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Abstract

Regime switching in stochastic models of commodity prices: An application to
the optimal tree harvesting problem
This paper investigates a regime switching model of stochastic lumber prices in the context
of an optimal tree harvesting problem. Using lumber derivatives prices, two lumber price
models are calibrated: a regime switching model and a single regime model. In the regime
switching model, the lumber price can be in one of two regimes in which different mean
reverting price processes prevail. An optimal tree harvesting problem is specified in terms
of a linear complementarity problem which is solved using a fully implicit finite difference,
fully-coupled, numerical approach. The land value and critical harvesting prices are found
to be significantly different depending on which price model is used. The regime switching
model shows promise as a parsimonious model of timber prices that can be incorporated into
forestry investment problems.

Keywords: optimal tree harvesting, regime switching, calibration, lumber derivatives prices,
fully implicit finite difference approach
Running Title: Regime switching prices and optimal tree harvesting



1 Introduction

The modelling of optimal tree harvesting and the valuation of land devoted to commercial
timber harvesting is an active research area in the academic literature. A more than thirty-
year-long strand of this literature emphasizes the importance of valuing managerial flexibility
in the context of irreversible harvesting decisions when forest product prices are volatile
relative to harvesting costs.1 An ongoing challenge is how best to model the dynamics
of timber prices in determining optimal harvesting strategies and in estimating the value
of forested lands. Over the past two decades some researchers have modeled price as a
stochastic differential equation (see Thomson (1992); Plantinga (1998); Morck et al. (1989);
Clarke and Reed (1989) for example). Another approach is to model stand value (price of
wood times quantity of wood), as a stochastic differential equation, such as in Alvarez and
Koskela (2007) and Alvarez and Koskela (2005).

The model chosen to describe timber prices can have a significant effect on optimal
harvesting decisions and land valuation. The issue is therefore of importance to forest man-
agement, whether on publicly or privately owned land. There has been a trend over the last
two decades to view commercial timber lands as a suitable asset to diversify the portfolios of
large investors. Institutional investors in the United States have significantly increased their
holdings of timberlands, giving an added motivation for a better understanding of timber
price dynamics and investment valuation.2

Several specifications have been proposed in the literature for modeling stochastic lumber
prices, including Geometric Brownian Motion (GBM), Mean Reversion and Jump processes.
A number of researchers have solved optimal tree harvesting problems analytically, assuming
prices follow GBM.3 Some researchers have found that mean reversion rather than GBM
provides a better characterization of lumber prices (Brazee et al. (1999)). For commodities
in general, it has been argued that mean reversion in price makes sense intuitively since
any significant upturn in price will bring on additional supplies. The assumption of a price
process other than GBM generally requires numerical solution of an optimal tree harvesting
problem. This can present significant challenges particularly if the researcher chooses to
model the growing forest stand in a realistic fashion over multiple rotations or cutting cycles.

Unfortunately it is difficult to conclude definitively which price process is most appropri-
ate for any particular commodity. As is noted in Insley and Rollins (2005) many different
statistical tests exist, but none has been shown to be uniformly most powerful. Saphores
et al. (2002) find evidence of jumps in Pacific North West stumpage prices in the U.S. and
demonstrate at the stand level that ignoring jumps can lead to significantly suboptimal
harvesting decisions for old growth timber. A recent insight in the literature suggests that
instead of modeling jumps in commodity prices, we may consider regime switching models,
initially proposed by Hamilton (1989), to better capture the main characteristics of lumber
price.

Using a regime switching model, the observed stochastic behavior of a specific time series

1Hool (1966); Lembersky and Johnson (1975) are examples of some of the earlier literature.
2See Global Institute of Sustainable Forestry (2002) and Caulfield and Newman (1999) for a discussion

of this shift in ownership.
3Examples are Clarke and Reed (1989) and Yin and Newman (1997).
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is assumed to be comprised of several separate regimes or states. For each regime or state,
one can define a separate and independent underlying stochastic process. The switching
mechanism between each regime is typically assumed to be governed by an unknown random
variable that follows a Markov chain.4 Various factors may contribute to the random shift
between regimes, such as changes in government policies and weather conditions.

Several authors, building on the seminal work of Hamilton (1989), have modeled com-
modity prices by allowing parameters of the process to change over time driven by a Markov
state variable. For example, Deng (2000), de Jong (2005), Chen and Forsyth (2008) all ex-
amine empirical models of regime switching in commodity prices (electricity or natural gas
prices) and have shown promising results for their empirical applications.

In this paper we investigate whether a regime switching model is a good alternative for
modelling stochastic timber prices. For simplicity we assume the existence of two states or
regimes. In line with Chen and Forsyth (2008), we calibrate a regime switching model with
timber price as the single stochastic factor which follows a different mean reverting process
in each of two regimes. We compare this model (denoted the RSMR model) with a single
regime mean reverting model (denoted the traditional mean reverting, or TMR, model) which
has been used previously in the literature. For parameter calibration, these two models are
expressed in the risk-neutral world and the corresponding parameters are calibrated using
the prices of traded lumber derivatives, i.e. lumber futures and options on lumber futures.
A benefit of calibrating model parameters in this way is that the parameters obtained are
risk adjusted so that a forest investment can be valued using the risk-free interest rate, with
no need to estimate a market price of risk.

In the second part of the paper we use the calibrated RSMR and TMR models to solve an
optimal harvesting problem. The optimal choice of harvesting date for an even-aged stand of
trees and the value of the option to harvest are modeled as a linear complementarity problem
which is solved numerically using a fully implicit finite difference method. The approach is
similar to that used in Insley and Lei (2007), except that the model must accommodate
the different regimes. We use the same cost and timber yield estimates as in Insley and
Lei (2007) and hence we are able to compare results. In Insley and Lei (2007) parameter
estimates of the price process were obtained through ordinary least squares on historical
lumber price data only.

This paper makes a methodological contribution to the literature. It demonstrates the
numerical solution of a dynamic optimization problem in a natural resources context under
the assumption of a regime switching stochastic state variable. In the future it is hoped
that this methodology may be usefully applied to other types of natural resource investment
problems, which are often sufficiently complex that closed-form solutions are unavailable.
The paper also makes an empirical contribution in the investigation of the dynamics of
lumber prices. To our knowledge the parameterization of stochastic lumber price models
using lumber derivatives prices has not been done previously in the literature. Although we
are limited by the short maturity dates of traded lumber futures, we find that the RSMR
model shows promise as a parsimonious model of timber prices that can be incorporated into
problems of forestry investment valuation using standard numerical solutions techniques. In

4A Markov chain has the property that, given the present, the future is conditionally independent of the
past.
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our concluding section we discuss how this and other limitations of the current paper point
toward avenues for future research.

The remainder of the paper will be organized as follows. Section 2 presents a brief
literature review. Section 3 provides descriptive statistics and preliminary tests on a lumber
price time series. Section 4 specifies the lumber price models that will be used in our
analysis and details the methodology for calibrating the parameters of these models. Section
5 provides the results of the calibration. Section 6 uses the regime switching and single regime
price models to solve for the optimal harvesting time and land value in a tree harvesting
problem. Section 7 provides some concluding comments.

2 Modeling commodity prices: An overview of selected

literature

Stochastic models of commodity prices play a central role for commodity-related risk man-
agement and asset valuation. As noted in Schwartz (1997), earlier research into valuing
investments contingent on stochastic commodity prices generally adopted an assumption
of geometric Brownian motion (GBM), dP = aPdt + bPdz, where P denotes commodity
prices, a and b are constant, dz is a standard Winner process. This allowed the procedures
developed for valuing financial options to be easily extended to valuing commodity based
contingent claims.

Schwartz (1997) and Baker et al. (1998), among other, have emphasized the inadequacy
of using GBM to model commodity prices. Under GBM the expected price level grows
exponentially without bound. In contrast there is evidence that the real prices of many
natural resource-based commodities have shown little upward trend. This is explained by
the presence of substitutes as well as improvements in technology to harvest or extract
a resource. In the literature on optimal tree harvesting, early papers adopting the GBM
assumption include Reed and Clarke (1990), Clarke and Reed (1989), Yin and Newman
(1995), and Morck et al. (1989).

We can also gain insight into the appropriateness of a GBM model for commodity prices
by observing futures prices. The current price of a futures contract at time t with maturity
T , denoted F (t, T ) equals the risk neutral expectation of the spot price, P (t), that will
prevail at time T .5

F (t, T ) = EQ[P (T )|P (t)] = P (t)e(r−δ)(T−t) (1)

where r is the risk free rate δ represents the convenience yield, and EQ represents the
expectation in the risk neutral world or under the “Q-measure”. If P follows GBM,it can be
demonstrated using Ito’s lemma that the futures price will also follow GBM , and both P
and F will have the same (constant) volatility. However, for most commodities, the volatility
of futures prices decreases with maturity,so that the single factor lognormal model such as
GBM is not consistent with reality (Pilipovic, 2007, page 233-234).

5In other words, the futures price should be equal to the expected spot price after adjusting for a risk
premium or discount. See Geman (2005) for a discussion of futures prices and the risk neutral dynamics of
commodity prices
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It is not unreasonable to expect that the workings of supply and demand will result in
commodity prices that exhibit some sort of mean reversion. There is also empirical research
that supports this claim. For example Bessembinder et al. (1995) find support for mean-
reversion in commodity prices by comparing the sensitivity of long-maturity futures prices
to changes in spot prices.

