
MACHINE LEARNING METHODOLOGIES FOR LOW-LEVEL
HARDWARE-BASED MALWARE DETECTION

A Dissertation
Presented to

The Academic Faculty

By

Nikhil Chawla

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
Electrical and Computer Engineering

School of Electrical and Computer Engineering

Georgia Institute of Technology

December 2021

© Nikhil Chawla 2021

MACHINE LEARNING METHODOLOGIES FOR LOW-LEVEL
HARDWARE-BASED MALWARE DETECTION

Thesis committee:

Dr. Saibal Mukhopadhyay
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Dr. Shimeng Yu
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Dr. Abhijit Chatterjee
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Dr. Santosh Pande
School of Computer Science
Georgia Institute of Technology

Dr. Arijit Raychowdhury
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Date approved: Nov 8, 2021

To my Mom and Dad

ACKNOWLEDGMENTS

I would like to thank and acknowledge people who have contributed to my journey to-

wards attaining the Ph.D. degree. I consider myself fortunate to experience a high-quality

research environment, being amidst smart, hardworking, and intellectual academic profes-

sionals at Georgia Tech.

I would express gratitude to my thesis advisor, Dr. Saibal Mukhopadhyay for his men-

torship, guidance, support, inspiration and encouragement. I am grateful to him for al-

lowing me to work on this research project. Among my many great experiences, I would

specifically like to highlight the conference trips to Europe and US locations which gave

me a platform to present the proposed research and interact with academics and other re-

searchers. Also, I am grateful and thankful for the experience of an industry-collaborative

workshop on Energy Secure Systems Architecture (ESSA) organized by him. I am also

genuinely thankful for his support during challenging times during the course of the Ph.D.

I would like to thank dissertation defense committee members, Dr. Shimeng Yu, Dr.

Abhijit Chatterjee, Dr. Santosh Pande and Dr. Arijit Raychowdhury for evaluating this

research and contributing vital inputs to improve this thesis work.

I am thankful to all excellent faculty members in the School of Electrical and Computer

Engineering and Computer Science. Over the period, I have taken many exciting and inten-

sive courses, which were critical in strengthening my foundation in various diverse topics

related to computer hardware design and computer security. The academic courses’ learn-

ing helped me comprehend and describe the novelty in my research work. I would also

convey special thanks to Dr. Daniela Staiculescu, Tasha Torrence, and other academic ad-

visors in the ECE Graduate Affairs office for administrative support and guidance towards

timely progress towards the degree.

I would express thanks to my mentors and colleagues from GREEN Lab, Georgia Tech

for their guidance, support and friendship. I am thankful to my mentors, Dr. Monodeep

iv

Kar and Dr. Arvind Singh, who introduced and guided me on side-channel security re-

search. Their excellent work, devotion, and leadership inspired me to pursue research in

this domain. I am thankful to other colleagues from the lab, Harshit Kumar, Nael Mizanur

Rahman, with whom I have worked closely and learned during our collaborations. I want

to thank all GREEN lab members for important discussions and friendly talks; Dr. Jong

Hwan Ko, Dr. Taesik Na, Dr. Faisal Amir, Dr. Yun Long, Dr. Burhan Ahmad Mudassar,

Dr. Chaitanya Krishna, Sudarshan Sharma, Priyabrata Saha, Minah Lee, Xueyuan She,

Daehyun Kim, Mandovi Mukherjee, Saurabh Dash, Biswadeep Chakraborty and all other

members of GREEN Lab.

The path wouldn’t have been easier without company of close-by friends from outside

of work. I have cherished many memorable moments, exciting conversations and celebra-

tions in their company. Finally, I would like to thank my parents for their financial and

continuous moral support. I thank them for giving me opportunity to pursue higher educa-

tion from a premier institute in United States. They have inculcated hardwork, discipline,

and persistence principles, which were valuable in this pursuit and in life.

v

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . xi

List of Figures . xiii

Summary . xvii

Chapter 1: Introduction . 1

1.1 Research Statement . 4

1.2 Key Contributions of this Thesis . 5

1.3 Organization of this Thesis . 6

Chapter 2: Background . 8

2.1 Dynamic Voltage and Frequency Scaling (DVFS) and Security 8

2.2 Leveraging Electromagnetic Emissions For Malware Detection 8

2.3 Power Based Malware Detectors . 10

2.4 Feature Extraction Techniques . 11

2.5 Evaluation Metrics For ML Model . 13

Chapter 3: Differentiating Applications Using Dynamic Voltage Frequency Scal-
ing Signatures . 16

vi

3.1 DVFS Governors in Linux Kernel . 17

3.2 Characterization of DVFS Signatures . 18

3.2.1 DVFS Trace Acquisition . 18

3.2.2 Uniqueness of DVFS Signatures 20

3.2.3 Impact of Governor Selection . 21

3.2.4 Impact of Background Processes 22

3.3 Application Inference Using DVFS Signatures 24

3.3.1 Application Inference Methodology 24

3.3.2 ML Model Building . 26

3.3.3 ML Model Evaluation . 27

3.3.4 Identifying Unknown Applications 30

3.4 Summary . 31

Chapter 4: Signature-based Malware Detection Using Dynamic Voltage Fre-
quency Scaling Signatures . 32

