1,699 research outputs found

    SPAD: a distributed middleware architecture for QoS enhanced alternate path discovery

    Get PDF
    In the next generation Internet, the network will evolve from a plain communication medium into one that provides endless services to the users. These services will be composed of multiple cooperative distributed application elements. We name these services overlay applications. The cooperative application elements within an overlay application will build a dynamic communication mesh, namely an overlay association. The Quality of Service (QoS) perceived by the users of an overlay application greatly depends on the QoS experienced on the communication paths of the corresponding overlay association. In this paper, we present SPAD (Super-Peer Alternate path Discovery), a distributed middleware architecture that aims at providing enhanced QoS between end-points within an overlay association. To achieve this goal, SPAD provides a complete scheme to discover and utilize composite alternate end-to end paths with better QoS than the path given by the default IP routing mechanisms

    GRIDKIT: Pluggable overlay networks for Grid computing

    Get PDF
    A `second generation' approach to the provision of Grid middleware is now emerging which is built on service-oriented architecture and web services standards and technologies. However, advanced Grid applications have significant demands that are not addressed by present-day web services platforms. As one prime example, current platforms do not support the rich diversity of communication `interaction types' that are demanded by advanced applications (e.g. publish-subscribe, media streaming, peer-to-peer interaction). In the paper we describe the Gridkit middleware which augments the basic service-oriented architecture to address this particular deficiency. We particularly focus on the communications infrastructure support required to support multiple interaction types in a unified, principled and extensible manner-which we present in terms of the novel concept of pluggable overlay networks

    Taxonomy of P2P Applications

    Get PDF
    Peer-to-peer (p2p) networks have gained immense popularity in recent years and the number of services they provide continuously rises. Where p2p-networks were formerly known as file-sharing networks, p2p is now also used for services like VoIP and IPTV. With so many different p2p applications and services the need for a taxonomy framework rises. This paper describes the available p2p applications grouped by the services they provide. A taxonomy framework is proposed to classify old and recent p2p applications based on their characteristics

    Optimally Efficient Prefix Search and Multicast in Structured P2P Networks

    Full text link
    Searching in P2P networks is fundamental to all overlay networks. P2P networks based on Distributed Hash Tables (DHT) are optimized for single key lookups, whereas unstructured networks offer more complex queries at the cost of increased traffic and uncertain success rates. Our Distributed Tree Construction (DTC) approach enables structured P2P networks to perform prefix search, range queries, and multicast in an optimal way. It achieves this by creating a spanning tree over the peers in the search area, using only information available locally on each peer. Because DTC creates a spanning tree, it can query all the peers in the search area with a minimal number of messages. Furthermore, we show that the tree depth has the same upper bound as a regular DHT lookup which in turn guarantees fast and responsive runtime behavior. By placing objects with a region quadtree, we can perform a prefix search or a range query in a freely selectable area of the DHT. Our DTC algorithm is DHT-agnostic and works with most existing DHTs. We evaluate the performance of DTC over several DHTs by comparing the performance to existing application-level multicast solutions, we show that DTC sends 30-250% fewer messages than common solutions

    Reducing Routing Overhead in Random Walk Protocol under MP2P Network

    Get PDF
    Due to network dynamics in self-organizing networks the resource discovery effort increases. To discover objects in unstructured peer-to-peer network, peers rely on traditional methods like flooding, random walk and probabilistic forwarding methods. With inadequate knowledge of paths, the peers have to flood the query message which creates incredible network traffic and overhead. Many of the previous works based on random walk were done in wired network. In this context random walk was better than flooding. But under MANETs random walk approach behaved differently increasing the overhead, due to frequent link failures incurred by mobility. Decentralized applications based on peer-to-peer computing are best candidates to run over such dynamic network. Issues of P2P service discovery in wired networks have been well addressed in several earlier works. This article evaluates the performance of random walk based resource discovery protocol over P2P Mobile Adhoc Network (MP2P) and suggests an improved scheme to suit MANET. Our version reduces the network overhead, lowers the battery power consumption, minimizes the query delay while providing equally good success rate. The protocol is validated through extensive NS-2 simulations. It is clear from the results that our proposed scheme is an alternative to the existing ones for such highly dynamic mobile network scenario

    Generalized probabilistic flooding in unstructured peer-to-peer networks

    Get PDF
    • …
    corecore