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Abstract

In this paper we propose a continuous-time, dissipative Markov dynamics that asymp-
totically drives a network of n-dimensional quantum systems to the set of states that are
invariant under the action of the subsystem permutation group. The Lindblad-type gen-
erator of the dynamics is built with two-body subsystem swap operators, thus satisfying
locality constraints, and preserve symmetric observables. The potential use of the pro-
posed generator in combination with local control and measurement actions is illustrated
with two applications: the generation of a global pure state and the estimation of the
network size.

1 INTRODUCTION

Classical consensus algorithms and the related distributed control problems have recently
generated an impressive body of literature, motivated by applications in distributed com-
putation and multi-agent coordination, see e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9]. We have recently
recast the problem, and a class of algorithms for its solution, as a dynamical symmetriza-
tion problem in a group-theoretic framework [10]. This allows to extend the use of simple
and robust algorithms, e.g. of gossip type [11], to new settings and applications. Among
these, we have studied a quantum version of consensus problems and its applications [12],
which can be seen as symmetrization with respect to the subsystem-permutation group, as
well as control methods like quantum dynamical decoupling [13], in which we generally do
not have a multipartite structure and symmetrization is attained with respect to other finite
groups. The emerging dynamics are intrinsically in discrete time, and suitable for sequential
implementation in dissipative quantum simulators [14].
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In this work, we extend the same line of research to continuous-time dynamics bound to
satisfy some locality constraint. This is done in the same spirit as [15, 16], and connects with
the idea of dissipative quantum computation in continuous time [17].

Enforcing symmetrization using continuous quantum dynamical semigroups requires dif-
ferent tools and provides specific results that complement the discrete-time results. So, while
the general symmetrization viewpoint of [10] still applies, the formulation/implementation
and evolution of the associated dynamics brings up some practically relevant novelties. A
particularly attractive feature is that a continuous-time algorithm can implement several
driving influences simultaneously on a single subsystem, which will allow us to apply diverse
symmetrizing actions in some sense “in parallel”; in the discrete-time case, on the other
hand, a single quasi-local action must be selected at each step (therefore the gossip type
approach). This could lead to an advantage in convergence time and additional robustness
for settings in which continuous-time implementations with many parallel actions could be
viable. This property is in agreement with our quest for a robust, flexible way of asymptot-
ically controlling a quantum network towards a target state. However, when working with
accurately-engineered dynamics in a well-known network, discrete-time operation in principle
offers the possibility of designing algorithmic procedures with finite-time convergence while in
the continuous setting the convergence is necessarily asymptotic. The same type of difference
emerges in the effort of engineering entangled states on quantum networks [18].

In this paper we propose a class of continuous-time Quantum Dynamical Semigroup (QDS)
generators that achieve symmetrization under strict locality constraints. We prove the con-
vergence of the dynamics and completely characterize its asymptotic behavior. For this
conference session we restrict our scope to symmetrization with respect to subsystem permu-
tations in a network. Our promising results in this direction should suggest how to transpose
more general settings [10] to continuous-time operations, and stimulate the search for new
compelling applications for continuous symmetrizing dynamics.

The paper is organized as follows. Section II introduces the reader to the model for
the quantum network, the dynamics and the locality notion. The symmetrizing dynamics is
introduced in Section III, where we also prove its convergence properties. Lastly, some control
motivated applications are proposed in Section IV.

2 PRELIMINARIES

2.1 Multipartite Quantum Systems and their Symmetric States

In quantum theory, each locally-accessible quantum system is associated to a Hilbert space,
and a representation for a global system containing more than one subsystem is obtained by
constructing a (larger) Hilbert space which is the tensor product of those corresponding to
its constituents1. For any Hilbert space H, let B(H) represent the set of linear operators
on H, U(H) the unitary ones and H(H) the self-adjoint ones; the latter characterize physical
observables.

In this paper, we consider a multipartite system composed ofm identical finite-dimensional
subsystems, labeled with indices i = 1, . . . ,m and with individual Hilbert spaces Hi ≃ H,
dim(Hi) = dim(H) = n > 2. This multipartite system will represent our quantum network,

1In the following sections we shall use Dirac’s notation [19], as it customary in the quantum control litera-
ture: |ψ〉 will denote an element of H and 〈ψ| a dual vector, i.e. linear functional on H



with associated Hilbert space H⊗m := H1 ⊗ · · · ⊗ Hm. A state of the network is charac-
terized by a density operator on H⊗m, namely the state space is the set D(H⊗m) = {ρ ∈
H(H⊗m)|ρ is positive semidefinite and Tr(ρ) = 1.}.