4.1 Malware Detection . 33

4.1.1 ML Model Building . 34

4.1.2 ML Model Evaluation . 35

4.1.3 Power and Security . 37

4.2 Secure Detector Design . 38

4.3 Implementation Challenges . 41

4.3.1 Platform Scalability . 41

4.3.2 Algorithm Scalability . 41

4.3.3 Time-Series Length . 42

vii

4.4 Comparison with HMD . 42

4.5 Summary . 44

Chapter 5: Remote Signature-Based Malware Detection and Family Classifica-
tion Using Electromagnetic Emissions 45

5.1 Threat Model . 47

5.2 Malware Detection and Analysis Framework 48

5.2.1 EM Side-Channel Acquisition . 48

5.2.2 Feature Extraction . 49

5.2.3 Dimensionality Reduction . 52

5.2.4 Machine Learning Algorithms . 52

5.3 EM Side-Channel Trace Collection . 53

5.4 Distinguishing Malware Against Benign Applications 55

5.4.1 Dataset Generation . 55

5.4.2 ML Model Building . 56

5.4.3 Model Evaluation . 57

5.5 Distinguishing Malware Family . 58

5.5.1 Dataset Generation . 58

5.5.2 Distinguishing Malware Family Using Welsh’s t-test 59

5.5.3 ML Model Building . 63

5.5.4 Model Evaluation . 64

5.5.5 Analysis on Feature Selection . 68

5.6 Unknown Application Detection and Machine Learning Model Updates . . 70

5.6.1 Detecting Unknown Using Prediction Probability 71

viii

5.6.2 Unknown Application Detection 72

5.6.3 Unknown Malware Family Detection 73

5.7 Comparison with EM Side-Channel based Detector 73

5.8 Summary . 75

Chapter 6: Anomaly-based Shellcode Exploit Detection using Restricted Boltz-
mann Machine . 76

6.1 Characterization of MSR PP0 ENERGY STATUS Register Trace 78

6.1.1 RAPL Interface . 78

6.1.2 MSR PP0 ENERGY STATUS Trace Acquisition 78

6.1.3 Code Injections in Benchmarks . 79

6.2 Anomaly Detection Framework . 80

6.2.1 MSR PP0 ENERGY STATUS Trace Collection 81

6.2.2 Post-Processing Traces . 82

6.2.3 Model Building . 84

6.2.4 Rule-based Anomaly Detection . 86

6.3 Detecting Shellcode Injections in Browser Exploits 86

6.3.1 Firefox Browser Vulnerabilities 87

6.3.2 Threat Model . 89

6.3.3 System Configurations . 89

6.3.4 Collecting Clean Browser State . 89

6.3.5 Detecting Infected Browser State 91

6.4 Obfuscated Payload Detection . 94

6.4.1 Obfuscation Techniques . 95

ix

6.4.2 Generating Obfuscated Payloads 96

6.4.3 Detecting Obfuscated Payload . 97

6.5 Comparison with HMD . 100

6.6 Summary . 101

Chapter 7: Conclusion and Future Work . 103

7.1 Dissertation Summary . 103

7.2 Future Research Directions . 104

7.2.1 Multiple Channel Fusion of Hardware Events For Malware Detec-
tion and Analysis . 104

7.2.2 Improving Prediction Likelihood of Detecting Out-of-Distribution
Examples using Model Uncertainty 106

7.2.3 Extending Low-Level Hardware Based Detection to Multi-Workload
Environment . 106

7.2.4 Real-time Anomaly Detection using RBMs 107

Appendices . 109

Appendix A: EM Side-Channel Data Acquisition Setup 110

Appendix B: Malware Characteristics . 112

References . 114

x

LIST OF TABLES

1.1 Training and Inference configurations for Malware Detection 3

3.1 F1Score for Application Inference with different governors 27

4.1 Training and Inference configurations for Malware Detection 34

4.2 F1Score for Benign and Malware Classification with different governors . . 36

4.3 Confusion Matrix Generated from Random Forest Classifier for different
governors . 37

4.4 Comparison of proposed work with existing hardware based malware de-
tectors . 42

5.1 Training and Inference configurations for Malware Detection 57

5.2 F1-scores for benign and malware applications with different detection mod-
els . 58

5.3 Number of Samples and Selected Malware Families from Drebin Dataset . . 59

5.4 Training and Inference Configurations For Malware Family Classification . 63

5.5 F1 scores for Malware family classification with different ML models . . . 65

5.6 Impact of PCA on F1 scores For malware family classification 66

5.7 F1 scores for different features - Malware family classification 69

5.8 Comparison with existing EM side-channel based malware detection 74

6.1 RBM Training and Inference Configurations For Detecting Firefox Exploits 90

xi

6.2 RBM Training and Inference Configurations For Detecting Obfuscated Pay-
loads . 96

6.3 Comparison with existing Hardware-Based Anomaly Detectors 101

xii

LIST OF FIGURES

3.1 Data acquisition: (a) A methodology for DVFS states trace acquisition . . . 18

3.2 Heatmap of Maximum T-statistic between DVFS signatures for possible
pairs of applications . 20

3.3 Likelihood occurrence of states 1593600KHz at every time sample for a
benchmark application with all governors 22

3.4 CPU load and Task Load Estimate generated using ftrace tool to demon-
strate a high correlation between CPU load and foreground process 23

3.5 The proposed methodology for application classification. Pre-processing
and feature extraction performed on short sequences of DVFS states time-
series. The feature vector is generated by combining windows and subse-
quently passed to classifier . 24

