory. Such properties are well-formulated, and they allow us to characterize which functions improves the sensitivity to the seed, the expansivity, the ergodicity, or the topological mixing of the generator resulting from such a post-processing. Experience shows that choosing relevant boolean functions in these chaotic iterations improves the randomness of the inputted generator, for instance when considering the number of statistical tests of randomness passed successfully. If we focus on the cryptographical application of PRNGs, there are two main classical notions to be considered, namely collision and avalanche effect. In this article, we recall the chaotic properties of the proposed post-treatment and we study the collision property in families of pseudorandom sequences produced by this process
    corecore