If mean reversion is accepted as a desirable property, there are several possible stochastic
models to choose from which incorporate mean reversion. The simplest mean reverting
process, the Ornstein-Uhlenbeck process, is given as

dP = α(K − P )dt+ σdz. (2)

α is a constant and referred to as the speed of mean reversion. K represents the (constant)
long run equilibrium price that P will tend towards. The instantaneous volatility, σ, is also
constant and dz is the increment of a Wiener process.

In a common variation of the Ornstein-Uhlenbeck process, the conditional variance of P
depends on the level of P , thereby preventing P from becoming negative:

dP = α(K − P )dt+ σPdz. (3)

This process is adopted in Insley and Rollins (2005) and Insley and Lei (2007) to represent
lumber prices in an optimal tree harvesting problem. Other optimal harvesting papers
to adopt variations on these mean reverting processes include Plantinga (1998) and Gong
(1999). Mean reverting processes have also been used in modeling prices for oil, electricity,
copper, and other minerals (see Cortazar and Schwartz (1994), Dixit and Pindyck (1994),
Pilipovic (2007), Smith and McCardle (1998) and Lucia and Schwartz (2002) for example).

The simple mean reverting models of Equations (2) and (3), while an improvement over
GBM, are not entirely satisfactory. It can be shown that under these models the implied
volatility of futures prices decreases with maturity, which is a desirable property for modelling
commodity prices. However volatility tends to zero for very long maturities, which is not
consistent with what is observed in practice. In addition these models presume a constant
long run equilibrium price (K), when in reality K may be better characterized as a stochastic
variable. Schwartz and Smith (2000) propose a two-factor model in which the equilibrium
price level is assumed to evolve according to GBM and the short-term deviations are expected
to revert toward zero following an Ornstein-Uhlenbeck process. In another variation, a
commodity’s convenience yield is modelled as additional stochastic factor which is assumed
to follow a MR process. Schwartz (1997) also develops a three-factor model with stochastic
price, convenience yield and interest rate. Alternative versions of multi-factor models can be
derived through variation of a number of dimensions. However the more factors incorporated
into the model, the more complicated is the solution of the resulting partial differential
equation that describes the value of contingent claims on the commodity.

Another consideration that may be important in modeling commodity prices is the pres-
ence of jumps. Barz and Johnson (1998) suggest the inadequacy of the GBM and MR
specification in modeling electricity spot prices and offer a broad class of stochastic models
which combine a mean-reverting process with a single jump. Kaminski (1997) points out the
need to introduce jumps and stochastic volatility in modeling electricity prices. As noted in
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the Introduction, Saphores et al. (2002) allow for the presence of jumps as well as ARCH
effects in modelling stumpage prices for lumber from old growth forests in the Pacific north-
west. They also investigate the empirical impact of jumps by assuming that stumpage prices
for old-growth forest follow a GBM with jumps, and show that ignoring jumps may lead to
significantly suboptimal decisions to harvest timber.

In devising better models for commodity prices we are faced with a tradeoff between
increased realism through the addition of more stochastic factors, jumps, etc., and the added
complexity and difficulty of solving for the value of related contingent claims. The optimal
tree harvesting problem has the further complication that the asset (a stand of trees) is
growing and being harvested over multiple rotations. The timing of harvest and hence the
age of the stand depend on price, so that stand age is also a stochastic factor. It is desirable
to find an approach to modeling timber prices which, while adequately rich, still allows for
the solution of the related contingent claim using standard approaches. It is towards this
end that we investigate a regime switching model. The regime switching model with two
regimes can readily be solved with a finite difference numerical approach.

Jumps in commodity prices are often driven by discrete events such as weather, disease,
or economic booms and busts which may persist for months or years. Therefore the typi-
cal continuous time models with isolated and independent jumps may not provide a good
description of stochastic commodity prices. The Markov regime switching (RS) model first
proposed by Hamilton (1989) is a promising model for commodity prices. In a RS model,
spot prices can jump discontinuously between different states governed by state probabilities
and model parameters. The RS model can be used to capture the shifts between “abnormal”
and “normal” equilibrium states of supply and demand for a commodity.

Versions of the RS model have previously been applied to the investigation of business
cycle asymmetry in Hamilton (1989) and Lam (1990), heteroscedasticity in time series of
asset prices in Schwert (1996), the effects of oil prices on U.S. GDP growth in Raymond
and Rich (1997). RS specifications for modeling stochastic commodity prices are studied in
Deng (2000) and de Jong (2005) for electricity prices and in Chen and Forsyth (2008) for
natural gas prices. Deng (2000) shows that by incorporating jumps and regime switching
in modeling electricity prices, as opposed to the commonly used GBM model, the values
of short-maturity out-of-the-money options approximate market prices very well. de Jong
(2005) indicates that RS models are better able to capture the market dynamics than a
GARCH(1,1) or Poisson jump model. Chen and Forsyth (2008) show that the RS model
outperforms traditional one-factor MR model by solving the gas storage pricing problem
using numerical techniques.

In this paper, we examine the application of a RS model to lumber prices to investigate
whether it represents an improvement over a single regime model that has been used pre-
viously in the forestry literature. We will use the prices of lumber derivatives to calibrate
the parameters of the price process in each of two regimes, and compare with the results of
assuming a single regime. Allowing for two regimes may be thought of as a generalization of
the more restrictive one regime case. The two regimes may be seen as representing two dis-
tinct sets of parameter values, perhaps reflecting good and bad times, in which the volatility,
long run equilibrium price level and speed of mean reversion are all able to change. It is
hoped that the two regimes may be a rich enough description of timber prices so that the
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addition of other stochastic factors is unnecessary.

3 A first look at lumber markets and prices

Since our concern is with modelling timber prices and evaluating an optimal tree harvesting
problem in Canada, a brief review the forest products industry is in order as well as the
presentation of some descriptive statistics for Canadian spot lumber prices over the past
decade.

Forest products, including logs, lumber, and paper, are traded worldwide and Canada
is a major player in this market, accounting for 14% of the value of world forest product
exports in 2006.6 Forest products are a significant component of Canada’s balance of trade,
with forest product exports amounting to $29 billion (Canadian) in 2006, which was 5.4% of
total exports of goods and services. Note that this is down from a peak of $43 billion in 2000.
Canada’s forest product exports are mainly destined for the United States (over 75% went
to the U.S. in 2006) and Canada is the source of over 80% of U.S. lumber imports.7 More
than half of Canadian lumber exports come from British Columbia, followed with Quebec
and Ontario.

Forest product prices in North America are affected by swings in housing starts and other
demand sources, supply factors such as fire and pests that plague forests from time to time,
regulatory changes and by the increased integration of forest product markets worldwide. In
addition, forest operations in Canada have been severely affected by on-going trade disputes
between Canada and the U.S. Forest product prices are almost all quoted in U.S. dollars,
which is an added source of volatility for Canadian forest product producers who receive
revenue in U.S. dollars but pay silviculture and harvesting costs in Canadian dollars. Partic-
ipants in forest product markets can hedge some risks by buying or selling futures contracts.
Lumber futures contracts with expiry dates for up to one year in the future have been traded
on the Chicago Mercantile Exchange (CME) since 1969.

Real weekly spot prices for Canadian lumber are shown in Figure 1. Periods of boom
and bust are evident in the diagram, with the especially difficult time in the industry clearly
apparent from mid-2004 onward. This reflects declining lumber prices in the United States
as well as the appreciation of the Canadian dollar which rose from from 0.772 $U.S./$Cdn
in January 2004 to 0.998 $U.S./$Cdn in January 2008. Descriptive statistics for the lumber
price time series and its corresponding return are provided in Table 1. Return is calculated as
ln(Pt/Pt−1) where Pt refers to price at time t. Weekly data is used, however, the minimum,
maximum, and mean returns as well as the standard deviation have been annualized. The
returns of the price time series exhibit excess kurtosis, which implies that a pure GBM
model is not able to fully describe the dynamics of lumber price process.8 A QQ-plot and a

6Source: FAOstat database, Food and Agricultural Organization of the United Nations,
http://faostat.fao.org/site/381/DesktopDefault.aspx?PageID=381

7Source: Canada’s Forests, Statistical Data, Natural Resources Canada,
http://canadaforests.nrcan.gc.ca/statsprofileCanada (retrieved May 4, 2008), and Random Lengths,
“Yardstick”

8A GBM model implies that price follows a log normal distribution. For a normal distribution skewness
is zero and kurtosis is three.
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Figure 1: Real prices of softwood lumber, Toronto, Ontario. Weekly data from January
6th, 1995 to April 25th, 2008, $Cdn./MBF, (MBF ≡ thousand board feet) Nominal prices
deflated by the Canadian Consumer Price Index, base year = 2005.

Item Max Min Mean Std. Dev. Skewness Kurtosis
Cdn (2005) $/MBF 785.6 226.5 459.3 109.6 0.2151 2.711

Return 653.0 % -644.5 % -6.5 % 21.5 % 0.134 4.448

Table 1: Descriptive statistics for the lumber price time series (as shown in Figure 1) and
its returns, from January 6th, 1995 to April 25th, 2008. The return is the continuously
compounded return calculated on weekly data. Minimum, maximum, mean and standard
deviation of return are annualized.

histogram are presented in Figure 2. Fat tails shown in the QQ-plot also indicate that the
return series does not follow a normal distribution. A formal test of normality (the Jarque-
Bera test) strongly rejects the null hypothesis that return follows a normal distribution.