3.6 ROC curves generated for benchmark application classification with RF
inference model evaluated across all governors 28

3.7 F1score vs Duration of DVFS signature for different governors evaluated
using RF model . 29

3.8 Recall for known and Unknown application generated using trained RF
model evaluated across different decision thresholds 30

4.1 (a) Dynamic voltage frequency scaling, hardware-software co-optimization
approach for power management (b) A machine learning based malware
detector using DVFS states features . 33

4.2 Training and Validation Score against number of training examples (Learn-
ing Curves) generated with RF model for features dervied from different
governors. 36

xiii

4.3 Average Power for benign and malware applications with different cpufreq
governors . 38

4.4 On-Device DVFS based detection for red-flagging malware and detailed
malware analysis and model updates on IoT cloud servers 39

5.1 EM side-channel monitoring setup, feature extractor and machine learning
model for detecting threat and classifying its characteristic behavior 46

5.2 The EM side-channel detection and analysis framework comprises of EM
side-channel monitoring, acquisition, post-processing, feature extraction
steps and ML inference model . 47

5.3 2D DWT as filter bank decomposes input spectrogram into approximate,
horizontal, vertical and detail coefficients. 49

5.4 (a) Spectrogram of EM side-channel trace gives power spectral density vari-
ations (psd) against time. (b) DWT applied on spectrogram resolved at level 8 50

5.5 EM side-channel Trace collection setup and laptop interfaced with the ex-
perimental platform to trigger workloads and synchronize data collection . . 54

5.6 Validation Score against number of training examples (Learning Curves)
using SVM and RF model for malware detection 58

5.7 Welsh t-test analysis on spectrograms of applications selected from differ-
ent malware families . 60

5.8 T-statistic scores represented as 2D plot, where black regions represent t−
statistic > 4.5 or t− statistic < −4.5 61

5.9 Heatmap plot of dissimilarity score (time or frequency points), where t −
statistic > |4.5| evaluated for spectrogram of raw trace 62

5.10 Validation Score against number of training examples for different wavelet
basis using SVM model for malware family classification 65

5.11 Confusion matrix for malware family classification using proposed feature
extraction techniques and SVM model . 67

5.12 Mutual Information (MI) scores for features derived from spectrogram and
DWT with haar basis . 70

xiv

5.13 Recall Known vs Unknown Malware Family evaluated at different decision
thresholds using RF model . 71

5.14 (a) Distribution of predicted probability estimates for unknown malware
family “DroidDream” and known malware family. (b) Recall known vs
unknown malware family evaluated at different decision thresholds with
SVM model . 72

6.1 (a) A Remote Shellcode Injection Exploit Stage in malware infection pro-
cess. (b) RBM learns patterns in RAPL traces under normal operation of
victim application. (c) RBM detects anomalies in RAPL sequence by com-
paring free energy of infected browser against benign 77

6.2 MSR PP0 ENERGY STATUS Traces of Code Injections in Benchmark
application (a) Between Loops (b) Within Loop 80

6.3 (a) Processing acquired MSR PP0 ENERGY STATUS traces to remove
systemic noise, outlier removal, filtering, and alignment. (b) Building RBM
model by training each segmented sub-trace individually after scaling . . . 81

6.4 Threat model describes ring-0 privileges for attacker on host machine. At-
tacker initiates a reverse tcp shell listener on Core 1. The victim executes
vulnerable Firefox browser application inside virtual machine dedicated
Core0 . 88

6.5 (a) Collecting MSR PP0 ENERGY STATUS Traces of Clean Browser State
executing legitimate URLs. (b) Collecting MSR PP0 ENERGY STATUS
Traces of Infected Browser State execution 90

6.6 Scaled MSR PP0 ENERGY STATUS Traces of Infected Browser State changes
during shellcode exploit execution . 92

6.7 RBM’s Free Energy Variation over time during normal browser operation
is lower compared to shellcode exploit execution in region of exploit 93

6.8 Anomaly detected where absolute difference between free energy of in-
fected and clean browser state is greater than standard deviation 95

6.9 (a) Scaled MSR Traces of infected and clean Firefox browser (b) t-statistic
variation vs time samples identifies region of differences in MSR traces of
two Firefox version . 98

6.10 Comparison of proposed anomaly detector against existing anti-virus en-
gines for different payloads . 99

xv

7.1 Multi-Channel Power Telemetry Fusion For Malware Detection and Analysis105

7.2 Real-time anomaly detection using RBMs 107

A.1 EM side-channel data collection setup comprising Open-Q Snapdragon 820
Development Kit, EM probes, oscilloscope for acquisition and Arduino For
Trigger . 111

xvi

SUMMARY

Malicious software continues to be a pertinent threat to the security of critical infras-

tructures harboring sensitive information. The abundance in malware samples and the dis-

closure of newer vulnerability paths for exploitation necessitates intelligent machine learn-

ing techniques for effective and efficient malware detection and analysis. Software-based

methods are suitable for in-depth forensic analysis, but their on-device implementations

are slower and resource hungry. Alternatively, hardware-based approaches are emerging

as an alternative approach against malware threats because of their trustworthiness, diffi-

cult evasion, and lower implementation costs. Modern processors have numerous hardware

events such as power domains, voltage, frequency, accessible through software interfaces

for performance monitoring and debugging. But, information leakage from these events

are not explored for defenses against malware threats. This thesis demonstrates approach

towards malware detection and analysis by leveraging low-level hardware signatures.