For any operator X ∈ B(H), we will denote by X⊗m the tensor product X⊗X⊗ ...⊗X ∈
B(H⊗m) with m factors, and by X(i) ∈ B(H⊗m) the operator X acting only on the i-th
subsystem:

X(i) := I⊗(i−1) ⊗X ⊗ I⊗(m−i).

Operators of this form will be referred to as strictly local operators.
An important class of operators, which plays a central role in our work, is the class of

operators which are invariant with respect to all subsystem permutations. Let us denote
the set of all permutations of the first m integers by Pm, and e ∈ Pm be the trivial one.
Permutations of quantum subsystems are represented by unitary operators Uπ ∈ U(H⊗m),
π ∈ Pm, which are uniquely defined by

Uπ(X1 ⊗ . . .⊗Xm)U †
π = Xπ(1) ⊗ . . . ⊗Xπ(m)

for any operators X1, . . . Xm in B(H). A state ρ ∈ D(H⊗m) or observable Q ∈ B(H⊗m)
is permutation invariant if and only if it commutes with all the subsystem permutations,
i.e. UπQU

†
π = Q or ρ = UπρU

†
π for all π ∈ Pm. Given any observable Q ∈ H(H⊗m),

we can obtain a permutation invariant observable Q̄ by considering a projection of Q onto
the permutation-invariant set. By using basic group properties, one shows that [12, 10]
the orthogonal projection with respect to the Hilbert-Schmidt inner product 〈X1,X2〉 =

Tr(X†
1X2) takes the form:

Q̄ = Ē(Q) :=
1

m!

∑

π∈Pm

UπQU
†
π . (1)

This is a completely positive trace-preserving (CPTP) map.

2.2 Continuous-time Quantum Dynamical Semigroups

In this work we will consider finite-dimensional, time-homogenous Markovian dynamics [20,
21]. These correspond to continuous Quantum Dynamical Semigroups (QDSs) of CPTP
maps, whose generator can always be expressed in the form (~ ≡ 1):

L(ρ(t)) = −i[H, ρ(t)] +
∑

k

(

Lkρ(t)L
†
k −

1

2
{L†

kLk, ρ(t)}
)

, (2)

with notations [A,B] = AB − BA and {A,B} = AB + BA. The QDS is thus obtained by
formal exponentiation of L, ρt = eLtρ, and L is uniquely determined by the Hamiltonian
H = H† and the set of Lindblad operators {Lk}.

We are interested in the asymptotic behavior of QDSs in which the operators H, {Lk}
satisfy locality constraints. Hence, we shall allow these semigroup generators to act in a non-
trivial way only on certain predefined subsets of subsystems, which are called neighborhoods
Nj, j = 1, . . . ,M [15, 16, 12]. These can be specified as subsets of the set of indices labeling
the subsystems:

Nj ⊆ {1, . . . , n}, j = 1, . . . ,M.



In analogy with the strictly local case and following [15], we call a Lindblad operator Lk

Quasi-Local (QL) if there exists a neighborhood Nj such that:

Lk = LNj
⊗ IN̄j

,

where LNj
accounts for the action of L on the subsystems included inNj, and IN̄j

:=
⊗

a/∈Nj
Ia

is the identity on the remaining subsystems. Similarly, a Hamiltonian is QL if it admits a
decomposition into a sum of QL terms:

H =
∑

j

Hj, Hj = HNj
⊗ IN̄j

.

A QDS generator (2) will be called QL if its Hamiltonian and all its Lindblad operators are
QL. The different definitions of QL for Hamiltonian and Lindblad operators is intrinsic to the
way they enter the dynamics — linearly for the former and as a convex sum of quadratic terms
for the latter. While the decomposition into Hamiltonian and dissipative part of the generator
L is not unique, the QL property is well defined since the freedom in the representation does
not affect the tensor (locality) structure of H and {Lk}.

This way of introducing locality constraints allows us to cover a number of specific locality
definitions of interest in quantum condensed matter and quantum information applications,
including nearest-neighbor interaction on a graph or lattice, and/or QL Hamiltonian compo-
nents and noise generators that act non-identically on a number of no more than t subsystems
(so-called t-body interactions).

