22 research outputs found

    Security in Cognitive Radio Networks

    Full text link
    In this paper, we investigate the information-theoretic security by modeling a cognitive radio wiretap channel under quality-of-service (QoS) constraints and interference power limitations inflicted on primary users (PUs). We initially define four different transmission scenarios regarding channel sensing results and their correctness. We provide effective secure transmission rates at which a secondary eavesdropper is refrained from listening to a secondary transmitter (ST). Then, we construct a channel state transition diagram that characterizes this channel model. We obtain the effective secure capacity which describes the maximum constant buffer arrival rate under given QoS constraints. We find out the optimal transmission power policies that maximize the effective secure capacity, and then, we propose an algorithm that, in general, converges quickly to these optimal policy values. Finally, we show the performance levels and gains obtained under different channel conditions and scenarios. And, we emphasize, in particular, the significant effect of hidden-terminal problem on information-theoretic security in cognitive radios.Comment: Submitted to CISS 201

    Protecting cognitive radio networks against poisson distributed eavesdroppers

    Get PDF
    In this paper, we study secure transmission designs for underlay cognitive radio networks in the present of randomly distributed eavesdroppers. We consider the scenario where a secondary transmitter sends confidential messages to a secondary receiver subject to an interference constraint set by the primary user. We design two transmission protocols under different channel knowledge assumptions at the transmitter. For each protocol, we first give a comprehensive performance analysis to investigate the transmission delay, secrecy, and reliability performance. We then optimize the transmission design for maximizing the secrecy throughput subject to both secrecy and reliability constraints. Finally, we numerically compare the performance of the two transmission protocols.ARC Discovery Projects Grant DP15010390

    Security Improvement for Energy Harvesting based Overlay Cognitive Networks with Jamming-Assisted Full-Duplex Destinations

    Get PDF
    This work investigates the secrecy capability of energy harvesting based overlay cognitive networks (EHOCNs). To this end, we assume that a message by a licensed transmitter is relayed by an unlicensed sender. Critically, the unlicensed sender uses energy harvested from licensed signals, enhancing the overall energy efficiency and maintaining the integrity of licensed communications. To secure messages broadcast by the unlicensed sender against the wire-tapper, full-duplex destinations - unlicensed recipient and licensed receiver - jam the eavesdropper at the same time they receive signals from the unlicensed sender. To this effect, we derive closed-form formulas for the secrecy outage probability, which then quantify the security performance of both unlicensed and licensed communications for EHOCNs with jamming-assisted full-duplex destinations, namely EHOCNwFD. In addition, optimum operating parameters are established, which can serve as essential design guidelines of such systems.acceptedVersionPeer reviewe

    Exploiting Spectrum Sensing Data for Key Management

    Get PDF
    In cognitive radio networks, secondary users (SUs) communicate on unused spectrum slots in the frequency bands assigned to primary users (PUs). Like any other wireless communication system, cognitive radio networks are ex- posed to physical layer attacks. In particular, we focus on two common at- tacks, namely, spectrum sensing data falsification and eavesdropping. Such attacks can be counteracted by using symmetric key algorithms, which how- ever require a complex key management scheme. In this paper we propose a novel algorithm that significantly reduces the complexity of the management of symmetric link keys by leveraging spectrum sensing data that is available to all nodes. In our algorithm, it is assumed that a primary secret key is pre-distributed to the legitimate SUs, which is needed every number of de- tection cycles. With the aid of the information provided in the primary key, our algorithm manipulates the collected samples so that a segment of the estimated sensing statistic at the two legitimate SUs can be used as a seed to generate a common symmetric link key. The link key is then employed to encrypt the transmitted data. Our algorithm exhibits very good performance in terms of bit mismatch rate (BMR) between two link keys generated at the two legitimate SUs. In addition, our solution is robust against the difference in the received signal to noise ratio between two legitimate SUs thus making it suitable for practical scenarios. Furthermore, our algorithm exploits the decision statistic that SUs use for spectrum sensing, hence, it does require neither extra processing nor extra time, allowing the SUs to quickly and securely tab into empty spectrum slots

    SECURITY CAPABILITY ANALYSIS OF COGNITIVE RADIO NETWORK WITH SECONDARY USER CAPABLE OF JAMMING AND SELF-POWERING

    Get PDF
    This paper investigates a cognitive radio network where a secondary sender assists a primarytransmitter in relaying primary information to a primary receiver and also transmits its own information toa secondary recipient. This sender is capable of jamming to protect secondary and/or primary informationagainst an eavesdropper and self-powering by harvesting radio frequency energy of primary signals.Security capability of both secondary and primary networks are analyzed in terms of secrecy outageprobability. Numerous results corroborate the proposed analysis which serves as a design guidelineto quickly assess and optimize security performance. More importantly, security capability trade-offbetween secondary and primary networks can be totally controlled with appropriate selection of systemparameters

    Cooperative Spatial Retreat for Resilient Drone Networks

    Get PDF
    Drones are broadening their scope to various applications such as networking, package delivery, agriculture, rescue, and many more. For proper operation of drones, reliable communication should be guaranteed because drones are remotely controlled. When drones experience communication failure due to bad channel condition, interference, or jamming in a certain area, one existing solution is to exploit mobility or so-called spatial retreat to evacuate them from the communication failure area. However, the conventional spatial retreat scheme moves drones in random directions, which results in inefficient movement with significant evacuation time and waste of battery lifetime. In this paper, we propose a novel spatial retreat technique that takes advantage of cooperation between drones for resilient networking, which is called cooperative spatial retreat (CSR). Our performance evaluation shows that the proposed CSR significantly outperforms existing schemes. © 2017 by the authors. Licensee MDPI, Basel, Switzerland.1
    corecore