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Abstract

Ahlswede, Khachatrian, Mauduit and Sárközy [1] introduced the

f -complexity measure (“f ” for family) in order to study pseudorandom

properties of large families of binary sequences. So far several families

have been studied by this measure. In the present paper I considerably

improve on my earlier result in [7], where the f -complexity measure

of a family based on the Legendre symbol and polynomials over Fp

is studied. This paper also extends the earlier results to a family

restricted on irreducible polynomials.

1 Introduction

Finite pseudorandom binary sequences play a crucial role in cryptogra-

phy, in particular they are used as key in the well-known and frequently used

Vernam-cipher. Thus it is an important problem to decide whether a given

binary sequence can be considered as a pseudorandom sequence or not. The

classical approach to characterize pseudorandomness is to use computational
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complexity. However this approach has certain weak points thus in 1997

Mauduit and Sárközy [13] introduced another quantitative and constructive

approach towards pseudorandomness, and they introduced certain measures

(called well-distribution and correlation measure of order ℓ) of pseudoran-

domness. See [13] for details. Since then many constructions have been

given for finite binary sequences possessing strong pseudorandom properties

in terms of these measures.

Moreover in the most applications one needs large families of sequences of

this type. Goubin, Mauduit and Sárközy [5] succeeded in constructing large

families of pseudorandom binary sequences with proved strong pseudorandom

properties. The construction studied by them was the following:

Construction 1.1 Let K ≥ 1 be an integer and p be a prime number. If

f ∈ Fp[x] is a polynomial with degree 1 ≤ k ≤ K and no multiple zero in Fp,

then define the binary sequence Ep(f) = Ep = (e1, . . . , ep) by

en =







(

f(n)
p

)

for (f(n), p) = 1

+1 for p | f(n).
(1.1)

Let F(K, p) denote the set of all sequences obtained in this way.

Indeed, first Hoffstein and Lieman [10] proposed the use of polynomials f

in (1.1) such that they are squarefree and neither even, nor odd, but they

did not prove anything on the pseudorandom properties of the corresponding

sequence Ep(f). Goubin, Mauduit and Sárközy proved that under certain

not too restrictive conditions on the polynomial f , the sequences constructed

in this way have strong pseudorandom properties. Since then many other

families have been constructed, but still this seems to be the most satisfactory

construction.

In many applications of cryptography it is not enough to know that the

family contains many binary sequences with strong pseudorandom properties;
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it is also important that the family has a “rich”, “complex” structure, there are

many “independent” sequences in it. Ahlswede, Khachatrian, Mauduit and

Sárközy [1] introduced the notion of f -complexity (“f ” for family) defined in

the following way:

Definition 1.1 If N, j ∈ N, j ≤ N , (ε1, ε2, . . . , εj) ∈ {−1,+1}j, i1, i2, . . . , ij

are integers with 1 ≤ i1 < i2 < · · · < ij ≤ N and EN = (e1, e2, . . . , eN) ∈

{−1,+1}N is a binary sequence such that

ei1 = ε1, ei2 = ε2, . . . , eij = εj, (1.2)

then we say that the sequence EN satisfies the specification (1.2).

Definition 1.2 The f -complexity of a family F of binary sequences EN ∈

{−1,+1}N is defined as the greatest integer j so that for any specification

(1.2) there is at least one EN ∈ F which satisfies it. The f -complexity of F

is denoted by Γ(F ). (If there is no j ∈ N with the property above, then we

set Γ(F) = 0.)

As it was shown in [1] we have:

Proposition 1.A (Ahlswede, Khachatrian, Mauduit, Sárközy)

Γ(F) ≤
log |F|

log 2
.

From the opposite side it was shown in [1]:

Theorem 1.A (Ahlswede, Khachatrian, Mauduit, Sárközy)

Γ(F(K, p)) ≥ K. (1.3)

By Proposition 1.A it is clear that

|Γ(F(K, p)| ≤
log |F(K, p)|

log 2
≤

K

log 2
log p+ 1. (1.4)
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The family complexity measure have been studied in several papers [2],

[3], [4], [7], [8], [9], [12], [14], [16].

In [7] I improved on the bound (1.3) and proved the following:

Theorem 1.B

Γ(F(K, p)) ≥
K − 1

2 log 2
log p−O(K log(K log p)). (1.5)

We remark that for K = 1 we also have Γ(F(K, p)) ≫ log p, which result

also follows from the proof of Theorem 1.B, or earlier, from Exercises 5.63 and

5.64 in Lidl and Niederreiter’s book [11] (see below Lemma 3.1 and Lemma

3.2).

