1,267 research outputs found

    On the Evaluation of User Privacy in Deep Neural Networks using Timing Side Channel

    Full text link
    Recent Deep Learning (DL) advancements in solving complex real-world tasks have led to its widespread adoption in practical applications. However, this opportunity comes with significant underlying risks, as many of these models rely on privacy-sensitive data for training in a variety of applications, making them an overly-exposed threat surface for privacy violations. Furthermore, the widespread use of cloud-based Machine-Learning-as-a-Service (MLaaS) for its robust infrastructure support has broadened the threat surface to include a variety of remote side-channel attacks. In this paper, we first identify and report a novel data-dependent timing side-channel leakage (termed Class Leakage) in DL implementations originating from non-constant time branching operation in a widely used DL framework PyTorch. We further demonstrate a practical inference-time attack where an adversary with user privilege and hard-label black-box access to an MLaaS can exploit Class Leakage to compromise the privacy of MLaaS users. DL models are vulnerable to Membership Inference Attack (MIA), where an adversary's objective is to deduce whether any particular data has been used while training the model. In this paper, as a separate case study, we demonstrate that a DL model secured with differential privacy (a popular countermeasure against MIA) is still vulnerable to MIA against an adversary exploiting Class Leakage. We develop an easy-to-implement countermeasure by making a constant-time branching operation that alleviates the Class Leakage and also aids in mitigating MIA. We have chosen two standard benchmarking image classification datasets, CIFAR-10 and CIFAR-100 to train five state-of-the-art pre-trained DL models, over two different computing environments having Intel Xeon and Intel i7 processors to validate our approach.Comment: 15 pages, 20 figure

    Neural Network Model Extraction Attacks in Edge Devices by Hearing Architectural Hints

    Full text link
    As neural networks continue their reach into nearly every aspect of software operations, the details of those networks become an increasingly sensitive subject. Even those that deploy neural networks embedded in physical devices may wish to keep the inner working of their designs hidden -- either to protect their intellectual property or as a form of protection from adversarial inputs. The specific problem we address is how, through heavy system stack, given noisy and imperfect memory traces, one might reconstruct the neural network architecture including the set of layers employed, their connectivity, and their respective dimension sizes. Considering both the intra-layer architecture features and the inter-layer temporal association information introduced by the DNN design empirical experience, we draw upon ideas from speech recognition to solve this problem. We show that off-chip memory address traces and PCIe events provide ample information to reconstruct such neural network architectures accurately. We are the first to propose such accurate model extraction techniques and demonstrate an end-to-end attack experimentally in the context of an off-the-shelf Nvidia GPU platform with full system stack. Results show that the proposed techniques achieve a high reverse engineering accuracy and improve the one's ability to conduct targeted adversarial attack with success rate from 14.6\%∟\sim25.5\% (without network architecture knowledge) to 75.9\% (with extracted network architecture)

    Dynamic Protocol Reverse Engineering a Grammatical Inference Approach

    Get PDF
    Round trip engineering of software from source code and reverse engineering of software from binary files have both been extensively studied and the state-of-practice have documented tools and techniques. Forward engineering of protocols has also been extensively studied and there are firmly established techniques for generating correct protocols. While observation of protocol behavior for performance testing has been studied and techniques established, reverse engineering of protocol control flow from observations of protocol behavior has not received the same level of attention. State-of-practice in reverse engineering the control flow of computer network protocols is comprised of mostly ad hoc approaches. We examine state-of-practice tools and techniques used in three open source projects: Pidgin, Samba, and rdesktop . We examine techniques proposed by computational learning researchers for grammatical inference. We propose to extend the state-of-art by inferring protocol control flow using grammatical inference inspired techniques to reverse engineer automata representations from captured data flows. We present evidence that grammatical inference is applicable to the problem domain under consideration