4 Calibration of Lumber Spot Price Models

In this section we specify and parameterize the two timber price models that will be used in
our optimal harvesting problem. The models we consider are a traditional mean reverting
process (TMR) as used in Insley and Rollins (2005) and Insley and Lei (2007) and a regime
switching model in which the spot price follows potentially two different mean reverting
processes (the RSMR model). We calibrate the two models using lumber derivatives prices
and present evidence as to which can better describe timber prices.
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Figure 2: QQ-plot and histogram of return process.

The RSMR model for lumber price, P , is given by the following stochastic differential
equation (SDE):

dP = α(st)(K(st)− P )dt+ σ(st)PdZ (4)

where st is a two-state continuous time Markov chain, taking two values 0 or 1. The value of
st indicates the regime in which the lumber price resides at time t. Define a Poisson process
qst→1−st with intensity λst→1−st . Then

dqst→1−st = 1 with probability λst→1−stdt

= 0 with probability 1− λst→1−stdt

In other words, the probability of regime shifts from st to (1 − st) during the small time
interval dt is λst→1−stdt. The probability of the lumber price staying in the current regime
st is 1− λst→1−stdt.

In this RSMR model, each parameter in the equation is allowed to shift between two
states implied by st. K(st) is the long-run equilibrium level to which the price tends toward
following any disturbance. We refer to α(st) as the mean reversion rate; the higher its value
the more quickly price reverts to its long run mean value. σ(st) denotes price volatility; dZ
is the increment of the standard Wiener process. The stochastic factors for the two regimes
are perfectly correlated. Therefore there is a common dZ for two different SDE.

The TMR model, which is calibrated for comparison with the RSMR model, is described
by the following stochastic differential equation:

dP = α(K − P )dt+ σPdZ (5)

where dZ is an increment of the standard Wiener process. In contrast with RSMR model,
the parameters in the above equation are constant, instead of being regime dependent,
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Ideally we would rely on statistical tests to determine which of Equation (4) or Equation
(5) is a better model of lumber prices. However, since the parameter λst→1−stdt is defined
only in relation to st in Equation (4) and is not present in (5), the traditional asymptotic
tests such as the likelihood ratio, Lagrange multiplier and Wald tests do not have a standard
asymptotic distribution and cannot be used (Davies (1977), Davies (1987)). As is detailed
later in this section, we rely on the calibration procedure to determine whether the regime
switching model is able to adequately describe lumber prices.

We require estimates of the parameters of our two proposed lumber price models, Equa-
tions (4) and (5). Traditionally parameter estimation is done using time series data on spot
prices. However parameter estimates obtained in this manner reflect the actual probability
distribution of the stochastic variable - the so-called P-measure. In valuing investments con-
tingent on a stochastic process estimated in the P-measure, it is necessary to consider risk
aversion by estimating a market price of risk.

For the regime switching model, Hamilton (1989) presents a nonlinear filter and smoother
to get statistical estimates of the unobserved state, st, given observations on values of Pt.
The marginal likelihood function of the observed variable is a byproduct of the recursive
filter, allowing parameter estimation by maximizing this likelihood function. The parameters
estimated in this way are under the P-measure implying that a corresponding market price
of risk has to be estimated as well.

In contrast to Hamilton’s method, in Chen and Forsyth (2008) the parameters of the
risk-adjusted processes are calibrated by using natural gas derivative contracts, meaning that
the parameters thus estimated are under the risk neutral probability measure, Q-measure,
allowing the assumption of risk neutrality in the subsequent contingent investment valuation.
In this paper, we follow a similar procedure to Chen and Forsyth (2008) using lumber
derivatives, and present the details here for the convenience of the reader. For all parameter
values except the volatilities, lumber futures contracts are used in the calibration process.
For reasons explained below, options on lumber futures are used to calibrate volatilities.

4.1 Calibration using futures prices

Ito’s lemma is used to derive two partial differential equations characterizing lumber futures
prices. These partial differential equations are simplified to a system of ordinary differential
equations which can be solved numerically to give futures prices consistent with different
parameter values. The calibration procedure determines those parameter values (except for
the volatilities) which produce calculated futures prices that most closely match a time series
of market futures prices.

Beginning with the TMR model, let F (P, t, T ) denote the futures price at time t with
maturity T . A futures contract is a contingent claim. From Ito’s lemma, the PDE describing
the futures price is given by Equation (6).

Ft + α(K − P )FP +
1

2
σ2P 2FPP = 0. (6)

At the expiry date T the futures price will equal the spot price, which gives the boundary
condition: F (P, T, T ) = P

9



The solution of this PDE is known to have the form

F (P, t, T ) = a(t, T ) + b(t, T )P. (7)

Substituting Equation (7) into Equation (6), gives the following ODE system

at + αKb = 0

bt − αb = 0 (8)

where at ≡ ∂a/∂t and bt ≡ ∂b/∂t. The boundary conditions: a(T, T ) = 0; b(T, T ) = 1 are
required in order for F (P, T, T ) = P to hold.

Next for the RSMR model, let F (st, P, t, T ) denote lumber futures price at time t with
maturity T in regime st, where st ∈ {0, 1}. The no-arbitrage value F (st, P, t, T ) can be
expressed as the risk neutral expectation of the spot price at T .

F (st, P, t, T ) = EQ[P (T )|P (t) = p, st]. (9)

The lumber futures price is a derivative contract whose value depends on the stochastic
price and the corresponding regime. Using Ito’s lemma for a jump process the conditional
expectation satisfies two PDEs, one for each regime, given by:

F (st)t+α(st)(K(st)−P )F (st)P +
1

2
σ(st)

2P 2F (st)PP +λst→(1−st)(F (1−st)−F (st)) = 0 (10)

with the boundary condition: F (st, P, T, T ) = P .
The solution to these PDEs is known to have the form

F (st, P, t, T ) = a(st, t, T ) + b(st, t, T )P. (11)

This yields the following ordinary differential equation (ODE) system,

a(st)t + λst→(1−st)(a(1− st)− a(st)) + α(st)K(st)b(st) = 0

b(st)t − (α(st) + λst→(1−st))b(st) + λst→(1−st)b(1− st) = 0 (12)

with boundary conditions a(st, T, T ) = 0; b(st, T, T ) = 1. a(st)t ≡ ∂a(st)/∂t and b(st)t ≡
∂b(st)/∂t. These ODEs will be solved numerically, which gives the model parameters. This
is detailed in Section 5.

Note that the volatility σ does not appear in Equations (8) and (12). Hence we cannot
use lumber futures prices to calibrate the spot price volatility. As in Chen and Forsyth
(2008), lumber futures option prices are used to calibrate the volatility.

A least squares approach is used for calibrating the risk-neutral parameter values. Let θ
denote the set of parameters calibrated to the futures price data, where θRSMR = {α(st), K(st),
λst→(1−st)|st ∈ {0, 1}} and θTMR = {α,K}. In particular, at each observation day t, where
t ∈ {1, ..., t∗}, there are T ∗ futures contracts with T ∗ different maturity dates. For the RSMR
model the calibration is performed by solving the following optimization problems:

min
θ

∑
t

∑
T

(F̂ (ŝt(θ), P (t), t, T ; θ)− F (t, T ))2 (13)

10



where F (t, T ) is the market futures price on the observation day t with maturity T . F̂ (ŝt(θ),
P (t), t, T ; θ) is the corresponding model implied futures price computed numerically deter-
mined in equation (11) using the market spot price P (t) and the parameter set θ in regime
ŝt(θ), where

ŝt(θ) = argmin
st∈{0,1}

∑
T

(F̂ (st, P (t), t, T ; θ)− F (t, T ))2 (14)

At each t, the regime ŝt(θ) will be determined by minimizing the sum of squared errors
between the market futures prices F , and the corresponding model implied futures prices F̂ ,
for all T ∗ at t for a given θ. The calibrated parameter set θ will then minimize the distance
between F and F̂ for all t∗.

Similarly, for TMR model, the optimization problem becomes

min
θ

∑
t

∑
T

(F̂ (P (t), t, T ; θ)− F (t, T ))2 (15)

where F̂ (P (t), t, T ; θ) is the model implied futures price.