3 DISTRIBUTED SYMMETRIZING DYNAMICS

3.1 The Task

The problem we aim to address, which can be seen as a stabilization problem, is the following:
Given a multipartite system as in Section 2.1 and a fixed locality notion associated to

a neighborhood structure {Nj}, find a QL generator L of the form (2) such that for every
ρ ∈ D(H⊗m) we have

lim
t→∞

eLtρ = Ē(ρ) =
1

m!

∑

π∈P

U †
πρUπ . (3)

3.2 Main Result: Algebraic Approach

We shall obtain our symmetrizing QDS as a particular case of a more general construction.
Consider a QDS generator

LU (ρ(t)) =
∑

k

αk

(

Ukρ(t)U
†
k −

1

2
{U †

kUk, ρ(t)}
)

, (4)

with αk > 0 for each k; that is, a generator associated to a null Hamiltonian and a set of
Lindblad operators that are unitary, {Uk} ⊂ U(H⊗m). This generator is in particular unital,
i.e. it preserves the identity. Consider LU as acting on the whole B(H⊗m), and not only on
the density operators. The following holds.



Lemma 1 The set of fixed points of LU corresponds to the commutant A’ of the algebra
generated by the {Uk}:

A′ = {X ∈ B(H⊗m)|XUk = UkX,∀k}. (5)

Proof: Notice that (4), thanks to the unitary character of the noise operators, boils down to
the simple form:

LU (X) =
∑

k

αk(UkXU
†
k −X) , (6)

and hence LU (X) = 0 if and only if X is a fixed point of the unital CPTP map EU (X) =
∑

k αk UkXU
†
k . It has been shown in e.g. [22, 23] that the set of invariant points for such

unital CPTP maps is the commutant of the operators entering its representation. �

In order to construct an effective generator for our task with locality constraints, it is
convenient to recall that the full permutation group is generated by the set of pairwise trans-
positions restricted to the edges of any spanning tree connecting the subsystems. More
generally: if the neighborhood structure covers the whole network, and there does not exist a
(nontrivial) partition of the neighborhoods into groups with non-overlapping supports, then
it is easy to show that the set of all the transpositions allowed by this locality notion is suf-
ficient to generate the whole permutation group. One proves this easily by noting that the
corresponding set of all transpositions includes in particular a set of pairwise transpositions
along a spanning tree. This observation motivates the construction of Lindblad operators
implementing swaps of neighboring subsystem states.

Consider LU to be associated to allowed subsystem swap operations: denoting by PNj
⊂

Pm the set of all permutations that involve the integers labeling subsystems in Nj only, we
take

{Uk} ⊂ {Uπ | ∃j such that π ∈ PNj
} . (7)

Building on the previous result, we can give the following characterization of invariant
sets:

Proposition 1 Consider a generator of the form (4), with {Uk} chosen as in (7). Then the
set of fixed points for the associated dynamics (4) is the set of permutation-invariant states
if and only if {Uk} generates the full permutation group.
Moreover, the dynamics keeps ĒXt = ĒX0 invariant for all t and all X0 ∈ B(H⊗m).

Proof: The ‘if’ case (assuming that {Uk} generate the full permutation group) is a direct
consequence of Lemma 1, the set of fixed points is the set of permutation-invariant states.
On the other hand, if the {Uk} generate a proper subgroup of the permutation group, then
the invariant set under (4) will, according to Lemma 1, contain all states that are invariant
under the subsystem permutations from that subgroup. By definition of a subgroup and of
the action of permutations on B(H⊗m), this includes states that are not invariant under some
π ∈ Pm.

By using basic group properties2 it is easy to see that:

Ē(LU (X)) = LU (Ē(X))

2In particular, for each selected permutation π1 in LU , the sum in Ē runs over all π1 π with π ∈ Pm, which
is just the same as over all π ∈ Pm.



for all X ∈ B(H⊗m). This readily implies

Ē(eLU tρ) = eLU tĒ(ρ) = Ē(ρ) ,

where in the last equality we used the fact that Ē(·) projects on the set of fixed points. �

In the case where the Uk only comprise pairwise swaps, the transposition matrices Uk

are Hermitian, and the same holds for the (super-)operator LU . If moreover the αk are time-
invariant, then the real spectrum of LU allows us to conclude that the set of fixed points
coincides with the globally asymptotic stable set [24], and we conclude that (3) indeed holds.
However, a more general result can be established to highlight the robustness of quantum
symmetrization.