    An Approach to Guide Users Towards Less Revealing Internet Browsers

    Get PDF
    When browsing the Internet, HTTP headers enable both clients and servers send extra data in their requests or responses such as the User-Agent string. This string contains information related to the sender’s device, browser, and operating system. Previous research has shown that there are numerous privacy and security risks result from exposing sensitive information in the User-Agent string. For example, it enables device and browser fingerprinting and user tracking and identification. Our large analysis of thousands of User-Agent strings shows that browsers differ tremendously in the amount of information they include in their User-Agent strings. As such, our work aims at guiding users towards using less exposing browsers. In doing so, we propose to assign an exposure score to browsers based on the information they expose and vulnerability records. Thus, our contribution in this work is as follows: first, provide a full implementation that is ready to be deployed and used by users. Second, conduct a user study to identify the effectiveness and limitations of our proposed approach. Our implementation is based on using more than 52 thousand unique browsers. Our performance and validation analysis show that our solution is accurate and efficient. The source code and data set are publicly available and the solution has been deployed

    Challenges and Remedies to Privacy and Security in AIGC: Exploring the Potential of Privacy Computing, Blockchain, and Beyond

    Full text link
    Artificial Intelligence Generated Content (AIGC) is one of the latest achievements in AI development. The content generated by related applications, such as text, images and audio, has sparked a heated discussion. Various derived AIGC applications are also gradually entering all walks of life, bringing unimaginable impact to people's daily lives. However, the rapid development of such generative tools has also raised concerns about privacy and security issues, and even copyright issues in AIGC. We note that advanced technologies such as blockchain and privacy computing can be combined with AIGC tools, but no work has yet been done to investigate their relevance and prospect in a systematic and detailed way. Therefore it is necessary to investigate how they can be used to protect the privacy and security of data in AIGC by fully exploring the aforementioned technologies. In this paper, we first systematically review the concept, classification and underlying technologies of AIGC. Then, we discuss the privacy and security challenges faced by AIGC from multiple perspectives and purposefully list the countermeasures that currently exist. We hope our survey will help researchers and industry to build a more secure and robust AIGC system.Comment: 43 pages, 10 figure

    Exploitation of Unintentional Information Leakage from Integrated Circuits

    Get PDF
    Unintentional electromagnetic emissions are used to recognize or verify the identity of a unique integrated circuit (IC) based on fabrication process-induced variations in a manner analogous to biometric human identification. The effectiveness of the technique is demonstrated through an extensive empirical study, with results presented indicating correct device identification success rates of greater than 99:5%, and average verification equal error rates (EERs) of less than 0:05% for 40 near-identical devices. The proposed approach is suitable for security applications involving commodity commercial ICs, with substantial cost and scalability advantages over existing approaches. A systematic leakage mapping methodology is also proposed to comprehensively assess the information leakage of arbitrary block cipher implementations, and to quantitatively bound an arbitrary implementation\u27s resistance to the general class of differential side channel analysis techniques. The framework is demonstrated using the well-known Hamming Weight and Hamming Distance leakage models, and approach\u27s effectiveness is demonstrated through the empirical assessment of two typical unprotected implementations of the Advanced Encryption Standard. The assessment results are empirically validated against correlation-based differential power and electromagnetic analysis attacks

    Machine Learning Methodologies For Low-Level Hardware-Based Malware Detection

    Get PDF
    Malicious software continues to be a pertinent threat to the security of critical infrastructures harboring sensitive information. The abundance in malware samples and the disclosure of newer vulnerability paths for exploitation necessitates intelligent machine learning techniques for effective and efficient malware detection and analysis. Software-based methods are suitable for in-depth forensic analysis, but their on-device implementations are slower and resource hungry. Alternatively, hardware-based approaches are emerging as an alternative approach against malware threats because of their trustworthiness, difficult evasion, and lower implementation costs. Modern processors have numerous hardware events such as power domains, voltage, frequency, accessible through software interfaces for performance monitoring and debugging. But, information leakage from these events are not explored for defenses against malware threats. This thesis demonstrates approach towards malware detection and analysis by leveraging low-level hardware signatures. The proposed research aims to develop machine learning methodology for detecting malware applications, classifying malware family and detecting shellcode exploits from low-level power signatures and electromagnetic emissions. This includes 1) developing a signature based detector by extracting features from DVFS states and using ML model to distinguish malware application from benign. 2) developing ML model operating on frequency and wavelet features to classify malware behaviors using EM emissions. 3) developing an Restricted Boltzmann Machine (RBM) model to detect anomalies in energy telemetry register values of malware infected application resulting from shellcode exploits. The evaluation of the proposed ML methodology on malware datasets indicate architecture-agnostic, pervasive, platform independent detectors that distinguishes malware against benign using DVFS signatures, classifies detected malware to characteristic family using EM signatures, and detect shellcode exploits on browser applications by identifying anomalies in energy telemetry register values using energy-based RBM model.Ph.D

