8,429 research outputs found

    A Quantum Algorithm for the Sub-Graph Isomorphism Problem

    Full text link
    We propose a novel variational method for solving the sub-graph isomorphism problem on a gate-based quantum computer. The method relies (1) on a new representation of the adjacency matrices of the underlying graphs, which requires a number of qubits that scales logarithmically with the number of vertices of the graphs; and (2) on a new Ansatz that can efficiently probe the permutation space. Simulations are then presented to showcase the approach on graphs up to 16 vertices, whereas, given the logarithmic scaling, the approach could be applied to realistic sub-graph isomorphism problem instances in the medium term.Comment: 30 pages, 14 figure

    Non-Local Probes Do Not Help with Graph Problems

    Full text link
    This work bridges the gap between distributed and centralised models of computing in the context of sublinear-time graph algorithms. A priori, typical centralised models of computing (e.g., parallel decision trees or centralised local algorithms) seem to be much more powerful than distributed message-passing algorithms: centralised algorithms can directly probe any part of the input, while in distributed algorithms nodes can only communicate with their immediate neighbours. We show that for a large class of graph problems, this extra freedom does not help centralised algorithms at all: for example, efficient stateless deterministic centralised local algorithms can be simulated with efficient distributed message-passing algorithms. In particular, this enables us to transfer existing lower bound results from distributed algorithms to centralised local algorithms

    Crossing the Logarithmic Barrier for Dynamic Boolean Data Structure Lower Bounds

    Full text link
    This paper proves the first super-logarithmic lower bounds on the cell probe complexity of dynamic boolean (a.k.a. decision) data structure problems, a long-standing milestone in data structure lower bounds. We introduce a new method for proving dynamic cell probe lower bounds and use it to prove a Ω~(log1.5n)\tilde{\Omega}(\log^{1.5} n) lower bound on the operational time of a wide range of boolean data structure problems, most notably, on the query time of dynamic range counting over F2\mathbb{F}_2 ([Pat07]). Proving an ω(lgn)\omega(\lg n) lower bound for this problem was explicitly posed as one of five important open problems in the late Mihai P\v{a}tra\c{s}cu's obituary [Tho13]. This result also implies the first ω(lgn)\omega(\lg n) lower bound for the classical 2D range counting problem, one of the most fundamental data structure problems in computational geometry and spatial databases. We derive similar lower bounds for boolean versions of dynamic polynomial evaluation and 2D rectangle stabbing, and for the (non-boolean) problems of range selection and range median. Our technical centerpiece is a new way of "weakly" simulating dynamic data structures using efficient one-way communication protocols with small advantage over random guessing. This simulation involves a surprising excursion to low-degree (Chebychev) polynomials which may be of independent interest, and offers an entirely new algorithmic angle on the "cell sampling" method of Panigrahy et al. [PTW10]

    Symmetrization for Quantum Networks: a continuous-time approach

    Get PDF
    In this paper we propose a continuous-time, dissipative Markov dynamics that asymptotically drives a network of n-dimensional quantum systems to the set of states that are invariant under the action of the subsystem permutation group. The Lindblad-type generator of the dynamics is built with two-body subsystem swap operators, thus satisfying locality constraints, and preserve symmetric observables. The potential use of the proposed generator in combination with local control and measurement actions is illustrated with two applications: the generation of a global pure state and the estimation of the network size.Comment: submitted to MTNS 201

    Improved Approximation Algorithms for Stochastic Matching

    Full text link
    In this paper we consider the Stochastic Matching problem, which is motivated by applications in kidney exchange and online dating. We are given an undirected graph in which every edge is assigned a probability of existence and a positive profit, and each node is assigned a positive integer called timeout. We know whether an edge exists or not only after probing it. On this random graph we are executing a process, which one-by-one probes the edges and gradually constructs a matching. The process is constrained in two ways: once an edge is taken it cannot be removed from the matching, and the timeout of node vv upper-bounds the number of edges incident to vv that can be probed. The goal is to maximize the expected profit of the constructed matching. For this problem Bansal et al. (Algorithmica 2012) provided a 33-approximation algorithm for bipartite graphs, and a 44-approximation for general graphs. In this work we improve the approximation factors to 2.8452.845 and 3.7093.709, respectively. We also consider an online version of the bipartite case, where one side of the partition arrives node by node, and each time a node bb arrives we have to decide which edges incident to bb we want to probe, and in which order. Here we present a 4.074.07-approximation, improving on the 7.927.92-approximation of Bansal et al. The main technical ingredient in our result is a novel way of probing edges according to a random but non-uniform permutation. Patching this method with an algorithm that works best for large probability edges (plus some additional ideas) leads to our improved approximation factors
    corecore