3.3 Extension via a Lyapunov Approach

We want to establish the convergence property of the QDS generator (4),(7) under general
conditions that remind classical consensus: the αk (and the allowed neighborhoods) can be
time-varying, and the local permutation operators that are included may involve more than
pairwise swaps. The latter setting is probably less attractive in practice, as pairwise physical
interactions would be sufficient and probably the easiest to implement. However, this would
indeed give rise to the possibility of implementing any balanced graph in the quantum setting,
and not just undirected graphs.

For balanced graphs, it is known in classical consensus theory [25] that several Lyapunov
functions can be used to prove convergence independently of the αk. In this section, we
propose two Lyapunov functions to show that indeed (4),(7) achieve our goal (3) under similar
conditions, and much more: any dynamics of that form converges to the set of operators that
are invariant with respect to the group generated by the unitary Lindblad operators. The first
one is the Hilbert-Schmidt distance between ρt and its symmetrized image, while the second
one uses a relative entropy distance between the propagator and the symmetrizing projector
via a suitable lift of the dynamics.

Proposition 2 The Hilbert-Schmidt distance to consensus V (ρ) = 1
2Tr

(

(ρ− Ē(ρ))2
)

is a
strict Lyapunov function for (4) with respect to the set of its fixed points, for any neighborhood
specifications and αk > 0.

Proof: We have

dV

dt
(ρ) = Tr

(

(ρ− Ē(ρ))(dρdt − Ē(dρdt ))
)

=
∑

k

αk Tr
(

(ρ− Ē(ρ))

(UkρU
†
k − ρ− Ē(UkρU

†
k) + Ē(ρ))

)

= −
∑

k

αk Tr
(

ρ(ρ− UkρU
†
k)
)

= −
∑

k

αk Tr
(

(ρ− UkρU
†
k)

2 /2
)

.



The first equality is obtained by linearity; the third equality uses that, from the observation
of footnote 1, it follows that Ē(UkρU

†
k) = Ē(ρ) when Uk is a permutation operator, and that

Tr(Ē(ρ)UkρU
†
k) = Tr(Ē(ρ)ρ) since U †

k Ē(ρ)Uk = Ē(ρ). The last equality uses standard trace
and unitary operator properties. From the last expression, it is clear that V is monotone
non-increasing, and that dV/dt = 0 only when ρ belongs to the set of symmetric states. �

While Proposition 2 is sufficient to characterize convergence of our quantum consensus
algorithm, we can in fact present a stronger version of it that ensures convergence with respect
to any action of the same group, see [10, 26]. This is done by lifting the dynamics (4),(7) to
convex weights on the set of permutations of m integers. The first step is to show that we can
restrict our attention to dynamics that are convex combinations of subsystem permutations
or, more in general, convex combinations of the group generated by the unitaries in (4).

Proposition 3 For all t, there exists a vector p ∈ R
m!, whose elements are indexed by all

the permutations π ∈ Pm and with pπ ≥ 0 ∀π,
∑

π pπ = 1, such that

ρt =
∑

π∈Pm

pπ(t)Uπρ0U
†
π . (8)

Proof: For t = 0 it is obvious, with pe = 1 and the other elements equal to zero. If we now
apply LU to a state of the form (8), by using basic group properties we obtain:

LU =
∑

π∈Pm

d
dtpπ(t)Uπρ0U

†
π,

where
d
dtpπ(t) =

∑

k

αk (pk−1π − pπ).

It is then easy to see, e.g. by considering the propagator as the exponential of LU , that the
corresponding dynamics is still of the form (8). In addition, given the form of the derivative,
it is immediate to see that the minimal weight pπ can only increase. Since the initial minimal
weight is zero, the weights remain positive at all times. Lastly, their sum must remain equal
to one in order for the map to be trace preserving. �

In the proof of Proposition 3, we show that the dynamics (4),(7) is equivalent to the
dynamics of p(t) following:

d
dtpπ =

∑

k

αk (pk−1π − pπ) , (9)

where the composition k−1π must be understood in the group-inverse and group-multiplication
sense. Note that this lift is not unique. The advantage of this viewpoint (beyond the fact that
(9) looks more like a standard consensus algorithm) is that (9) can be analyzed independently
of the group action of π — be it through conjugate action of Uπ on ρ like here, or acting
on classical states or probability distributions or any other interesting space. In fact it is
even not essential that p is indexed by permutations, any discrete group could be used, as we
highlight in [10].