In this paper, answering a question of Gábor Halász I will prove a sharp-

ening of my result Theorem 1.B: By (1.4) the bound in (1.5) is optimal apart

from constant factor only for K ≤ p1/2. However in certain applications it is

also important that we can achieve the optimal bound for families F(K, p)

for larger K’s. In order to achieve this I will restrict F(K, p) for a certain

subfamily of it which contains sequences with even stronger pseudorandom

properties but its f -complexity measure is still optimal even for K values

much greater than the ones considered in [1], [5] and [7]. I propose the use

of irreducible polynomials:

Definition 1.3 Define Ep(f) by (1.1). Let

Firred(k, p) = {Ep(f) : f is monic irreducible polynomial over Fp,

deg f = k}

The following proposition is an easy consequence of the proof of Theorem

1 in [5], and a stronger form of it is proved in Theorem 4 in [6].

Proposition 1.B For Ep ∈ Firred(k, p) we have

W (Ep) < 10kp1/2 log p,

Cℓ(Ep) < 10kℓp1/2 log p,
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where the definitions of W and Cℓ can be found in [13].

In the present paper I will prove that the f -complexity measure of

Firred(k, p) is optimal apart from constant factor:

Theorem 1.1 Let p ≥ 19 be a prime and k be an integer. Define c = 1/2 if

k ≤ p1/4

10 log p
and c = 5/2 if k > p1/4

10 log p
then

Γ(Firred(k, p)) ≥ min

{

p,
k − c

2 log 2
log p

}

. (1.6)

This theorem shows that Firred(k, p) can be very useful in the applica-

tions: By Proposition 1.B for k = o( p
1/2

log p
) every sequence in it has strong

pseudorandom properties and by Theorem 1.1 for every k it has optimal

f -complexity measure. Since F(K, p) ⊃ Firred(K, p) thus we also have

Corollary 1.1 Let p ≥ 19 be a prime and K be an integer. Define c = 1/2

if K ≤ p1/4

10 log p
and c = 5/2 if K > p1/4

10 log p
then

Γ(F(K, p)) ≥ min

{

p,
K − c

2 log 2
log p

}

.

This theorem considerably improves on Theorem 1.B and it is optimal

apart from constant factor for every K and not only for small K’s.

Acknowledgements. I would like to thank professors Gábor Halász and

Harald Niederreiter for their valuable advice.

2 Auxiliary lemmas

In the proof of Theorem 1.1 we will need some lemmas on finite fields,

these lemmas can be proved relatively easily, one or two of them can be

considered as folklore. For the sake of completeness of the paper I will present

the proofs of all these lemmas.

Let q be a prime power and denote Fq the finite field with q elements.
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Definition 2.1 For α ∈ Fqn the norm NFqn/Fq(α) of α over Fq is defined by

NFqn/Fq(α) = α · αq · αq2 · · ·αqn−1

= α(qn−1)/(q−1).

Then NFqn/Fq(α) is always an element of Fq.

Definition 2.2 A generator of the cyclic group F
∗
q is called a primitive ele-

ment of Fq.

Lemma 2.1 Suppose that g is a primitive element of Fqn. Then NFqn/Fq(g)

is a primitive element of Fq.

Proof of Lemma 2.1. Let h = NFqn/Fq(g). Then h ∈ Fq. So

1, h, h2, . . . , hq−2 ∈ Fq. Here

1 = g0, h = g(q
n−1)/(q−1), h2 = g2(q

n−1)/(q−1), . . . , hq−2 = g(q−2)(qn−1)/(q−1).

Since the exponents 0, (qn − 1)/(q − 1), 2(qn − 1)/(q − 1), . . . , (q − 2)(qn −

1)/(q−1) are between 0 and qn−2 and they are distinct and g is a primitive

elements of Fqn we get 1, h, h2, . . . , hq−2 are distinct. Thus h = NFqn/Fq(g) is

a primitive element of Fq.

Let g be a fixed primitive element of Fq. For each j = 0, 1, 2, . . . , q − 2

the function

χj(g
k) = e2πjk/(q−1)

defines a multiplicative character of Fq, and every multiplicative character of

Fq is obtained in this way.