4.2 Calibration of volatilities using options on futures

In this section, the spot price volatility is calibrated for the two different price models using
market European call options on lumber futures. For the RSMR model, let V̄ (st, F, t, Tv)
denote the European call option value on the underlying lumber futures contract F at time
t with maturity at Tv in regime st. F (st, t, T ) represents the value of the underlying futures
contract at time t with maturity at T , where T ≥ Tv. Let X be the strike price of option.
In the risk-neutral world, V̄ (st, F, t, Tv) can be expressed as

V̄ (st, F, t, Tv) = e−r(Tv−t)EQ[max(F (sT , Tv, T )−X, 0)|F (st, t, T ) = F, st] (16)

If the lumber options expiration date Tv is the same as that of the underlying futures T ,
V̄ (st, F, t, Tv) = V̄ (st, F, t, T ) and F (sT , Tv, T ) = F (sT , T, T ). Therefore the above equation
can be transformed to

V̄ (st, F, t, T ) = e−r(T−t)EQ[max(F (sT , T, T )−X, 0)|F (st, t, T ) = F, st]

= e−r(T−t)EQ[max(P (T )−X, 0)|a(st, t, T ) + b(st, t, T )P (t) = F, st] (17)

where P (T ) is the lumber spot price and F (sT , T, T ) = P (T ) at the maturity date T .
For calibration purposes, a hypothetical European call option is needed. Let V (st, P, t, T )

denote such a call option on lumber at time t with maturity T in regime st. This option
value can be expressed in the form of the risk-neutral expectation as

V (st, P, t, T ) = e−r(T−t)EQ[max(P (T )−X, 0)|P (t) = P, st] (18)

Given that lumber price P follows RSMR, the option value V (st, P, t, T ) satisfies the coupled
PDEs

V (st)t + α(st)(K(st)− P )V (st)P +
1

2
σ(st)

2P 2V (st)PP − rV (st) +

λst→1−st [V (1− st)− V (st)] = 0 (19)
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with the boundary condition: V (st, P, T, T ) = max[P (T ) − X, 0]. The value of this hypo-
thetical option V (st, P, t, T ) can be solved numerically by solving the above PDEs.

Comparing equations (17) and (18), the following relationship holds.

V̄ (st, F, t, T ) = V (st,
F − a(st, t, T )

b(st, t, T )
, t, T ) (20)

where a(st, t, T ) and b(st, t, T ) can be calculated based on Equation (12). Therefore, af-
ter getting V (st, P, t, T ) by solving the equation (19), the theoretical lumber option value
V̄ (st, F, t, T ) can be calculated using the interpolation method.

Similarly, for the TMR model, let V̄ (F, t, T ) and V (P, t, T ) represent the European call
option on lumber futures and the hypothetical European call option on lumber respectively.9

The corresponding PDE for characterizing V (P, t, T ) is expressed as

Vt + α(K − P )VP +
1

2
σ2P 2VPP − rV = 0 (21)

with boundary condition: V (P, T, T ) = max[P (T )−X, 0]. Given the relationship10

V̄ (F, t, T ) = V (
F − a(t, T )

b(t, T )
, t, T ) (22)

the model implied option value V̄ (F, t, T ) can be computed after getting V (P, t, T ) by solving
the above PDE.

A least squares approach is also used to calibrate the volatility. In particular for the
RSMR model, after determining the optimal regime ŝt based on the approach described in
the previous section, we solve the following optimization problem:

min
σ(0),σ(1)

∑
X

(V̄ (ŝt, F (t, T ), t, T ; θ,X, σ(0), σ(1))− V (t, T ;X))2 (23)

where V̄ (ŝt, F, t, T ; θ,X, σ(0), σ(1)) represents the corresponding model implied option value
at time t with maturity T , strike price X and the parameter values θ calibrated in the
previous section and V (t, T ;X) is the market value of lumber call option on futures. T ∗

option contracts with T ∗ different strike prices are needed for volatility calibration. The
calibrated parameter set {σ(0), σ(1)} will minimize the square distance between V̄ and V .

Similarly, for the TMR model, the optimization problem becomes:

min
σ

∑
X

(V̄ (F (t, T ), t, T ; θ,X, σ)− V (t, T ;X))2 (24)

5 Calibration results and testing of the models

5.1 Data description: Lumber futures and options on futures

Lumber market futures and options on futures are used to calculate the risk neutral spot price
process. Four different futures contracts corresponding to each observation date for every

9Tv ≈ T in this model as well.
10This relationship is derived in the same way as equation (20).
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Friday from January 6th, 1995 to April 25th, 2008 will be employed in the calibration. The
average maturity days for these four futures contracts which trade on the Chicago Mercantile
Exchange (CME), are about 30, 90, 150 and 210. Since we are interested in estimating the
stochastic process for real lumber prices for a Canadian forestry problem, future prices were
deflated by the consumer price index and converted to Canadian dollars.11

The future call options used to calibrate volatilities are also from the CME. Two sets of
six call options written on the same futures contract were chosen. The call options expire
on October 31st, 2008 while the underlying futures contract expires on November 14, 2008.
(At the CME, the lumber options expire the last business day in the month prior to the
delivery month of the underlying futures contract.) The first set of six options was obtained
on May 23rd, 2008 and the price of the corresponding futures contract was 260.8 $U.S./mbf.
The second set was obtained on May 30th, 2008 and the futures price on that day was 260.9
$U.S./mbf. The strike prices of the six call options range from 260 to 310 $U.S./mbf.

In our case since the underlying futures contracts expires on November 14, 2008 and
the options expire on October 31, 2008, Tv < T . For the calibration, we must assume that
Tv = T holds approximately. To justify this assumption, we appeal to the fact that options
prices were retrieved in May 2008, some months before their expiry.

5.2 Calibration Results

Table 2 presents the calibration results for parameter values in the RSMR model.12 In
the table we observe two quite different regimes in the Q-measure. Regime 1 has a much
higher equilibrium price level, K(1), but a lower speed of mean reversion, α(1) compared to
regime 0. The risk neutral intensity of switching out of regime 1 is very low at λ1→0 = 0.39
which implies that in the risk neutral world prices are mostly in this regime with the higher
equilibrium price.

Calibrated parameter values for the TMR model are also reported in Table 2. Compared
with the RSMR model, for the TMR model, both the long-run price level K and mean
reversion rate α are between the values reported for regime 1 and regime 0.

Table 3 reports the mean absolute errors as defined in Equations (13) and (14) for the
four futures contracts used to calibrate the RSMR and the TMR models. From the last
column, it appears that the RSMR model outperforms the TMR model, since the overall
average errors expressed in two different ways are lower in the RSMR model. The RSMR
model also has lower errors for each of the four futures contracts individually. Figures 3 and
4 show plots of the the model implied futures prices and market futures prices for the two
futures contracts corresponding to the largest and smallest calibration errors from Table 3.

11For CME Random Length Lumber futures, the delivery contract months are as follows: January, March,
May, July, September and November. There are six lumber futures on each day only the first four of which
are actively traded. Therefore, only the first four futures contracts are used in parameter calibration. The
last day of trading is the business day prior to the 16th calendar day of the contract month.

12Since these parameters are calibrated in the Q-measure it is not possible to interpret them in terms of
the observed behaviour of spot prices. However, if the market price of risk equals zero the P-measure and
Q-measure will coincide. If we believe that the market price of risk for a commodity is fairly low then we
can draw some intuition about the P-measure process from our results.

13



RSMR Model

α(0) α(1) K(0) K(1) λ0→1 λ1→0

3.61 0.40 71.92 516.64 17.09 0.39

TMR Model

α K
0.69 341.00

Table 2: Calibrated parameter values for the RSMR and TMR model, K(0), K(1) and
K are in $Cdn(2005)/MBF.

Mean absolute error
T 30 90 150 210 Overall

RSMR model
In dollars 22.23 18.50 18.97 20.56 20.07

In percentage 5.65 4.49 4.56 5.00 4.93
TMR model

In dollars 39.33 30.90 30.49 34.48 33.80
In percentage 10.36 7.85 7.48 8.21 8.47

Table 3: Mean absolute errors for all the four different futures contracts in both RSMR
and TMR models, expressed in dollars and in percentage. T refers to the number of days
to maturity

The closer fit of the RSMR model to market data is noticeable through visual inspection of
these graphs.

We perform a χ2 test to determine more rigourously if our calibration procedure produces
a good fit of the futures data. A time series of the difference between the model implied
futures prices and market futures prices can be calculated for each model and the mean of
this series is tested to determine whether it is statistically different from zero. Let F̂ denotes
model implied futures prices and F refers to the market futures prices. The difference of
these two time series can be expressed as

difft = F̂t − Ft (25)

for all the observation dates t ∈ T . Define µdiff as the mean of the difference and σ2
diff as the

variance of the difference. Therefore µ̂diff and σ̂2
diff refer to the estimator of the mean and

variance respectively. The null of the test is H0 : µdiff = 0. The alternative is H1 : µdiff 6= 0.
The test statistic for the mean of this difference can be constructed as

µ̂2
diff

σ̂2
diff

∼ χ2
(1) (26)

Test statistics and corresponding P-values are calculated for all four futures contracts for
both models. The results are shown in Table 4.

From Table 4 for both the RSMR and TMR models, we cannot reject the null at the
1% level for all four futures contracts. So for both models the difference between the model
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(a) f1: futures contracts with average 30 days to maturity.
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(b) f2: futures contract with average 60 days to maturity.

Figure 3: RSMR model implied futures prices and market futures prices for two futures
contracts. f1 has the largest error while f2 has the smallest error in Table 3.
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(a) f1: futures contracts with average 30 days to maturity.
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(b) f3: futures contracts with average 90 days to maturity.

