1,517 research outputs found

    An interior penalty method for a finite-dimensional linear complementarity problem in financial engineering

    Get PDF
    In this work we study an interior penalty method for a finite-dimensional large-scale linear complementarity problem (LCP) arising often from the discretization of stochastic optimal problems in financial engineering. In this approach, we approximate the LCP by a nonlinear algebraic equation containing a penalty term linked to the logarithmic barrier function for constrained optimization problems. We show that the penalty equation has a solution and establish a convergence theory for the approximate solutions. A smooth Newton method is proposed for solving the penalty equation and properties of the Jacobian matrix in the Newton method have been investigated. Numerical experimental results using three non-trivial test examples are presented to demonstrate the rates of convergence, efficiency and usefulness of the method for solving practical problems

    The Effect of Non-Smooth Payoffs on the Penalty Approximation of American Options

    Full text link
    This article combines various methods of analysis to draw a comprehensive picture of penalty approximations to the value, hedge ratio, and optimal exercise strategy of American options. While convergence of the penalised solution for sufficiently smooth obstacles is well established in the literature, sharp rates of convergence and particularly the effect of gradient discontinuities (i.e., the omni-present `kinks' in option payoffs) on this rate have not been fully analysed so far. This effect becomes important not least when using penalisation as a numerical technique. We use matched asymptotic expansions to characterise the boundary layers between exercise and hold regions, and to compute first order corrections for representative payoffs on a single asset following a diffusion or jump-diffusion model. Furthermore, we demonstrate how the viscosity theory framework in [Jakobsen, 2006] can be applied to this setting to derive upper and lower bounds on the value. In a small extension to [Bensoussan & Lions, 1982], we derive weak convergence rates also for option sensitivities for convex payoffs under jump-diffusion models. Finally, we outline applications of the results, including accuracy improvements by extrapolation.Comment: 34 Pages, 10 Figure

    Numerical performance of penalty method for American option pricing

    Get PDF
    This paper is devoted to studying the numerical performance of a power penalty method for a linear parabolic complementarity problem arising from American option valuation. The penalized problem is a nonlinear parabolic partial differential equation (PDE). A fitted finite volume method and an implicit time-stepping scheme are used for, respectively, the spatial and time discretizations of the PDE. The rate of convergence of the penalty methods with respect to the penalty parameters is investigated both theoretically and numerically. The numerical robustness and computational effectiveness of the penalty method with respect to the market parameters are also studied and compared with those from an existing popular method, project successive over relaxation.Department of Applied Mathematic

    A penalty approach to a discretized double obstacle problem with derivative constraints

    Get PDF
    This work presents a penalty approach to a nonlinear optimization problem with linear box constraints arising from the discretization of an infinite-dimensional differential obstacle problem with bound constraints on derivatives. In this approach, we first propose a penalty equation approximating the mixed nonlinear complementarity problem representing the Karush-Kuhn-Tucker conditions of the optimization problem. We then show that the solution to the penalty equation converges to that of the complementarity problem with an exponential convergence rate depending on the parameters used in the equation. Numerical experiments, carried out on a non-trivial test problem to verify the theoretical finding, show that the computed rates of convergence match the theoretical ones well

    A finite difference method for pricing European and American options under a geometric Lévy process

    Get PDF
    In this paper we develop a numerical approach to a fractional-order differential Linear Complementarity Problem (LCP) arising in pricing European and American options under a geometric Lévy process. The LCP is first approximated by a nonlinear penalty fractional Black-Scholes (fBS) equation. We then propose a finite difference scheme for the penalty fBS equation. We show that both the continuous and the discretized fBS equations are uniquely solvable and establish the convergence of the numerical solution to the viscosity solution of the penalty fBS equation by proving the consistency, stability and monotonicity of the numerical scheme. We also show that the discretization has the 2nd-order truncation error in both the spatial and time mesh sizes. Numerical results are presented to demonstrate the accuracy and usefulness of the numerical method for pricing both European and American options under the geometric Lévy process

    Numerical method for pricing governing American options under fractional Black-Scholes model

    Get PDF
    In this paper we develop a numerical approach to a fractional-order differential linear complementarity problem (LCP) arising in pricing European and American options under a geometric Lévy process. The (LCP) is first approximated by a penalized nonlinear fractional Black-Scholes (fBS) equation. To numerically solve this nonlinear (fBS), we use the horizontal method of lines to discretize the temporal variable and the spatial variable by means of Crank-Nicolson method and a cubic spline collocation method, respectively. This method exhibits a second order of convergence in space, in time and also has an acceptable speed in comparison with some existing methods. We will compare our results with some recently proposed approaches. Keywords: Geometric Lévy process, fractional Black-Scholes, Crank-Nicolson scheme, Spline collocation, Free Boundary Value Problem

    A power penalty method for a bounded nonlinear complementarity problem

    Get PDF
    We propose a novel power penalty approach to the bounded nonlinear complementarity problem (NCP) in which a reformulated NCP is approximated by a nonlinear equation containing a power penalty term. We show that the solution to the nonlinear equation converges to that of the bounded NCP at an exponential rate when the function is continuous and ξ-monotone. A higher convergence rate is also obtained when the function becomes Lipschitz continuous and strongly monotone. Numerical results on discretized ‘double obstacle’ problems are presented to confirm the theoretical results

    Mathematical Models and Numerical Methods for Pricing Options on Investment Projects under Uncertainties

    Get PDF
    In this work, we focus on establishing partial differential equation (PDE) models for pricing flexibility options on investment projects under uncertainties and numerical methods for solving these models. we develop a finite difference method and an advanced fitted finite volume scheme and combine with an interior penalty method, as well as their convergence analyses, to solve the PDE and LCP models developed. The MATLAB program is for implementing testing the models of numerical algorithms developed

    Regime switching in stochastic models of commodity prices: An application to an optimal tree harvesting problem

    Get PDF
    This paper investigates a regime switching model of stochastic lumber prices in the context of an optimal tree harvesting problem. Using lumber derivatives prices, two lumber price models are calibrated: a regime switching model and a single regime model. In the regime switching model, the lumber price can be in one of two regimes in which different mean reverting price processes prevail. An optimal tree harvesting problem is specified in terms of a linear complementarity problem which is solved using a fully implicit finite difference, fully-coupled, numerical approach. The land value and critical harvesting prices are found to be significantly different depending on which price model is used. The regime switching model shows promise as a parsimonious model of timber prices that can be incorporated into forestry investment problems.optimal tree harvesting, regime switching, calibration, lumber derivatives prices, fully implicit finite difference approach
    corecore