The order of a character χ of Fq is the smallest positive integer m such

that χm(a) = 1 for all a ∈ F
∗
q. Clearly, for all multiplicative character χ of

order d there exists an integer 0 ≤ j ≤ d− 1 such that

χ(gk) = e2πjk/d.
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Lemma 2.2 Let χ be a multiplicative character of Fqn whose order is d and

suppose that d | q− 1 holds. Then there is a multiplicative character χ′ of Fq

of order d such that for every α ∈ Fqn we have

χ(α) = χ′(NFqn/Fq(α)).

Proof of Lemma 2.2. Let g be a primitive element of Fqn. Then by

Lemma 2.1 we have h
def
= NFqn/Fq(g) = g(q

n−1)/(q−1) is a primitive element of

Fq. Since χ is a multiplicative character of Fqn of order d there exists an

integer 0 ≤ j ≤ d− 1 such that

χ(gk) = e2πjk/d.

Define the multiplicative character χ′ of Fq of order d by

χ′(hk)
def
= e2πjk/d.

Write α ∈ F
∗
qn of the form gk. Then

χ′(NFqn/Fq(α)) = χ′(α(qn−1)/(q−1)) = χ′(gk(q
n−1)/(q−1)) = χ′(hk) = e2πijk/d

= χ(gk) = χ(α)

and this completes the proof of Lemma 2.2.

Corollary 2.1 Let p be a prime number and
(

·
p

)

be the Legendre symbol.

Denote by γ the quadratic character of Fpn. Then for α ∈ F
∗
pn we have

γ(α) =

(

NFpn/Fp(α)

p

)

.

Definition 2.3 Suppose that

f(x) = akx
k + ak−1x

k−1 + · · ·+ a0 ∈ Fqn[x].

Define for 0 ≤ s ≤ n− 1

τs(f)(x)
def
= aq

s

k xk + aq
s

k−1x
k−1 + · · ·+ aq

s

0 ∈ Fqn [x]

and let

NFqn/Fq(f)
def
= τ0(f) · τ1(f) · τ2(f) · · · τn−1(f) ∈ Fqn[x].
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By using these definitions it is clear that for f, g ∈ Fqn[x]

τs(fg) = τs(f) · τs(g)

and so

NFqn/Fq(fg) = NFqn/Fq(f) · NFqn/Fq(g). (2.1)

Lemma 2.3 If f ∈ Fqn [x] then NFqn/Fq(f) ∈ Fq[x].

Proof of Lemma 2.3. First we prove the lemma for monic irreducible

polynomials. Let f ∈ Fqn [x] be a monic irreducible polynomial of degree k

and let ε a root of it. Then

f(x) = (x− ε)(x− εq
n

)(x− εq
2n

) · · · (x− εq
(k−1)n

)

(see e.g. Theorem 2.14 in [11]). Clearly

ε ∈ Fqnk .

We have

τs(f)(x) = (x− εq
s

)(x− εq
n+s

)(x− εq
2n+s

) · · · (x− εq
(k−1)n+s

) (2.2)

and

NFqn/Fq(f)(x) =
k−1
∏

i=0

n−1
∏

s=0

(x− εq
in+s

) =
kn−1
∏

j=0

(x− εq
j

). (2.3)

Since ε ∈ Fqnk , the conjugates of ε with respect to Fq are ε, εq, εq
2
, . . . , εq

kn−1
.

By this and (2.3) we have NFqn/Fq(f) ∈ Fq[x].

Next we prove Lemma 2.3 for arbitrary polynomial f ∈ Fqn[x]. Write f

as a product of monic irreducible polynomials

f = a · g1 · g2 · · · gr

where a ∈ Fqn and gi ∈ Fqn[x]’s are monic irreducible polynomials. Then by

(2.1)

NFqn/Fq(f) = NFqn/Fq(a) · NFqn/Fq(g1) · NFqn/Fq(g2) · · ·NFqn/Fq(gr).
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Since gi’s are monic irreducible polynomials NFqn/Fq(gi) ∈ Fq[x] from which

NFqn/Fq(f) ∈ Fq[x] follows.

Lemma 2.4 Let f ∈ Fqn[x]. Then for a ∈ Fq we have

NFqn/Fq(f(a)) = NFqn/Fq(f)(a).

Proof of Lemma 2.4. By aq = a we have τs(f)(a) = (f(a))q
s
. From this

the lemma follows.