Figure 4: TMR model implied futures prices and market futures prices for two futures
contracts, f1 has the largest error while f3 has the smallest error from Table 3.
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Model diagnostic check
T 30 90 150 210

RSMR model
Test statistics 0.0947 0.0000 0.0005 0.0010

p-value 0.7583 0.9964 0.9820 0.9750
TMR model

Test statistics 0.5918 0.1251 0.0000 0.0863
p-value 0.4417 0.7236 0.9976 0.7689

Table 4: Model diagnostic check for RSMR and TMR models

RSMR Model TMR Model
σ(0) σ(1) σ

0.0038 0.2545 0.28

Table 5: Calibrated volatilities for the RSMR and TMR models

implied and actual futures prices is not significant for all contracts. By this measure our
calibration procedure has done a good job at matching futures prices to both the TMR and
RSMR models. Unfortunately this test does not allow us to conclude that one model is
definitely preferred over the other. In the next section we will consider whether the choice
of TMR or RSMR model makes a difference to the optimal decision in a timber harvesting
problem.

The calibration procedure on futures options, described in Section 4.2, resulted in cali-
brated volatilities shown in Table 5. Volatility in regime 0 is much lower than in regime 1. It
may be noted that λ0→1 is quite high, indicating that in the risk neutral world price remains
only briefly in regime 0. The expected time in a given regime is 1/λ years.

6 Specification of the optimal harvesting problem and

its numerical solution

After analyzing the dynamics of the lumber price process and calibrating all the parameter
values of the corresponding model, we are ready to solve for the value a forestry investment.
We will value a hypothetical stand of trees in Ontario’s boreal forest using both the RSMR
and TMR models. We will investigate whether use of these two models in a realistic optimal
harvesting problem will result in different land values and optimal harvesting ages. We
use the same investment problem as in Insley and Lei (2007). In Insley and Lei (2007) a
TMR process was used and the estimation procedure was carried out through ordinary least
squares on spot price data. We compare the regime switching model with the results of the
TMR process and also the results from Insley and Lei (2007).

In the following sections, a real options model of the forestry investment valuation will
be developed assuming lumber prices follow the RSMR process. Coupled partial differential
equations (PDEs) characterizing the values of the option to harvest the trees will be derived
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using contingent claim analysis. A finite difference method will be employed to solve the
PDEs numerically given appropriate boundary conditions. The model and numerical solution
scheme for the TMR price case is described in Insley and Rollins (2005).

6.1 Harvesting model for the RSMR case

We model the optimal decision of the owner of stand of trees who wants to maximize the
value of the stand (or land value) by optimally choosing the harvest time. It is assumed that
forestry is the best use for this land, so that once the stand is harvested it will be allowed to
grow again for future harvesting. Since this is a multirotational optimal harvesting problem,
it represents a path-dependent option. The value of the option to harvest the stand today
depends on the quantity of lumber, which itself depends on the last time when the stand
was harvested.

Lumber price is assumed to follow either the RSMR model or the TMR model detailed
in the previous sections. In this section we derive the key partial differential equation that
describes the value of the stand of trees for the RSMR case. Derivation of the key partial
differential equation for the TMR case can be found in Insley and Lei (2007).

For now we write the RSMR model from Equation (4) in a more general form as:

dP (st) = a(st, P, t)dt+ b(st, P, t)dZ (27)

Denote qst→1−st , the risk of regime shift, as a Poisson process, where st ∈ {0, 1} indicates
the regime.

dqst→1−st = 1 with probability λst→1−stdt

dqst→1−st = 0 with probability 1− λst→1−stdt

With probability λdt price changes regime during the small interval dt, and with probability
1− λdt price remains in the same regime.

There are two risks associated with this stochastic process. One is the standard contin-
uous risk in the dZ term. The other, in discrete form, is due to the risk of regime switch.
In order to hedge these two risks and value the stand of trees V (st, P, ϕ), two other traded
investment assets, which depend solely on lumber price, are needed. Let ϕ denote the age
of the stand, defined as ϕ = t − th, where th represents the time of last harvest. ϕ in this
case is another state variable, in addition to P . ϕ satisfies dϕ = dt.

Assume that there exist investment assets which depend on the lumber price P and can
be used to hedge the risk of our investment. Using standard arguments we set up a hedging
portfolio that eliminates the two risks. We can derive the fundamental partial differential
equation that characterizes the value of the stand of trees.

V (st)t + (a(st, P, t)− βP b(st, P, t))V (st)P +
1

2
b(st, P, t)

2V (st)PP +

V (st)ϕ − rV (st) + βsw(V (1− st)− V (st)) = 0 (28)

βP and βsw are parameters which represent market prices of risk for the diffusion risk and
regime-switching risk respectively.
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Our estimation method detailed in Sections 4 and 5 yields risk neutral parameter values.
Therefore the following relationships hold

a(st, P, t)− βP b(st, P, t) = α(st)(K(st)− P )

b(st, P, t) = σ(st)P

βsw = λst→1−st

Substituting these equations into the above PDE give

V (st)t + α(st)(K(st)− P )V (st)P +
1

2
(σ(st)P )2V (st)PP + V (st)ϕ − rV (st) +

λst→1−st(V (1− st)− V (st)) = 0. (29)

The complete harvesting problem can then be specified as a linear complementarity
problem (LCP). Define τ ≡ T − t as time remaining in the option’s life. Rewrite the above
PDE and define HV as

HV ≡ rV (st)− (V (st)t + α(st)(K(st)− P )V (st)P +
1

2
(σ(st)P )2V (st)PP + V (st)ϕ+

λst→1−st(V (1− st)− V (st))) (30)

Then the LCP is modeled as:

(i) HV ≥ 0 (31)

(ii) V (st, P, ϕ)− [(P − Ch)Q(ϕ) + V (st, P, 0)] ≥ 0

(iii) HV

[
V (st, P, ϕ)− [(P − Ch)Q(ϕ) + V (st, P, 0)]

]
= 0

where Ch is the cost per unit of lumber, Q(ϕ) is the volume of the lumber which is a function
of age, Q = g(ϕ). [(P − Ch)Q(ϕ) + V (st, P, 0)] is the payoff from harvesting immediately
and consists of revenue from selling the harvested timber plus the value of the bare land,
V (st, P, 0). The above LCP implies if the stand of trees is managed optimally either HV ,
V (st, P, ϕ) − [(P − Ch)Q(ϕ) + V (st, P, 0)], or both will be equal to zero. If HV = 0, it is
optimal for the investor to continue holding the option by delaying the decision to harvest.
The growing stand of trees is earning the risk free return. If V (st, P, ϕ)− [(P − Ch)Q(ϕ) +
V (st, P, 0)] = 0, then the value of the stand of trees just equals the value of immediate
harvest and the investor should harvest the trees. If both terms are equal to zero, either
strategy is optimal.

6.2 Numerical solution of the Linear Complementarity Problem

This section briefly describes the numerical methods used for solving the regime switching
LCP, Equation (31). We also analyze the properties of the scheme, such as the stability and
monotonicity. More details of the numerical solution are contained in Appendix A.
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6.2.1 General description of the numerical methods

The option to choose the optimal harvest time has no analytical solution. The LCP expressed
in Equation (31) in this paper is solved numerically using the combination of fully implicit
finite difference method, semi-Lagrangian method and the penalty method. This approach
is also used in Insley and Lei (2007) but for a single regime problem. The finite difference
method is used to convert a differential equation into a set of discrete algebraic equations
by replacing the differential operators in PDEs with finite difference operators.

For the optimal tree harvesting problem examined in this paper, there are two state
variables. One is the spot price P and the other is the stand age ϕ. Using the semi-
Lagrangian method this two-factor problem can be reduced to a one factor problem for
each time step. After each time step, the true option value is obtained by using linear
interpolation. For the details of this method, see Insley and Rollins (2005) and Morton and
Mayers (1994).

There are several approaches to the numerical solution of the LCP. An overview of these
methodologies is provided in Ikonen and Toivanen (2008). The penalty approach used here
converts the LCP into a nonlinear algebraic problem, which is then solved by Newton it-
eration. The penalty method has several benefits. It is more accurate than an explicit
method and has good convergence properties. Another advantage is that at each iteration it
generates a well-behaved sparse matrix, which can be solved using either direct or iterative
methods.13

The penalty method used in this paper is outlined here. Define τ = T − t and V (st)t =
−V (st)τ . The LCP14 in Equation (31) can be expressed as a single equation:

V (st)τ − V (st)ϕ = α(st)(K(st)− P )V (st)P +
1

2
(σ(st)P )2V (st)PP − rV (st) +

λst→1−st(V (1− st)− V (st)) + Υ(st) (32)

where Υ(st) on the right hand side of this equation is the penalty term, which satisfies

Υ(st) > 0 if V (st, P, ϕ) = [(P − Ch)Q(ϕ) + V (st, P, 0)] (33)

= 0 if V (st, P, ϕ) > [(P − Ch)Q(ϕ) + V (st, P, 0)] (34)

Equation (33) implies that if option value equals to the payoff, which is [(P − Ch)Q(ϕ) +
V (st, P, 0)]15, it is optimal to harvest the trees immediately, which is the first condition in
LCP Equation (31). If the option value is higher than the payoff, Equation (34) implies the
harvest should be delayed which is the second condition in the LCP equation. The penalty
method in this way incorporates the American constraint.