The proposed research aims to develop machine learning methodology for detecting

malware applications, classifying malware family and detecting shellcode exploits from

low-level power signatures and electromagnetic emissions. This includes 1) developing

a signature based detector by extracting features from DVFS states and using ML model

to distinguish malware application from benign. 2) developing ML model operating on

frequency and wavelet features to classify malware behaviors using EM emissions. 3) de-

veloping an Restricted Boltzmann Machine (RBM) model to detect anomalies in energy

telemetry register values of malware infected application resulting from shellcode exploits.

The evaluation of the proposed ML methodology on malware datasets indicate architecture-

agnostic, pervasive, platform independent detectors that distinguishes malware against be-

nign using DVFS signatures, classifies detected malware to characteristic family using EM

signatures, and detect shellcode exploits on browser applications by identifying anomalies

in energy telemetry register values using energy-based RBM model.

xvii

CHAPTER 1

INTRODUCTION

The increasing complexity of computing devices has created numerous pathways for adver-

saries to exploit and launch attacks that compromise the security and privacy of embedded

computing devices. The abundance of malware samples necessitates intelligent data mining

techniques for effective and efficient malware detection and analysis [1, 2]. An intelligent

malware detection method comprises of two stages: feature extraction and classification/-

clustering algorithm. Malware-specific features are captured by analyzing its behavior and

monitoring application and system-level, or hardware events like permissions, APIs, sys-

tem calls, network access, file access, cache access [3, 4, 5, 6]. These extracted features

of different malware samples are then trained on a classification or clustering algorithm to

infer previously seen or unseen signatures. In totality, data mining techniques are useful in

inferring existing malware samples, identifying unseen malware samples and identifying

new malware families [7].

Software-based malware detectors implemented on-device have numerous drawbacks.

For instance, Anti-Virus (AV) software relying on static malware signatures is prone to eva-

sion against zero-day malware. Also, AV engines are prone to exploits, just like conven-

tional software. Alternatively, a dynamic malware detector overcomes the disadvantages

of static analyzers and is more reliable. But, their implementation is slow and resource

hungry. For instance, Rahmatian et al. have questioned the performance of host-based

intrusion detectors (HIDS) in real-time by claiming an increased delay between the oc-

currence of an attack and the detection of the attack [8]. More recently, hardware-based

approaches towards malware detection have gained relevance [6, 9, 10, 11, 12, 13, 14, 15,

16, 17]. Hardware-based malware detectors (HMD) implementations are resilient against

software exploits. These are difficult to evade because malware leaves imprints as signa-

1

tures in hardware, even though they remain undetectable in software. Also, HMDs imple-

mented as hardware accelerators improve detection latency and lower power consumption

[13]. Therefore, malware detection leveraging hardware-based signatures is an interesting

alternative.

HMDs can be categorized into micro-architectural and non-micro-architectural based

on the selection of hardware-level features. HMDs based on micro-architectural events ex-

trapolated from hardware performance counter (HPC) in modern processors are prevalent

[6, 9, 10, 11, 12, 13]. A large majority of previous research has delved into applying HPC-

based HMDs in detecting android, windows, and IoT malware. Also, hardware implemen-

tation of HPC-based HMDs is shown to be a cost-effective solution compared to software

approaches [13]. But, performance counter-based HMDs have come under scrutiny. The

existence of non-determinism, variability in number of registers and performance events

leading to lack of portability limit the applicability of performance counters in different

application domains [18]. There are numerous alternatives such as leveraging non-micro-

architectural events such as power domains, thermal monitors, physical side-channels, etc.

These events are architecture-agnostic, pervasive and portable and not extensively explored

for malware detection and analysis. This thesis demonstrates an alternative approach to-

wards malware detection and analysis by leveraging low-level hardware signatures from

on-chip power domains and external electromagnetic emissions.

The low-level hardware signatures are derived from 3 information sources explored

in this thesis, voltage-frequency, electromagnetic emissions, and Running Average Power

Limit (RAPL) interface. To understand their application in malware detection and analysis

task, we assess their rate of information change both in time and amplitude, number of

information channels and noise immunity. These metrics are summarized in Table 1.1

Voltage-Frequency: Power management is an integral part of the modern system-on-

chips with an objective to regulate power consumption, improve energy efficiency and per-

formance utilizing techniques such as Dynamic Voltage and Frequency Scaling (DVFS),

2

Table 1.1: Training and Inference configurations for Malware Detection

Configuration Voltage-Frequency EM Emissions RAPL
Update Interval (time) 10ms 2us 1ms
Resolution (amplitude) 30 states 12-bit 32-bit
No. of Channels 2 per core 1 per SoC 1 per all core
Telemetry Collection on-device External Probes on-device
Noise Immunity Higher Least Lower

clock gating and power-gating, etc. DVFS is a hardware-software co-optimization tech-

nique that dynamically configures the voltage and frequency in accordance to processor’s

workload. DVFS states are accessible through CPU frequency scaling interface in linux

platforms. Voltage-Frequency states have lower update interval and finite information lev-

els in comparison to power and EM emissions as shown in Table 1.1. But, DVFS states

have higher noise immunity i.e. they are less sensitive to changes resulting from back-

ground processes. Prior works have explored intersections of DVFS and offensive security

[19, 20, 21]. In contrast, one of the contributions of this thesis is demonstrating feasibility

of power-based signatures, such as Dynamic Voltage and Frequency Scaling (DVFS) for

hardware-based malware detection (HMD).