Lemma 2.5 Suppose that f ∈ Fqn [x] is a monic polynomial and for t | n,

t < n we have f /∈ Fqt [x]. Then the following two statements are equivalent:

(i) f is irreducible over Fqn.

(ii) NFqn/Fq(f) is irreducible over Fq.

Lemma 2.5 shows a natural connection between irreducibility over Fqn

and Fq.

Proof of Lemma 2.5. (ii) ⇒ (i): Suppose that NFqn/Fq(f) is irreducible

over Fq and we will prove that f is also irreducible over Fqn . Indeed, if f is

not irreducible over Fqn then f can be written of the form

f = g1g2

over Fqn where deg g1, deg g2 ≥ 1. By (2.1)

NFqn/Fq(f) = NFqn/Fq(g1) · NFqn/Fq(g2).

over Fq, so NFqn/Fq(f) is not irreducible over Fq, which is a contradiction.

(i) ⇒ (ii): Suppose that f is irreducible over Fqn and we will prove that

NFqn/Fq(f) is irreducible over Fq. Indeed, let ε a root of f . Then

ε ∈ Fqnk ,
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where k = deg f . Here the conjugates of ε with respect to Fq are

ε, εq
1
, εq

2
, . . . , εq

kn−1
. Let m ∈ Fq[x] be the minimal polynomial of ε over

Fq and let

d = degm.

Then m is irreducible over Fq. By [11, page 53] the conjugates

ε, εq
1
, εq

2
, . . . , εq

kn−1
are the distinct elements ε, εq

1
, εq

2
, . . . , εq

d−1
, each is re-

peated by (kn)/d times. We also have

ε ∈ Fqd (2.4)

and

εq
d

= ε. (2.5)

Then

m(x) =

d−1
∏

j=0

(x− εq
j

), (2.6)

and

NFqn/Fq(f) = mkn/d. (2.7)

Since d | kn we have d
(n,d)

| k and thus

k(n, d)/d is an integer.

Since f is irreducible over Fqn and ε is a root of it we have

f(x) =
k−1
∏

j=0

(x− εq
jn

).

Using (2.5) and the fact that the congruence

jn ≡ a (mod d), 0 ≤ j ≤ k − 1

is solvable in j if and only if (d, n) | a and then the number of solutions is

k(n, d)/d we have

f(x) =





d/(n,d)−1
∏

ℓ=0

(x− εq
ℓ(n,d)

)





k(n,d)/d

.
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Let

h(x) =

d/(n,d)−1
∏

ℓ=0

(x− εq
ℓ(n,d)

).

Then

f = hk(n,d)/d. (2.8)

By (2.4) ε ∈ Fqd and its conjugates respect with Fq(n,d) are

ε, εq
(n,d)

, εq
2(n,d)

, . . . , εq
(d/(n,d)−1)(n,d)

. Thus h ∈ Fq(n,d)[x]. By (2.8) we have

f ∈ Fq(n,d)[x]. By the conditions of the lemma f /∈ Fqt[x] for t | n, t < n thus

we have (n, d) = n, so

n | d. (2.9)

By definition and (2.7)

NFqn/Fq(f) = τ0(f) · τ1(f) · τ2(f) · · · τn−1(f) = mkn/d.

Since f is irreducible over Fqn, clearly τ0(f), τ1(f), τ2(f) . . . τn−1(f) are also

irreducible over Fqn thus

m = τa1(f) · τa2(f) · · · τas(f) (2.10)

over Fqn where 0 ≤ a1 < a2 < · · · < as ≤ n− 1. Here (similarly to (2.2)) we

have

τai(f)(x) = (x− εq
ai )(x− εq

n+ai )(x− εq
2n+ai ) · · · (x− εq

(k−1)n+ai ).

Thus by this, (2.6) and (2.10) we have

d−1
∏

j=0

(x− εq
j

) =
s
∏

i=1

k−1
∏

ℓ=0

(x− εq
ℓn+ai ).

Thus the set

{ℓn + ai : 0 ≤ ℓ ≤ k − 1, i = 1, 2, . . . , s}

forms a complete residue system modulo d. By (2.9) we have that

{a1, a2, . . . , as} contains a complete residue system modulo n. But since
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0 ≤ a1 < a2 < · · · < as ≤ n − 1 this is possible only for {a1, a2, . . . , as} =

{0, 1, 2, . . . , n− 1}. Then

m = τ0(f) · τ1(f) · τ2(f) · · · τn−1(f) = NFqn/Fq(f),

which means that the polynomial NFqn/Fq(f) is irreducible over Fq since the

minimal polynomial m is irreducible over Fq.