A complicating factor in our problem is the presence of regime switching in the spot price
process. We have two PDEs in the form of Equation (29), one for each option value of the
two regimes. Moreover, the option value in one regime affects the option value in the other
regime16. We deal with this problem by stacking the discretized version of equation (32) for

13See Zvan et al. (1998) and Fan et al. (1996) for more on the penalty method.
14This LCP characterizes the option value in regime st, V (st).
15The payoff is defined as the net revenue of selling the trees plus the value of the bare land.
16i.e. The option value in regime (1 − st), V (1 − st), appears in Equation (29) characterizing the option

value in regime st, V (st).
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option values in two regimes and solving the two discretized PDEs together at each time
step. In this manner the PDEs in the two regimes are fully coupled.

6.2.2 Discretization

This section illustrates the main results of finite difference discretization, the semi-Lagrangian
method and penalty method of dealing with LCP17. Prior to presenting the matrix form of
the LCP discretization, several notations are introduced here.

For PDE discretization, unequally spaced grids in the directions of the two state variables
P and ϕ are used. The grid points are represented by [P1, P2, ..., Pimax] and [ϕ1, ϕ2, ..., ϕjmax]
respectively. We also discretize the time direction, represented as τN , ..., τ 1(18). Define
V (st)

n+1
ij as an approximation of the exact solution V (st, Pi, ϕj, τ

n+1), and V ∗(st)
n
ij as an

approximation of V (st, Pi, ϕj, τ
n). Recall that τ = τN , t = 0 and at τ = τ 1, t = T . Based

on the semi-Lagrangian method, the true solution of V (st, Pi, ϕj+∆τ , τ
n) is obtained from

V ∗(st)
n
ij using linear interpolation after each time step.

Denote ` a differential operator represented by

`V (st) = α(st)(K(st)− P )V (st)P +
1

2
(σ(st)P )2V (st)PP − rV (st)

Equation (32) can be rearranged as:

V (st)τ − V (st)ϕ = `V (st) + λst→1−stV (1− st) + Υ(st) (35)

Note that the right hand side of this equation has derivatives with respect to P only. There-
fore this one-dimensional PDE for each ϕj is solved independently within each time step.
After each time step is completed, using linear interpolation we will get V (st, Pi, ϕj+∆τ , τ

n)
from V ∗(st)

n
ij. The discretized version of Equation (35) using the fully implicit method and

the semi-Lagrangian method is written as

V (st)
n+1
ij − V ∗(st)nij

∆τ
= [`V (st)]

n+1
ij + λst→1−stV (1− st)n+1

ij + π(st)
n+1
ij (36)

where the penalty term π(st)
n+1
ij is defined as

π(st)
n+1
ij =

1

∆τ
(payoff− V (st)

n+1
ij )Large; if V (st)

n+1
ij < payoff (37)

= 0; otherwise (38)

The term ‘Large’ in equation (37) is a large number19 and case dependent. The subscript ij
refers to the point corresponding to (Pi, ϕj) and superscript n denotes the nth time step.

Rearranging Equation (36) and writing in a matrix form results in

W (st)V (st)
n+1 −∆τλst→1−stV (1− st)n+1 = V ∗(st)

n + π(st)
n+1

payoff(st)
n+1 (39)

17Detailed discretization is provided in Appendix A.
18The iteration starts from the final maturity date T and moves backward along the time direction until

the current time 0.
19For example, Large = 106 for some cases.
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where W (st) is a sparse matrix containing all the parameters corresponding to the option
value in regime st. The other terms except ∆τλst→1−st are expressed in vector form. The

ijth element in the penalty vector π(st)
n+1

is defined as

π(st)
n+1

ij = Large; if V (st)
n+1
ij < payoff

= 0; otherwise

Equation (39) is the final discretized version of the LCP corresponding to V (st). However,
the option value in the other regime V (1− st) appears in this expression. In order to obtain
both option values for all the grid points at each time step, the discretized LCP for V (1−st)
which is similar with the expression (39) is stacked with Equation (39) to form a system of
equations, which can be written as

Zmatrix

[
V (st)

V (1− st)

]n+1

=

[
V ∗(st)

V ∗(1− st)

]n
+

[
π(st)

π(1− st)

]n+1 [
payoff(st)

payoff(1− st)

]n+1

(40)

Zmatrix is a large sparse matrix. This system of equations is solved iteratively at each time
step. For simplicity, the more compact version of Equation (40) can be expressed as

Zmatrix[V ]n+1 = [V ∗]n + [π]n+1[payoff]n+1 (41)

This is the scheme we use to numerically solve the optimal tree harvesting problem.

6.2.3 Boundary conditions and pseudo code

In order to solve Equation (41), the appropriate boundary conditions as well as the terminal
condition are specified below. These are the same as used in Insley and Rollins (2005).

1. As P → 0, no specific boundary condition is needed. Substitute P = 0 into Equation
(41) and discretize the resulted PDE.

2. As P → ∞, we set V (st)PP = 0. As price goes to infinity, we assume the option
value is a linear function of P .

3. As ϕ → 0, no specific boundary condition is needed since the PDE is first order
hyperbolic in the ϕ direction, with outgoing characteristic in the negative ϕ direction.

4. As ϕ → ∞, V (st)ϕ → 0, and hence no boundary condition is needed. Since as the
stand age goes to infinity, we assume the wood volume in the stand has reached some
a steady state and the value of the option to harvest does not change with ϕ.

5. Terminal condition. V (st, T ) = 0 This means when T gets very large, it has a
negligible effect on the current option value.

Pseudo code for solving Equation (41) is provided as the follows20.

20All programs are written in Matlab.
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1. Set up tolerance level tol

2. Large = 1
tol

3. for τ = 1 : N − 1; % time step iteration
for j = 1 : jmax; % iterate along the age ϕ direction
([V ]n+1)0 = [V ]n; % initial guess for [V ]n+1

for k = 0, ... until convergence; % penalty American constraint iteration

(πn+1)k = Large; if V n+1 < payoff

= 0; otherwise

Zmatrix([V ]n+1)k+1 = [V ∗]n + ([π]n+1)k[payoff]n+1

if maxi
|((Vi)

n+1)k+1−((Vi)
n+1)k|

max(1,|((Vi)n+1)k+1|) < tol
quit;
endfor; % end penalty American constration iteration
endfor; % end iteration along ϕ direction
V (st, Pi, ϕj+∆τ , τ

n) = V ∗(st)
n
ij; % by linear interation

endfor; % end time step iteration

6.2.4 Properties of the numerical scheme

Since no closed-form solution exists for our optimal tree harvesting problem, the properties
of our proposed numerical scheme have to been examined. In the case of nonlinear pricing
problems, seemingly reasonable numerical schemes can converge to an incorrect solution21.
A stable, consistent and monotone discretization will converge to the viscosity (i.e. correct)
solution.22. Generally speaking, consistency is guaranteed if a reasonable discretization is
used23. We use finite difference discretization which is a one of the standard discretization
methods. In Appendix B, we prove that our scheme is monotone and stable and thus
converges to the viscosity solution.

7 Optimal harvesting problem: data and empirical re-

sults

7.1 Cost, wood volume and price data

We examine an optimal harvesting problem for a hypothetical stand of Jack Pine trees in
Ontario’s boreal forest. We consider the optimal harvesting decision and land value assuming

21See Pooley et al. (2003).
22See Barles (1997) for detailed proof. For the definition of viscosity solution, see d’Halluin et al. (2005).

For the existence of a viscosity solution in the regime switching case, see Pemy and Zhang (2006).
23See d’Halluin et al. (2005).
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Item Cost, $/ha Age cost incurred
Site preparation $200 1
Nursery stock $360 1

Planting $360 2
First tending $120 5
Monitoring $10 35

Table 6: Silviculture costs under a basic regime

Harvest and transportation cost $47
Price of SPF1 $60
Price of SPF2 $55
Price of SPF3 $30

Price of poplar/birch $20

Table 7: Assumed values for log prices and cost of delivering logs to the mill in $ per
cubic meter

that the stand will continue to be used for commercial forestry operations over multiple
rotations. Values are calculated prior to any stumpage payments or taxes.

Timber volumes and harvesting costs are adopted from Insley and Lei (2007) and are
repeated here for the convenience of the reader. Volume and silviculture cost data were kindly
provided by Tembec Inc. The estimated volumes reflect ‘basic’ levels of forestry management
which involves $1040 per hectare spent within the first five years on site preparation, planting
and tending. These costs are detailed in Table 6. Note that in the Canadian context these
basic silviculture expenses are mandated by government regulation for certain stands.

Volumes, estimated by product, are shown in Figure 5 for the basic regime.24 SPF1 and
SPF2 are defined as being greater than 12 centimeters at the small end, SPF3 is less than 12
centimeters, and ‘other’ refers to other less valuable species (poplar and birch). Data used
to plot this graph is provided in Insley and Wirjanto (2008).

Assumptions for harvesting costs and current log prices at the millgate are given in Table
7. These prices are considered representative for 2003 prices at the millgate in Ontario’s
boreal forest. Average cost to deliver logs to the lumber mill in 2003 are reported as $55 per
cubic meter in a recent Ontario government report Ontario Ministry of Natural Resources
(2005). From this is subtracted $8 per cubic meter as an average stumpage charge in 2003
giving $47 per cubic meter.25 It will be noted the lower valued items (SPF3 and poplar/birch)
are harvested at a loss. These items must be harvested according to Ontario government
regulation. The price for poplar/birch is at roadside, so there is no transportation cost to
the mill.

24The yield curves were estimated by Margaret Penner of Forest Analysis Ltd., Huntsville, Ontario for
Tembec Inc and are available from the author on request.