EM Emissions: Physical side-channels incorporates fine-grained information about the

program’s instruction sequences, control flows and data [22, 23]. Traditionally, EM side-

channel have been exploited for offensive attacks like compromising cryptographic keys

from embedded SoCs and hardware accelerators [24, 25]. However, recent works have

demonstrated the capability of detecting malicious applications by remotely monitoring

EM emissions from a device. The detectors leveraging EM side-channel emissions perform

external monitoring and subsequent detection, thereby eliminating the need for on-device

implementation. EM-based malware analysis mostly focused on anomaly-based detection

that monitors deviation in EM emissions from trusted executions [26, 14, 15, 16, 27].

In contrast, the thesis demonstrates the feasibility of classifying detected malware into a

3

characteristic family using Electromagnetic(EM) signatures. EM signatures captures fine-

grained application behavior both in time and amplitude as shown in Table 1.1, which is

useful for detailed fine-grained malware analysis.

Real-time Power Estimates from On-chip Energy Telemetry Registers: Power emis-

sions from an SoC have been shown to reveal information about a program’s behavior [22,

23]. There are different mechanisms to acquire power variations. Until recently, fine-

grained power measurement required manual probing of power pins. For instance, F. Ding

et al. presented “DeepPower”, a Deep learning-based detector for IoT malware by mea-

suring the IoT device power [28]. Although, fine-grained power variations are useful for

detailed malware analysis as shown in [28]. But these invasive measurements require de-

vice modifications to integrate a power sampler. Alternative approach is to use a software-

based power-models for different SoC components or battery power were utilized to detect

malwares [29, 30, 31]. In contrast, we leverage MSR PP0 ENERGY STATUS register

accessible using RAPL interface in x86 processors, which uses on-chip measurements of

activities coupled with software-based power models to provide a real-time estimate of

energy. We demonstrated detection and localizing anomalies in the MSR PP0 ENERGY -

STATUS signatures resulting from shellcode exploits. These signatures have higher rate of

information variation in amplitude but less in time as shown in Table 1.1, which is useful

for detailed fine-grained malware analysis. Also, the proposed method of collecting power

signatures does not require external measurement setup.

1.1 Research Statement

The proposed research aims to develop machine learning methodology for detecting mal-

ware applications, classifying malware family and detecting shellcode exploits from low-

level power signatures and electromagnetic emissions. This includes

• Developing a signature-based detector by extracting features from DVFS states and

using ML model to distinguish malware application from benign

4

• Developing ML model operating on spectral and wavelet features to classify detected

malware to characteristic family using EM emissions

• Developing an RBM model to detect anomalies in RAPL signatures of malware in-

fected application resulting from shellcode exploits

• Evaluating and comparing performance of malware detectors on practical malware

dataset and real exploits

1.2 Key Contributions of this Thesis

• Establishing unique correlation between DVFS states and an application behav-

ior using ML model: A correlation between DVFS states and application’s runtime

behavior can be established by modeling template of DVFS signatures or learning

features using ML models. Template modeling is not convenient for DVFS states

because it comprises background activity of concurrent threads forming uncorre-

lated noise. We propose ML algorithms that learns targeted application’s specific

DVFS features, given numerous training examples of application under different

background noise conditions.

• Demonstrating feasibility of detecting malware application using DVFS signa-

tures: The past studies have shown DVFS as offensive security threat [19, 20]. In

contrast, we demonstrate information leakage from DVFS signatures can detect mal-

ware applications from benign. A DVFS-based detector is architecture-agnostic and

pervasive applicable to broad spectrum of devices in comparison to HPC-based de-

tection which requires selection of relevant events and varies across architecture [13].

• Applying robust feature extraction methods to learn distinguishing characteris-

tics of different malware family: To extract malware specific features, we demon-

strated 2D Discrete wavelet transform (DWT) on spectrogram, which improves de-

5

tection performance compared to 1D-STFT or spectrgram alone. This feature extrac-

tion approach is in contrast to de-noising and compression applications of wavelet

transform [32, 33, 34].

• Demonstrating feasibility of classifying detected malware into characteristic fam-

ily using EM signatures: Prior EM-based detectors emphasize deviations from

trusted execution for detection, not focus on malware behavior [26, 14, 15, 27, 35]. In

contract, proposed approach primarily focuses on learning characteristics of different

malware family from their EM side-channel signatures.

• Detecting and localizing anomalies resulting from shellcode exploit using RBMs:

HPC-based shellcode exploit detection is architecture-dependent and requires feature

selection [9, 11]. Similarly, external power-based detection are invasive and require

device modification [17, 28]. The current detection models identifies existence of

anomaly in entire trace, but not localizes the anomaly. The proposed method de-

velops an non-invasive, architecture agnostic detector that identifies and localizes

anomalous executions of shellcode exploits using RBM model

1.3 Organization of this Thesis

Chapter 2 presents a detailed literature survey essential to understand contributions of this

thesis. It includes interactions of DVFS ans Security, power and EM emissions based detec-

tors, feature extraction methods for hardware signals and performance evaluation metrics

for the ML models.

