7,166 research outputs found

    Measuring Similarity in Large-Scale Folksonomies

    Get PDF
    Social (or folksonomic) tagging has become a very popular way to describe content within Web 2.0 websites. Unlike\ud taxonomies, which overimpose a hierarchical categorisation of content, folksonomies enable end-users to freely create and choose the categories (in this case, tags) that best\ud describe some content. However, as tags are informally de-\ud fined, continually changing, and ungoverned, social tagging\ud has often been criticised for lowering, rather than increasing, the efficiency of searching, due to the number of synonyms, homonyms, polysemy, as well as the heterogeneity of\ud users and the noise they introduce. To address this issue, a\ud variety of approaches have been proposed that recommend\ud users what tags to use, both when labelling and when looking for resources. As we illustrate in this paper, real world\ud folksonomies are characterized by power law distributions\ud of tags, over which commonly used similarity metrics, including the Jaccard coefficient and the cosine similarity, fail\ud to compute. We thus propose a novel metric, specifically\ud developed to capture similarity in large-scale folksonomies,\ud that is based on a mutual reinforcement principle: that is,\ud two tags are deemed similar if they have been associated to\ud similar resources, and vice-versa two resources are deemed\ud similar if they have been labelled by similar tags. We offer an efficient realisation of this similarity metric, and assess its quality experimentally, by comparing it against cosine similarity, on three large-scale datasets, namely Bibsonomy, MovieLens and CiteULike

    Taxonomy and clustering in collaborative systems: the case of the on-line encyclopedia Wikipedia

    Full text link
    In this paper we investigate the nature and structure of the relation between imposed classifications and real clustering in a particular case of a scale-free network given by the on-line encyclopedia Wikipedia. We find a statistical similarity in the distributions of community sizes both by using the top-down approach of the categories division present in the archive and in the bottom-up procedure of community detection given by an algorithm based on the spectral properties of the graph. Regardless the statistically similar behaviour the two methods provide a rather different division of the articles, thereby signaling that the nature and presence of power laws is a general feature for these systems and cannot be used as a benchmark to evaluate the suitability of a clustering method.Comment: 5 pages, 3 figures, epl2 styl

    Semantic Stability in Social Tagging Streams

    Full text link
    One potential disadvantage of social tagging systems is that due to the lack of a centralized vocabulary, a crowd of users may never manage to reach a consensus on the description of resources (e.g., books, users or songs) on the Web. Yet, previous research has provided interesting evidence that the tag distributions of resources may become semantically stable over time as more and more users tag them. At the same time, previous work has raised an array of new questions such as: (i) How can we assess the semantic stability of social tagging systems in a robust and methodical way? (ii) Does semantic stabilization of tags vary across different social tagging systems and ultimately, (iii) what are the factors that can explain semantic stabilization in such systems? In this work we tackle these questions by (i) presenting a novel and robust method which overcomes a number of limitations in existing methods, (ii) empirically investigating semantic stabilization processes in a wide range of social tagging systems with distinct domains and properties and (iii) detecting potential causes for semantic stabilization, specifically imitation behavior, shared background knowledge and intrinsic properties of natural language. Our results show that tagging streams which are generated by a combination of imitation dynamics and shared background knowledge exhibit faster and higher semantic stability than tagging streams which are generated via imitation dynamics or natural language streams alone

    Effective Retrieval of Resources in Folksonomies Using a New Tag Similarity Measure

    Full text link
    Social (or folksonomic) tagging has become a very popular way to describe content within Web 2.0 websites. However, as tags are informally defined, continually changing, and ungoverned, it has often been criticised for lowering, rather than increasing, the efficiency of searching. To address this issue, a variety of approaches have been proposed that recommend users what tags to use, both when labeling and when looking for resources. These techniques work well in dense folksonomies, but they fail to do so when tag usage exhibits a power law distribution, as it often happens in real-life folksonomies. To tackle this issue, we propose an approach that induces the creation of a dense folksonomy, in a fully automatic and transparent way: when users label resources, an innovative tag similarity metric is deployed, so to enrich the chosen tag set with related tags already present in the folksonomy. The proposed metric, which represents the core of our approach, is based on the mutual reinforcement principle. Our experimental evaluation proves that the accuracy and coverage of searches guaranteed by our metric are higher than those achieved by applying classical metrics.Comment: 6 pages, 2 figures, CIKM 2011: 20th ACM Conference on Information and Knowledge Managemen