25This consists of $35 per cubic meter for harvesting and $12 per cubic meter for transportation. Average
stumpage charges are available from the Ontario Ministry of Natural Resources.
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Figure 5: Volumes by product for hypothetical Jack Pine stands in Ontario’s boreal forest
under basic management

7.1.1 Results for land value and critical harvesting prices

The parameter values of the RSMR model used to evaluate the investment are provided in
previous sections. The equilibrium price levels in the two regimes, K(st), as shown in Table 2,
are stated in Canadian dollars at Toronto. In order to value our hypothetical stand of trees,
the equilibrium prices need to be scaled to reflect prices at the millgate. Our estimate of price
at the millgate in 2003 for SPF1 logs is Cdn.$60 per cubic meter. In 2003 the average spot
price in Toronto was Cdn. $375 per MBF. We use the ratio of 375/60 as adjustment factor
to scale the equilibrium price levels. The scaled long-run price levels become K(0) = $11.51
and K(1) = $82.66 per cubic metre. This rescaling accounts for transportation costs from
Toronto to the mill and milling costs (as well as the conversion from MBF to m3).

Land values calculated using the RSMR and TMR models are provided in Table 8 for
three different initial stand ages and two initial lumber prices. For the RSMR model, the
value of the opportunity to harvest a stand at the beginning of rotation (stand age of zero) is
$2858 per hectare in either regime 1 or 2 regime and for both initial price levels shown. This
reflects the fact that at the beginning of the rotation the harvest date is many years away
and regime switching will likely happen numerous times over the next few decades. Hence
the current regime has little effect on land value at the beginning of the rotation. Similarly
the current price has a negligible effect on the value of the bare land. For older stands for
which the optimal harvesting time is nearer, the value of the stand does depend positively
on the current price of lumber. Further, the stand value is slightly higher in regime 1 than in
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Land value in $ per hectare, Initial lumber price of $60/m3

RSMR model TMR model
Initial Stand age Regime 0 Regime 1 Single regime

Age 0 2858 2858 1404
Age 50 10593 10728 5617
Age 75 13406 13660 9078

Land value in $ per hectare, Initial lumber price of $100/m3

RSMR model TMR model
Initial Stand age Regime 0 Regime 1 Single regime

Age 0 2858 2858 1404
Age 50 11503 12242 7474
Age 75 15352 16619 13896

Table 8: Land values at the beginning of the first rotation for regime switching and tra-
ditional mean reversion models, $(2005)Canadian per hectare
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Figure 6: Land values for different aged stands in the RSMR case. Dashed lines: Regime
1, solid lines: Regime 0
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regime 0. In Table 8, we observe that at an initial price of $100/m3 the land value in regime
1 is approximately 8% higher than in regime 0. Another perspective on land values for older
stands is given in Figure 6. Here we see that land value for 50 and 75 year old stands rises
with lumber price and that for a range of prices the value in regime 1 exceeds the value in
regime 0. As will be seen below, this price range is around the critical price level that would
trigger optimal harvesting.

The value of land in the TMR regime, also shown in Table 8, is $1404 per hectare at age
0, significantly lower than in the RSMR case. For comparison purposes we note that the
land value for the same stand at age 0 calculated in Insley and Lei (2007) was $1630/ha. The
analysis in Insley and Lei (2007) uses the same cost and yield data, with a TMR process.
However the parameters of the TMR process were estimate through OLS on spot price data
and the market price of risk was estimated separately.

Critical harvesting prices versus stand age are shown in Figure 7. For a stand of a
given age, once the critical harvesting price is met or surpassed, harvesting of the stand
and replanting for the next rotation are the optimal actions. Harvesting is not permitted
in the model prior to age 35 until all silviculture expenditures have been made. Critical
prices are high during the earlier ages when the trees are still growing, but fall as the stand
ages and eventually reach a steady state. Critical prices are highest for Regime 1 which
is characterized by a high equilibrium level and a slower speed of mean reversion. Higher
prices are more likely in this regime, and it is worthwhile delaying harvesting until a higher
threshold is reached. In contrast with regime 0 lower prices are more likely as the speed of
mean reversion is faster and the equilibrium level is lower. Hence it is better to harvest at a
lower threshold to avoid the possibility of facing an even lower price. Critical prices for the
TMR case are consistently below those of the two regimes in the RSMR model.

In summary, although our calibration procedure was able to fit futures data quite well for
both models, the RSMR price model results in significantly different land values and critical
harvesting prices than the TMR model.

8 Concluding remarks

This paper investigates a possible improvement in the modelling of stochastic timber prices
in optimal tree harvesting problems. Our goal is to find a modelling approach that is rich
enough to capture the main characteristics of timber prices, while still being simple enough
that the resulting price model can easily be incorporated into problems of forest investment
valuation. We compare two different stochastic price process, a regime switching model with
a different mean revering process in each regime (RSMR) and a traditional mean reverting
model (TMR). The RSMR model allows for two states in lumber markets which we may
characterize as being good times and bad times. The price models are calibrated using
lumber futures prices and futures call option prices. The calibration process is able to find
a reasonable fit for both models, but the mean absolute error is lower for the RSMR model.

In the second part of the paper, we use the calibrated timber price models in a real options
model of the optimal harvesting decision. PDEs characterizing the value of the stand of trees
are derived using contingent claim analysis. A linear complementarity problem (LCP) is then
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Figure 7: Critical harvesting prices for the RSMR and TMR cases

developed and solved using a fully implicit numerical method. We show that our numerical
scheme converges to the viscosity solution (i.e. the correct solution.)

Our empirical example is for a hypothetical stand of trees in Ontario’s boreal forest. For
the RSMR model, the estimated land value at the beginning of the rotation is insensitive to
the particular regime and at $2858 per hectare is of a reasonable order of magnitude. The
land value for the TMR model is $1404 per hectare. We also examined critical harvesting
prices, which for the RSMR model differ depending on the current regime.

We conclude that the RSMR model shows some promise as a parsimonious model of
timber prices, that can fairly easily be incorporated into optimal harvesting models. One
limitation of our methodology is in the use of short term maturity contracts in the calibration
exercise. The longest maturity of the chosen futures contract is less than one year, but
unfortunately this is all that is available. One may ask whether the calibrated parameter
values are appropriate for long term forestry investment valuation problems. Schwartz and
Smith (2000) has proposed a way of dealing with this issue. The applicability of his method
for lumber prices is an area for future research.

Future research will also investigate the robustness of the RSMR model through com-
parison with other multi-factor models that have been used in the literature to value other
commodity linked investments. We hope that other researchers will find the methodologies
demonstrated here useful for the analysis of other types of investments, particularly those
dependent on commodity prices where active futures markets exist.
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Appendix

A Numerical solution of LCP

The basic linear complementarity problem of our optimal tree harvesting problem can be
expressed as Equation (32)

V (st)τ − V (st)α = α(st)(K(st)− P )V (st)P +
1

2
(σ(st)P )2V (st)PP − rV (st) +

λst→1−st(V (1− st)− V (st)) + Υ(st) (A1)

This PDE is discretized using unequally spaced grids in the directions of P and α. Time
direction is also discretized. Define nodes on the axes for P , α and τ by

P = [P1, P2, ..., PI ] (A2)

α = [α1, α2, ..., αJ ]

τ = [τ1, τ2, ..., τN ]

Using fully implicit difference method, the difference scheme for Equation (A1) can be
written as

V (st, Pi, αj, τ
n+1)− V (st, Pi, αj+∆τ , τ

n)

∆τ
=

[
α(st)(K(st)− P )V (st)P +

1

2
(σ(st)P )2V (st)PP − rV (st) +

λst→1−st(V (1− st)− V (st)) + Υ(st)

]n+1

ij

(A3)

For simplicity, define V (st)
n+1
ij = V (st, Pi, αj, τ

n+1), V ∗(st)
n
ij = V (st, Pi, αj+∆τ , τ

n) and
rewrite Equation (A3) as

V (st)
n+1
ij − V ∗(st)nij

∆τ
=

[
α(st)(K(st)− P )V (st)P +

1

2
(σ(st)P )2V (st)PP − rV (st) +

λst→1−st(V (1− st)− V (st)) + Υ(st)

]n+1

ij

(A4)

Since the right hand side of Equation (A4) only contains the state variable P , this one-
dimensional PDE is solved numerically for each stand age αj within each time step. After
one time step iteration completes, using linear interpolation to get V (st, Pi, αj+∆τ , τ

n). Hence
our only concern is the discretization of derivatives with respect to P .
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A1 Discretization for interior points along P direction

For simplicity, the dependence of the regime st is dropped for discretization, except for
V (1− st) in Equation (A4). Hence it can be further simplified as

V n+1
ij − V ∗nij

∆τ
=

[
α(K − P )VP +

1

2
(σP )2VPP − rV + λst→1−st(V (1− st)− V ) + Υ

]n+1

ij

(A5)

Central difference, forward difference and backward difference methods can be used to
discretize the first derivative term VP for interior points i = [2, ..., I − 1]. We choose the
difference method which will assure the positive coefficient scheme. If all these three methods
can guarantee the positive coefficient scheme, central difference will be picked up for its faster
convergence. For illustration purpose, the complete discretiztion equation will use central
difference method for VP .