Chapter 3 presents supervised ML methodology to exploit the relationship between

DVFS signatures and application’s runtime behavior.

Chapter 4 presents power based hardware malware detector (P-HMD) that leverages

information leakage from Dynamic Voltage and Frequency Scaling (DVFS) states for clas-

sifying malware applications against benign.

6

Chapter 5 presents a signal processing and machine learning methodology for EM-

based malware analysis that distinguishes malware applications from benign along with

identifying characteristic malware family of detected malware

Chapter 6 presents a detection framework to identify anomalies in single register val-

ues corresponding to shellcode injections using an RBM model

Chapter 7 summarizes key contributions of the thesis and future directions of research.

7

CHAPTER 2

BACKGROUND

2.1 Dynamic Voltage and Frequency Scaling (DVFS) and Security

There is a growing interest in understanding the interactions of DVFS and security. The past

studies have shown DVFS as offensive security threat. For example, Tang et. al. presented

a CLKSCREW methodology, which performs unconstrained undervolting/ overclocking to

inject faults to perform differential fault attack (DFA) for recovering key from Trustzone

on ARM processors [19]. N Chawla et. al. demonstrated the feasibility of performing

application inference using DVFS states [36]. On the other hand, there have been studies

exploiting DVFS for enhancing security. For example, Yang et. al. studied the use of

DVFS as a countermeasure to power side channel attack on encryption engines [21]. A.

Singh et. al. has demonstrated that fast DVFS enabled by on-chip regulator and adaptive

clocking helps inhibit power/EM-based side-channel attack and differential fault analysis

attack [20].

In contrast to the above mentioned works, the proposed research focus on establishing

unique DVFS signatures of applications, and subsequently extending to detect malware

against benign.

2.2 Leveraging Electromagnetic Emissions For Malware Detection

Physical side-channels incorporates fine-grained information about program’s instruction

sequences, control flows and data [37, 22]. Traditionally, power and EM side-channel have

been exploited for offensive attacks like compromising cryptographic keys from embedded

SoCs and hardware accelerators [24] [25].

However, recently researchers have demonstrated the capability of detecting malicious

8

applications by remotely monitoring EM emissions from a device. The detectors leveraging

EM side-channel emissions perform external monitoring and subsequent detection, thereby

eliminating the need for on-device implementation. N.Sethatbaksh et.al. have shown ap-

plicability of remote EM side-channel detectors for resource constraint devices, such as

Cyber-Physical Systems(CPS), IoT and embedded devices [15]. EM Side-Channel based

detectors also eliminate variability arising from different architecture and software. The

prior works on EM-based malware analysis mostly focused on anomaly based detection

that monitors deviation in EM emissions from trusted executions. S. Clark et.al. have

demonstrated “WattsupDoc” monitoring system to detect untargeted malwares on embed-

ded medical device using AC power traces. They show 85% accuracy in detecting unknown

malware on 3-NN, perceptron and random forest ML models [16]. A. Nazari have shown

loop frequency in a program is amplitude modulated at operating frequency region and

leaks in frequency spectrum, which is useful in identifying anomalies in code execution.

They have demonstrated parametric tests such as K-S test to compare observed spectrum’s

with reference spectrum to detect anomalies [14]. H.A.Khan et.al. have demonstrated

template based pattern matching anomaly detector for code injection attacks on Cyber-

Physical Systems(CPS) like DDoS, ransomware. The template matching anomaly detec-

tion approach can detect intrusions upto 200 instructions on FPGA, code modifications with

97.5% AUC from upto 3meters [27]. N. Sehatbakhsh et.al. have demonstarted a remote

EM side-channel detection framework for code-injection and code-reuse attacks on CPS.

They introduced distance metric to compare peaks in the EM spectrum, under variations

arising from operating clock frequency. The robustness of the proposed remote detection

framework is evaluated under system level interrupts, multi-tasking, temperature variations

etc [15]. Y. Han et.al. Introduced “Zues” monitoring system to maintain control flow in-

tegrity by using EM emissions from Programmable Logic Controllers (PLC) [26]. They

achieved this task by learning sequence of spectrum’s using stacked LSTM and identify

and localize deviations from correct behavior. “Zeus” can detect malicious code execu-

9

tions with upto 98.9% accuracy. Y.Cheng et.al. introduced “Magattack” that violates user’s

privacy by identifying application launching and operation by monitoring EM side-channel

emissions from laptop using magnetometer in COTS mobile devices. They demonstrate

low-frequency sampling (100 Hz) of magnetometer is sufficient for workload classification

and webpage identification [38].

In contrast to above mentioned works, we make the following contributions. First,

the proposed approach primarily focuses on learning characteristics of different malware

family from their EM side-channel signatures in comparison to prior work which profiles

trusted execution behavior and find anomalous in execution paths and not focused on mal-

ware behavior [26, 14, 15, 27, 35]. Second, we applied robust feature extraction methods,

like Discrete Wavelet Transform (DWT) which are useful in learning unique patterns of

different malware families existing at different time and frequency regions. Third, we ad-

dressed the software updates issues through re-training of the model on new benign or

malware family classes.