Definition 2.4 Denote Gqn the following elements of Fqn:

Gqn = {α ∈ Fqn : ∃ t | n, t < n such that α ∈ Fqt ⊂ Fqn}.

Lemma 2.6

|Gqn | ≤ 2qn/2

Proof of Lemma 2.6. Let bn = 1 if n is even and bn = 0 if n is odd.

Clearly:

|Gn| ≤
∑

t|n, t<n

qt ≤ bnq
n/2 +

∑

t|n, t≤n/3

qt ≤ bnq
n/2 +

[n/3]
∑

t=1

qt ≤ 2qn/2.

3 Proof of Theorem 1.1

Let

1 ≤ j ≤ min

{

p,
k − c

2 log 2
log p

}

. (3.1)

Suppose that 1 ≤ i1 < i2 < · · · < ij ≤ p and ε1, ε2, . . . , εj ∈ {−1,+1},

we will prove that there exists a monic irreducible polynomial g ∈ Fp[x] of

degree k such that

(

g(is)

p

)

= εs for s = 1, 2, . . . , j.

From this (1.6) follows.

We will use the following lemmas due to Lidl and Niederreiter [11]:
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Lemma 3.1 Let i1, i2, . . . ij be j distinct elements of Fpk , p odd, and let

ε1, . . . , εj ∈ {−1,+1}. Let N(ε1, . . . , εj) denote the number of α ∈ Fpk with

γ(α+ is) = εs for s = 1, 2, . . . , j,

where γ is the quadratic character Fpk. Then

N(ε1, . . . , εj) =
1

2j

∑

a∈F
pk

(1 + ε1γ(a + i1)) · · · (1 + εjγ(a+ ij))− A

where 0 ≤ A ≤ j/2.

Lemma 3.2
∣

∣

∣

∣

N(ε1, . . . , εj)−
pk

2j

∣

∣

∣

∣

≤

(

j − 2

2
+

1

2j

)

pk/2 +
j

2
.

These lemmas are Exercises 5.63 and 5.64 in [11] (the proof of Lemma

3.2 is based on the famous Weil theorem [15]).

Define N(ε1, . . . , εj) as in Lemma 3.1. Using (3.1), Lemma 3.2 and the

triangle-inequality we get

N(ε1, . . . , εj) ≥
pk

2j
−

(

j − 2

2
+

1

2j

)

pk/2 −
j

2
≥

pk

2j
−

j − 1

2
pk/2 −

j

2

≥
pk

2j
−

j

2
pk/2 ≥

(

pc/2 −
j

2

)

pk/2. (3.2)

Since c = 1/2 if k ≤ p1/4

10 log p
and c = 5/2 if k > p1/4

10 log p
, for k ≤ p1/4

10 log p
by (3.1)

we get

pc/2pk/2 −
j

2
≥ p1/4 −

k log p

4 log 2
≥

(

1−
1

40 log 2

)

p1/4 > 2,

while for k > p1/4

10 log p
we get

pc/2pk/2 −
j

2
≥ p5/4 −

p

2
> 2.

By this, (3.2) and Lemma 2.6 we get

N(ε1, . . . , εj) > 2pk/2 ≥
∣

∣

∣
GF

pk

∣

∣

∣
.

13



Using this and the definition of N(ε1, . . . , εj) we get there exists α ∈

Fpk \ Gpk such that

γ(α + is) = εs for s = 1, 2, . . . , j. (3.3)

Let

f(x) = x+ α ∈ Fpk [x].

By α ∈ Fpk \ Gpk we get that f /∈ Fpt [x] for t | k, t < k. Using Lemma 2.5 we

get

g
def
= NF

pk
/Fp(f) ∈ Fp[x]

is irreducible over Fp, and its degree is k. Using (3.3), Corollary 2.1 and

Lemma 2.4 we get

εs = γ(α + is) = γ(f(is)) =

(

NF
pk

/Fp(f(is))

p

)

=

(

NF
pk

/Fp(f)(is)

p

)

=

(

g(is)

p

)

for s = 1, 2, . . . , j,

which was to be proved.
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