V n+1
ij − V ∗nij

∆τ
=

{
σ2P 2

2

[ Vi+1,j−Vij

Pi+1−Pi
− Vij−Vi−1,j

Pi−Pi−1

Pi+1−Pi−1

2

]
+ α(K − P )

[
Vi+1,j − Vi−1,j

Pi+1 − Pi−1

]
−(r + λst→1−st)Vij + λst→1−stV (1− st)ij +

πij
∆τ

[(Pi − C)Qj + Vi0 − Vij]
}n+1

(A6)

Equation (A6) can be simplified as

V n+1
ij − V ∗nij

∆τ
= aiV

n+1
i−1,j + biV

n+1
i+1,j − [ai + bi + r + λst→1−st +

πij
∆τ

]V n+1
ij

+λst→1−stV (1− st)n+1
ij +

πij
∆τ

[(Pi − C)Qj + Vi0 − V n+1
ij ] (A7)

where define αi ≡ σ2P 2
i

Pi+1−Pi−1

1. For central difference method

ai ≡
αi

Pi − Pi−1

− α(K − Pi)
Pi+1 − Pi−1

; bi ≡
αi

Pi+1 − Pi
+

α(K − Pi)
Pi+1 − Pi−1

2. For forward difference method

ai ≡
αi

Pi − Pi−1

; bi ≡
αi

Pi+1 − Pi
+
α(K − Pi)
Pi+1 − Pi

3. For backward difference method

ai ≡
αi

Pi − Pi−1

− α(K − Pi)
Pi − Pi−1

; bi ≡
αi

Pi+1 − Pi
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A2 Discretization of boundary conditions for i = 1 and i = I

When P = 0, no specific boundary condition is needed. Substitute P = 0 into LCP Equation
(A1) to get PDE for this boundary

V (st)τ − V (st)ϕ = α(st)K(st)V (st)P − rV (st) + λst→1−st(V (1− st)− V (st)) + Υ(st) (A8)

Using forward discretization for V (st)P , the discrete version of Equation (A8) can be written
as

V n+1
1j − V ∗n1j

∆τ
= b1V

n+1
2,j − [b1 + r + λst→1−st +

π1j

∆τ
]V n+1

1j + λst→1−stV (1− st)n+1
1j +

π1j

∆τ
[(P1 − C)Qj + V10 − V n+1

1j ] (A9)

where b1 = αK
P1−P0

.
When P = PI , the option value is a linear function of the price. Hence the sec-

ond derivative term V (st)PP = 0. Guess the solution V (st)Ij = A(τ) + B(τ)PI . When
P → ∞, the term B(τ)PI dominates and V (st)Ij ≈ B(τ)PI . For the first derivative term
α(st)(K(st) − P )V (st)P , PI � K(st). Hence α(st)(K(st) − P )V (st)P ≈ −α(st)PV (st)P =
−α(st)V (st). The LCP equation (A1) in this boundary can then be expressed as

V (st)τ − V (st)ϕ = −α(st)V (st)− rV (st) + λst→1−st(V (1− st)− V (st)) + Υ(st) (A10)

The discrete version of Equation (A10) can be written as

V n+1
Ij − V ∗nIj

∆τ
= −[α + r + λst→1−st +

πIj
∆τ

]V n+1
Ij + λst→1−stV (1− st)n+1

Ij +

πIj
∆τ

[(PI − C)Qj + VI0 − V n+1
Ij ] (A11)

A3 Complete discretization

Combine Equations (A7), (A9) and (A11), and write them in matrix form as

[(1 + ∆τ(r + λst→1−st))I +W (st) + πn+1]V (st)
n+1 −∆τλst→1−stV (1− st)n+1 =

V (st)
∗n + π(st)

n+1
[(P − C)Q+ V (st)

n+1
0 ] (A12)

where W (st) is a square sparse matrix which has the following elements:

W (st) =



∆τb1 −∆τb1 0 0 0 ... 0 0

−∆τa2 ∆τ(a2 + b2) −∆τb2 0 0 ... 0 0

... ... ... ... ... ... ... ...

0 0 0 ... 0 −∆τaI−1 ∆τ(bI−1 + bI−1) −∆τaI−1

0 0 0 ... 0 0 0 ∆τα(st)


(A13)
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The above analysis for the option value in regime st can be used in the same way for
the option value in the other regime 1− st. The similar equation as Equation (A12) can be
derived for V (1− st) which can be written as

[(1 + ∆τ(r + λ1−st→st))I +W (1− st) + πn+1]V (1− st)n+1 −∆τλ1−st→stV (st)
n+1 =

V (1− st)∗n + π(1− st)
n+1

[(P − C)Q+ V (1− st)n+1
0 ](A14)

Denote AA(st) = [(1 + ∆τ(r+ λst→1−st))I +W (st) + πn+1]. Then its counterpart for regime
1− st can be defined as AA(1− st) = [(1 + ∆τ(r + λ1−st→st))I + W (1− st) + πn+1]. Stack
Equations (A12) and (A14) together and get[

AA(st) −∆τλst→1−st

−∆τλ1−st→st AA(1− st)

] [
V (st)

V (1− st)

]n+1

=

[
V ∗(st)

V ∗(1− st)

]n
+[

π(st)

π(1− st)

]n+1 [
payoff(st)

payoff(1− st)

]n+1

(A15)

where Zmatrix =

[
AA(st) −∆τλst→1−st

−∆τλ1−st→st AA(1− st)

]
.

B Convergence to the viscosity solution

In this appendix, the monotonicity and stability properties of the discrete equations in
our numerical scheme are analyzed. We claimed earlier that our scheme is consistent. A
discretization that is consistent, monotone, and stable will converge to the viscosity solution.

Before proving the monotonicity and stability of our scheme, it is useful to gather together
several results for the finite difference discretization.

Lemma B.1. Zmatrix is an M matrix26

Proof. Equation (35) is discretized using central difference, forward difference or backward
difference methods to get a positive coefficient discretizations. The positive coefficient dis-
cretization means that Zmatrix has non-positive offdiagonal elements. Moreover, the sum of
all elements in each row of Zmatrix is non-negative27. Hence Zmatrix is an M matrix.

We follow d’Halluin et al. (2005)’s definition of monotone discretizations and rewrite the
discrete Equation (32) at each pair of node (Pi, ϕj) as28

gij(V
n+1
ij , {V n+1

i−j }, {V
n}) = −[ZV n+1

j ]i + [Φn+1V n]ij + [πn+1]ii(payoffij − V n+1
ij )

= 0 (B1)

where {V n+1
i−,j } denotes the set of values V n+1

i−,j without the ith element V n+1
ij . Φn+1 in this

expression is the Lagrange linear interpolant operator29 used to deal with linear interpolation
in the semi-lagrangian method.

[Φn+1V n]ij = V (st, Pi, ϕj+∆τ , τ
n) + interpolation error

26For definition and properties of M matrix, see Varga (2000).
27This can be checked from detailed discretization in Appendix A.
28For simplicity, in this expression V ≡ V (st) or V ≡ V (1− st).
29For details about Lagrange linear interpolation operator, see d’Halluin et al. (2005).
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Theorem B.2. The discretization scheme (B1) is unconditionally monotone.

Proof. In Lemma B.1 we have already showed that Z is an M -matrix. Therefore, −[ZV n+1
j ]i

is a strictly decreasing function of V n+1
ij , and a non-decreasing function of {V n+1

i−,j }. [Φn+1V n]ij
is a non-decreasing function of {V n}, since Φn+1 is a linear interpolant operator. The last
term in equation (B1) [πn+1]ii(payoffij − V n+1

ij ) is a non-increasing function of V n+1
ij since

the elements in [πn+1]ii are non-negative. Therefore, this discretization scheme is monotone
based on d’Halluin et al. (2005)’s definition.

Theorem B.3. The scheme satisfies

||V n+1||∞ ≤ max{||V n||∞, ||payoff||∞}

and is unconditionally stable.

Proof. Write out the complete discretized version of Equation (32) as

−∆τV (st)
n+1
i−1,j + [1 + ∆τ(a(st)i + b(st)i + r + λk→1−k) + π(st)

n+1

ij ]V (st)
n+1
ij −∆τb(st)iV (st)

n+1
i+1,j

−∆τλk→1−kV (1− st)n+1
ij =

∑
ij

wijV (st)
n
ij + π(st)

n+1

ij payoffij(B2)

where wij is linear interpolant weight, satisfying 0 ≤ wij ≤ 1 and
∑
wij = 1. a(st)i and

b(st)i
30 are the components in Z matrix, which are non-negative. Denote |V (st)

n+1
m,j | =

||V n+1
j ||∞ where m is an index. Equation (B2) implies that

||V n+1
j ||∞(1 + r∆τ + πmm) ≤ ||V n||∞ + πmm||payoff||

which can be further simplified as

||V n+1
j ||∞(1 + r∆τ + πmm) ≤ max{||V n||∞, ||payoff ||∞}(1 + πmm) (B3)

Rearrange Equation (B3)

||V n+1
j ||∞ ≤ max{||V n||∞, ||payoff ||∞}

(1 + πmm)

(1 + r∆τ + πmm)

Hence just as claimed, we get

||V n+1||∞ ≤ max{||V n||∞, ||payoff ||∞}

and the scheme is unconditionally stable

30The detailed expression is in Appendix A.
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