2.3 Power Based Malware Detectors

Existing works for power-based intrusion detectors target both external power side-channel

as well as on-device power telemetry. Y. Liu et.al. presented a non-intrusive code execu-

tion tracking using power side-channels via hidden markov model and recover the most

likely executed instruction sequence with a revised Viterbi algorithm [17]. F. Ding et.al.

presented “DeepPower”, Deep learning based detector for IoT malware intrusion and infec-

tion. “DeepPower” utilizes simple moving average filtering, auto-encoder model to isolate

suspicious signals and infer suspicious activity [28]. The existing works for on-device

power measurements acquires battery’s current and models energy consumption. Jacoby

et.al. have demonstrated early battery based host intrusion detection against network at-

tacks [39]. Liu et.al. have demonstrated “Virusmeter” on Symbian devices, that exploits

battery power to detect misbehavior resultant of malicious activity. The approach develops

10

user-activity such as calling, messaging, surfing, emailing centred power model via ma-

chine learning models and develop state machine governing each activity. The generated

energy profile from model is compared with actual energy profile to identify anomalies.

The detector implementation has 1.5% overhead [29]. Merlo et.al. have developed energy

consumption models for WiFi and CPU modules to detect battery drain attacks [30]. A

trade-off is evaluated between energy measurement accuracy and precision from higher-

level and lower-level measurements for energy-consumption modeling. This proposed en-

ergy consumption models are used to detect ping-flood attacks on skype calls. Caviglione

et.al. have developed energy consumption of software components using high-level model

of PowerTutor and values obtained from /sysfs fil system. Their utilize decision trees and

neural network models to detect different covert channels on device [31].

In comparison to these above mentioned works, the proposed anomaly detection frame-

work monitors on-chip software accessible power-models using RAPL interface. This con-

trasts with malware detection techniques utilizing software-defined energy models [30, 29],

battery-based power [39], and external power measurements [17, 28]. In addition, we also

demonstrate capability of detection framework in detecting obfuscated malware payloads.

2.4 Feature Extraction Techniques

Windowed Fast Fourier Transform (W-FFT)

We present two unique feature extraction techniques, for malware detection and family

classification respectively. We applied short time fourier transform (STFT) on Electro-

magnetic (EM) signal as well as DVFS signatures and used amplitude of spectrum in each

window to be used as features. The selection of frequency spectrum as features has been

demonstrated in prior works [14, 16, 15, 26, 35]. Y. Han et al. have utilized a sequence

of power spectral density (PSD) of frequency spectrum to train LSTM model [26]. S.S.

Clark et al. have demonstrated energy of selective frequency components (<2.5KHz) as

spectral features for malware detector [16]. A. Nazari et al. have selected spectral peaks in

11

frequency spectrum of STFT window, where atleast> 1% signal energy is concentrated for

K-S test analysis [35, 14]. In comparison to above works, the proposed detection frame-

work utilizes amplitude of entire frequency spectrum of STFT.

Discrete Wavelet Transform (DWT)

We performed DWT on spectrogram derived from EM signal to extract patterns corre-

sponding to different malware family. There are prior works that have applied DWT in side-

channel analysis. J. Ai et al. have demonstrated an improved wavelet denoising method

by first performing singular spectrum analysis (SSA) and detrended fluctuation analysis

(DFA) on power side-channel traces, followed by wavelet transform on residual noise sig-

nal to improve success rate of Correlation Power Analysis (CPA) attack over unprocessed

CPA by 30% [34]. N. Dabande et al. have demonstrated wavelet-based pre-processing for

compressing power side-channel traces and pattern extraction from lower decomposition

levels, to improve success of CPA attack by 50% compared to conventional time-domain

CPA [32]. J. Longo et al. have demonstrated improvement in signal-to-noise (SNR) of

power side-channel traces using wavelet analysis, eventually increasing t-statistic in leak-

age detection test [33].

In contrast to above mentioned works, feature extraction in the proposed research dis-

tinguishes in following ways. First, we demonstrate a unique data-processing pipeline for

feature extraction by coupling 1D-STFT in time-domain and 2D-DWT on spectrogram.

Second, we demonstrate application of DWT for feature extraction in contrast to denoising

and compression applications shown in [32, 33, 34]. Third, we showed aggregation of fea-

tures from multiple decomposition levels in contrast to only from last decomposition level

as shown in [32].

12

2.5 Evaluation Metrics For ML Model

F1 Score

The performance of classifier is measured using F1 score accuracy metric. The accuracy

is evaluated using F1 score, which is defined as harmonic mean of micro-averaged or

macro-averaged precision and recall. The precision gives ratio of True Positives (TP) and

all positives (TP+FP). It shows number of samples of relevant malware family in a class

and recall gives ratio of TP and (TP + FN) number of samples of relevant malware family

classified correctly.

F1 score =
2 ∗ Precision ∗Recall
Precision+Recall

(2.1)

Precision =
True Positives (TP)

True Positives+ False Positives (FP)
(2.2)

Recall =
True Positives (TP)

True Positives+ False Negatives (FN)
(2.3)

Region Operating Curves (ROC)

Another performance metric evaluated for classifier performance is Region Operating Curves(ROC).

Its shows that trend of True Positive Rate (TPR) and False Positive Rate (FPR) for different

decision thresholds. Higher TPR and low false alarming rate are desired for good perfor-

mance of classifier. Area under curve (AUC) is indicative of performance of the classifiers.