    An Integrative Analytical Framework for Internet of Things Security, Forensics and Intelligence

    Full text link
    The Internet of things (IoT) has recently become an important research topic because it revolutionises our everyday life through integrating various sensors and objects to communicate directly without human intervention. IoT technology is expected to offer very promising solutions for many areas. In this thesis we focused on the crime investigation and crime prevention, which may significantly contribute to human well-being and safety. Our primary goals are to reduce the time of crime investigation, minimise the time of incident response and to prevent future crimes using collected data from smart devices. This PhD thesis consists of three distinct but related projects to reach the research goal. The main contributions can be summarised as: • A multi-level access control framework, presented in Chapter 3. This could be used to secure any collected and shared data. We decided to have this as our first contribution as it is not realistic to use data that could be altered in our prediction model or as evidence. We chose healthcare data collected from ambient sensors and uploaded to cloud storage as an example for our framework as this data is collected from multiple sources and is used by different parties. The access control system regulates access to data by defining policy attributes over healthcare professional groups and data classes classifications. The proposed access control system contains policy model, architecture model and a methodology to classify data classes and healthcare professional groups. • An investigative framework, that was discussed in Chapter 4, which contains a multi-phased process flow that coordinates different roles and tasks in IoT related-crime investigation. The framework identifies digital information sources and captures all potential evidence from smart devices in a way that guarantee potential evidence is not altered so it can be admissible in a court of law. • A deep learning multi-view model, which we demonstrated in Chapter 5, that explores the relationship between tweets, weather (a type of sensory data) and crime rate, for effective crime prediction. This contribution is motivated by the need to utilise police force deployment correctly to be present at the right times. Both the proposed investigative framework and the predictive model were evaluated and tested, and the results of these evaluations are presented in the thesis. The proposed framework and model contribute significantly to the field of crime investigation and crime prediction. We believe their application would provide higher admissibility evidence, more efficient investigations, and optimum ways to utilise law enforcement deployment based on crime rate prediction using collected sensory data

    Cyber Law and Espionage Law as Communicating Vessels

    Get PDF
    Professor Lubin\u27s contribution is Cyber Law and Espionage Law as Communicating Vessels, pp. 203-225. Existing legal literature would have us assume that espionage operations and “below-the-threshold” cyber operations are doctrinally distinct. Whereas one is subject to the scant, amorphous, and under-developed legal framework of espionage law, the other is subject to an emerging, ever-evolving body of legal rules, known cumulatively as cyber law. This dichotomy, however, is erroneous and misleading. In practice, espionage and cyber law function as communicating vessels, and so are better conceived as two elements of a complex system, Information Warfare (IW). This paper therefore first draws attention to the similarities between the practices – the fact that the actors, technologies, and targets are interchangeable, as are the knee-jerk legal reactions of the international community. In light of the convergence between peacetime Low-Intensity Cyber Operations (LICOs) and peacetime Espionage Operations (EOs) the two should be subjected to a single regulatory framework, one which recognizes the role intelligence plays in our public world order and which adopts a contextual and consequential method of inquiry. The paper proceeds in the following order: Part 2 provides a descriptive account of the unique symbiotic relationship between espionage and cyber law, and further explains the reasons for this dynamic. Part 3 places the discussion surrounding this relationship within the broader discourse on IW, making the claim that the convergence between EOs and LICOs, as described in Part 2, could further be explained by an even larger convergence across all the various elements of the informational environment. Parts 2 and 3 then serve as the backdrop for Part 4, which details the attempt of the drafters of the Tallinn Manual 2.0 to compartmentalize espionage law and cyber law, and the deficits of their approach. The paper concludes by proposing an alternative holistic understanding of espionage law, grounded in general principles of law, which is more practically transferable to the cyber realmhttps://www.repository.law.indiana.edu/facbooks/1220/thumbnail.jp
    • …
    corecore