    Folksonomies and clustering in the collaborative system CiteULike

    Full text link
    We analyze CiteULike, an online collaborative tagging system where users bookmark and annotate scientific papers. Such a system can be naturally represented as a tripartite graph whose nodes represent papers, users and tags connected by individual tag assignments. The semantics of tags is studied here, in order to uncover the hidden relationships between tags. We find that the clustering coefficient reflects the semantical patterns among tags, providing useful ideas for the designing of more efficient methods of data classification and spam detection.Comment: 9 pages, 5 figures, iop style; corrected typo

    Universal Features in the Genome-level Evolution of Protein Domains

    Get PDF
    Protein domains are found on genomes with notable statistical distributions, which bear a high degree of similarity. Previous work has shown how these distributions can be accounted for by simple models, where the main ingredients are probabilities of duplication, innovation, and loss of domains. However, no one so far has addressed the issue that these distributions follow definite trends depending on protein-coding genome size only. We present a stochastic duplication/innovation model, falling in the class of so-called Chinese Restaurant Processes, able to explain this feature of the data. Using only two universal parameters, related to a minimal number of domains and to the relative weight of innovation to duplication, the model reproduces two important aspects: (a) the populations of domain classes (the sets, related to homology classes, containing realizations of the same domain in different proteins) follow common power-laws whose cutoff is dictated by genome size, and (b) the number of domain families is universal and markedly sublinear in genome size. An important ingredient of the model is that the innovation probability decreases with genome size. We propose the possibility to interpret this as a global constraint given by the cost of expanding an increasingly complex interactome. Finally, we introduce a variant of the model where the choice of a new domain relates to its occurrence in genomic data, and thus accounts for fold specificity. Both models have general quantitative agreement with data from hundreds of genomes, which indicates the coexistence of the well-known specificity of proteomes with robust self-organizing phenomena related to the basic evolutionary ``moves'' of duplication and innovation

    True scale-free networks hidden by finite size effects

    Get PDF
    We analyze about two hundred naturally occurring networks with distinct dynamical origins to formally test whether the commonly assumed hypothesis of an underlying scale-free structure is generally viable. This has recently been questioned on the basis of statistical testing of the validity of power law distributions of network degrees by contrasting real data. Specifically, we analyze by finite-size scaling analysis the datasets of real networks to check whether purported departures from the power law behavior are due to the finiteness of the sample size. In this case, power laws would be recovered in the case of progressively larger cutoffs induced by the size of the sample. We find that a large number of the networks studied follow a finite size scaling hypothesis without any self-tuning. This is the case of biological protein interaction networks, technological computer and hyperlink networks, and informational networks in general. Marked deviations appear in other cases, especially infrastructure and transportation but also social networks. We conclude that underlying scale invariance properties of many naturally occurring networks are extant features often clouded by finite-size effects due to the nature of the sample data

    The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys

    Full text link
    The distribution of asteroids across the Main Belt has been studied for decades to understand the compositional distribution and what that tells us about the formation and evolution of our solar system. All-sky surveys now provide orders of magnitude more data than targeted surveys. We present a method to bias-correct the asteroid population observed in the Sloan Digital Sky Survey (SDSS) according to size, distance, and albedo. We taxonomically classify this dataset consistent with the Bus and Bus-DeMeo systems and present the resulting taxonomic distribution. The dataset includes asteroids as small as 5 km, a factor of three in diameter smaller than in previous works. Because of the wide range of sizes in our sample, we present the distribution by number, surface area, volume, and mass whereas previous work was exclusively by number. While the distribution by number is a useful quantity and has been used for decades, these additional quantities provide new insights into the distribution of total material. We find evidence for D-types in the inner main belt where they are unexpected according to dynamical models of implantation of bodies from the outer solar system into the inner solar system during planetary migration (Levison et al. 2009). We find no evidence of S-types or other unexpected classes among Trojans and Hildas, albeit a bias favoring such a detection. Finally, we estimate for the first time the total amount of material of each class in the inner solar system. The main belt's most massive classes are C, B, P, V and S in decreasing order. Excluding the four most massive asteroids, Ceres, Pallas, Vesta and Hygiea that heavily skew the values, primitive material (C-, P-types) account for more than half main-belt and Trojan asteroids by mass, most of the remaining mass being in the S-types. All the other classes are minor contributors to the material between Mars and Jupiter.Comment: Accepted for publication in Icarus -- 43 pages, 15 figures, 7 table
    corecore