Our purpose now is to establish the convergence of the lift (9) with a Lyapunov function,
showing that the conclusions of [10] hold also in continuous-time.



Proposition 4 The Kullback-Leibler divergence of p with respect to the uniform vector D(p) =
∑

π∈Pm
pπ( log pπ − log( 1

m!) ) is a strict Lyapunov function establishing convergence of (9)
towards pπ = 1/m!, for any neighborhood specifications and αk > 0.

Proof: We have

d

dt
D(p) =

∑

π∈Pm

dpπ
dt (1 + log pπ − log( 1

m!))

=
∑

π∈Pm, k

αk (pk−1π − pπ)(1 + log pπ − log( 1
m!))

=
∑

π∈Pm, k

αk (pk−1π − pπ) log pπ

= −
∑

π∈Pm, k

αk pπ(log pπ − log pk π)

= −
∑

k

αkK(p‖Πk(p)),

where Πk is the linear operator that maps the value of π-th component of p to component
k π, for all π, and K(pA‖pB) denotes the relative entropy

∑

π∈Pm
p
A
π ( log p

A
π − log(pBπ ) ). The

third equality is obtained by observing that
∑

π∈Pm
pπ =

∑

π∈Pm
pk−1π = 1 for each k, such

that the multiples of the terms 1 and − log( 1
m!) cancel out. The fourth equality implements

the change of variable π → k−1π, noting that this does not require to change the argument
of the sum over Pm.

Since the relative entropy is known to be non-negative and equal to zero if and only if
p
A = p

B , D is monotone non-increasing and will stop decreasing only when the vector p is
invariant under the action of Πk for all k in our actions set. In our particular case, where
k are transpositions, this implies by standard Lyapunov argument that we reach the unique
fixed point of the lifted dynamics. �

The last result is given in terms of the lifted dynamics: when the unitaries used in LU with
non-zero weights generate the whole subsystem-permutation group for the original dynamics,
it directly implies that the propagator converges to the map (1).

We thus proved convergence to symmetric states under quite general setting, that could be
further extended by considering time-varying dynamics. The results on the Lyapunov func-
tions hold with time-varying, non-zero α. Combining these with standard limit-set arguments
from consensus [25], it can be shown that e.g. in the case of pairwise interactions associated
to an undirected graph (where subsystems are nodes and απ can be different from zero only
if there is a link between the subsystem swapped by π), our dynamics would drive any ρ0
towards Ē(ρ0), i.e. (3) is satisfied, if there exist finite T, α > 0 such that the edges for which
∫ t+T
t α(τ)dτ > α form a connected graph.

4 APPLICATIONS

We next employ the proposed symmetrizing dynamics to two applications, already presented
in [12] in the discrete-time context. The latter called for adding algorithmic steps around
the symmetrization procedure. In contrast, the continuous-time operation allows to propose



one integrated implementation, where application-specific elements act simultaneously, like
perturbing dynamics, with the symmetrization.

4.1 Pure State Preparation with a “Stubborn” Subsystem

Design techniques for the asymptotic preparation of any pure state in a single system [27] using
QDS are well-known [28, 29, 30]. We here show how to polarize the population of a quantum
network towards a target pure state by locally perturbing our symmetrizing dynamics.

Consider again the system of Section 2.1 and the generator we constructed in Section 3.2.
We are interested in stabilizing the whole quantum network into a pure state. It can be shown
that any pure, factorized state of the form:

ρ̂ = |ψ〉〈ψ| ⊗ · · · ⊗ |ψ〉〈ψ|,

with given |ψ〉, can be asymptotically obtained by adding a single, strictly local Lindblad
operator to LU . This operator acts on a single system, and has the target local pure state as
its unique invariant state:

Ltot = LU + L(j) ⊗ Ij̄, (10)

with L(j) such that for all ρ ∈ D(Hj), we have

lim
t→∞

eL
(j)tρ = |ψ〉〈ψ|.

Simple ways on how to construct such a generator, with or without feedback, have been
presented in [28, 29, 30, 31]. Thus j acts as “stubborn” subsystem that is continuously
attracted towards |ψ〉〈ψ|.

The two terms in (10) implement two partially competing dynamics, one associated to LU

that drives every state into the symmetric set, and another one associated to L(j) that drives
every state towards something of the form |ψ〉〈ψ| ⊗ τj̄, without affecting τj̄ ∈ D(H⊗(m−1)).
Since those two dynamics are linearly independent whenever they are nonzero, the only in-
variant set for the combined dynamics is the intersection of the two limit sets, that is the
target state ρ̂. A standard Lyapunov argument and LaSalle invariance theorem (see e.g. [32]),
just considering the trace distance with respect to ρ̂, allows to conclude that ρ̂ is indeed
asymptotically prepared by the QDS associated to Ltot.

By variations of this method, the same control capabilities can be used to engineer dy-
namics that asymptotically drive the state of the quantum network to have support on an
arbitrary target subspace of the network’s joint Hilbert space, provided it is invariant with
respect to subsystem permutations.

4.2 Estimation of the Network Size

Consider again a set of m identical subsystems as in Section 2.1 and the ability of turning on
and off the symmetrizing generator LU . In addition, assume that we can only access the first
p subsystems: on these subsystems we can implement an action of local L(j) stabilizing the
single systems into desired pure states, as in the previous application, as well as measurements
of identical, non-degenerate, purely local observables Q ∈ H(H). While we assume to know
the number p of accessible subsystems, we are now interested in estimating the unknown total
number m of subsystems in the quantum network.



To do so in one run without access to anything else than the p first subsystems, we need
to know something about the initial state of the whole network: we will assume that all
subsystems are initially prepared in a state that has orthogonal support to a fixed “marker”
eigenstate |ψ〉 of Q. If for some reason this situation cannot be naturally assumed, then it
can be asymptotically obtained with the protocol described in the previous section3 and a
target state |φ〉〈φ| with 〈φ|ψ〉 = 0.

In order to estimate the size of the sample, we can then implement the following dynamics:

1 - Preparation: first prepare the network in a state ρ′ =
⊗

j |φ〉〈φ|)
(j), that has orthogonal

support to the “marker” eigenstate |ψ〉 of Q, 〈ψ|φ〉 = 0.

2 - Perturbation: Next, reset each of the p probe subsystems in the marker eigenstate |ψ〉
of Q;

3 - Symmetrization Let the network evolve with LU to the symmetric set;

4 - Readout Perform measurements of Q on the p probe subsystems, recording how many
times |ψ〉 is obtained.

The first two steps prepare the network into a state

|ψ〉〈ψ| ⊗ ... ⊗ |ψ〉〈ψ| ⊗ |φ〉〈φ| ⊗ ... ⊗ |φ〉〈φ| .

The statistics of measuring Q on the p probe subsystems after Step 3, equals the statistics
of measuring Q before Step 2 on p uniformly randomly selected subsystems. In the latter
case, whenever one of the first p subsystems was selected we would get outcome |ψ〉, while
whenever a subsystem j > p is selected we would certainly not get |ψ〉. The random variable
K counting the number k of times |ψ〉 is detected in Step 4 therefore follows a hypergeometric
distribution,

K = k with probability (pk) (
m−p
p−k ) / (mp )

where (ba) = b!/(a!(b − a)!). Following [12], we can show that

E[K] = p2/m,

and hence the candidate estimator for m can be chosen to be m̂ = p2/K̂, where K̂ is the
sampled value of K. It is then easier to study the statistical properties of m̂−1, being just a
rescaling of the measured K̂. It is then possible to show that the relative error m̂−1−m−1

m−1 of
m̂−1 has mean zero, i.e. it is an unbiased estimator. Its variance can be computed and has
the form:

E

[

(

m̂−1 −m−1

m−1

)2
]

=
(m− p)2

p2(m− 1)
. (11)

This shows that if we consider p = α ·m to be a fixed fraction of the total population,
when the population increases the variance (11) goes to zero as 1/m. Then for the limit of
large m, we can conclude that the variance of m̂ also goes to zero as 1/m.

3It is worth noting that, while asymptotic exact preparation of a state or a subspace would ideally entail an
infinite evolution time, convergence to the stable set is exponential and hence errors can be made arbitrarily
small in finite time.
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