Learning Curves

We tested the generalization of model by observing the trend of training and validation

score against varying number of training examples. The generalization test is performed on

a 5-fold cross validation set. The ultimate objective is to study bias and variance trade-offs

13

trends. High bias is indicated by higher training error or simpler model selection resulting

in underfitting, whereas high variance is indicated by low-training and high validation error,

therefore overfitting of the model. Variance is estimated using gap between training and

validation curve. Lower gap is ideal for low-variance and lower training error is ideal for

low-bias.

Feature Relevance Using Mutual Information

We used MI is for selecting features more relevant the target variable, by eliminating non-

contributing features using MI score. Mutual information (MI) gives mutual dependence

between two random variables. It is a measure of reduction in randomness of one random

variable with knowledge about other variable. The dependence between two random vari-

ables is measured by comparing their joint probability distribution to product of marginal

probability distributions. The MI for two random variable X and Y is given in equation

Equation 2.4.

I(X;Y) =
∑
y∈Y

∑
x∈X

p(X,Y)(x, y)log
p(X,Y)(x, y)

pX(x) ∗ pY (y)
(2.4)

Here, I(X;Y) denotes mutual information between two random variables, X and Y.

pX(x) and pY (y) are marginal probability distribution of random variables X and Y. p(X,Y)(x, y)

is joint probability distribution of two random variables X and Y.

Welsh’s t-test

Welsh’s t-test is statistical measure to quantify similarity between samples drawn from two

populations based on their means. T-test is a hypothesis test, where null hypothesis is EM

or power signatures of two applications are selected from different malware family have

similar means. The output of t-test is t-statistic and probability for rejecting or accepting

the null-hypothesis. The p-value is obtained from student t-distribution function for a given

degrees of freedom. The Welsh’s t-test is described in equation below:

14

t− statistic = µ1 − µ2√
s21
N1

+
s22
N2

(2.5)

Here, µ1, µ2 are sample mean, s1, s2 are variance and n1 and n2 are number of ob-

servations. The Welsh’s t-test is applicable to data with unequal variances and different

sizes. Based on the t-statistic and p-value, null hypothesis is accepted or rejected. If

t − statistic > 4.5 or t − statistic < −4.5, null hypothesis is rejected with p-value

of 0.00001 and confidence score of 99.999% [40]. The welsh’s t-test has been explored in

the literature for test vector leakage assessment (TVLA) of proposed countermeasures to

cryptography circuits[41].

The next chapter presents characterization of DVFS signatures and assessment of in-

formation leakage from DVFS states using a ML model. The chapter builds foundation for

utilizing a DVFS-based malware detection. The information leakage from power and EM

emission is well established, and therefore not discussed on this thesis.

15

CHAPTER 3

DIFFERENTIATING APPLICATIONS USING DYNAMIC VOLTAGE

FREQUENCY SCALING SIGNATURES

Power management is an integral part of the modern system-on-chips with an objective

to regulate power consumption, improve energy efficiency and performance utilizing tech-

niques such as Dynamic Voltage and Frequency Scaling (DVFS), clock gating and power-

gating, etc. DVFS has become an integral part of modern processors to improve energy

efficiency, increase battery life, and manage thermal effects. With DVFS, the supply volt-

age and operating frequency are scaled with respect to the varying workloads of the target

system. Modern systems have multiple DVFS governors, that directs the rules for DVFS

state of a core. The DVFS governors assess CPU utilization by evaluating busy time of CPU

to down-scale or up-scale frequency, which in turn is workload dependent. The frequency

states of all cores are updated by cpufreq driver in Linux kernel that creates a software-

based information leakage path that can be utilized for detecting malware workloads.

To understand the feasibility of utilizing DVFS states for detecting malwares, a correla-

tion between DVFS states and application’s runtime behavior has to be evaluated. This can

be done by modeling a template of DVFS signatures or learning features using ML models.

Template modeling is not convenient for DVFS states because it comprises of information

of multiple threads, executing in conjunction with profiled application. The background

activity of these threads is random in nature and forms uncorrelated noise. To resolve this

problem, ML techniques are an attractive alternative. ML algorithms can learn targeted ap-

plication’s specific DVFS features, given numerous training examples of application under

different background noise conditions. In contrast to forming templates, ML models are

promising in black box settings, requiring limited understanding of target implementation.

This chapter presents supervised ML methodology to exploit the relationship between

16

DVFS state variation with an application’s behavior. We propose supervised machine

learning models Support Vector Machines (SVM), Random Forest (RF) and K-Nearest

Neighbors (KNN) to learn features derived from DVFS states time-series of different ap-

plications. To develop DVFS based application analysis framework, we showed various

characteristics of DVFS signatures. These include uniqueness in DVFS signatures of ap-

plications, impact of DVFS governor on information leakage from DVFS signatures, and

influence of background processes on DVFS signatures. The experiments are performed

on the Intrinsyc Development Kit Open Q 820 SOM, hosting Android OS, with underlying

linux kernel. We used applications from android benchmark dataset [42]. We used F1score

and ROC curves to evaluate ML model performance.

3.1 DVFS Governors in Linux Kernel

The CPUFreq module in linux kernel is a combination of three layers: cpufreq core, scaling

governors and scaling drivers. The core provides framework for all platforms that support

cpufreq. The scaling governors implement algorithms to decide on DVFS state by estimat-

ing CPU capacity. The scaling drivers communicate with the hardware and are responsible

for actual change in the DVFS state[43]. They access the platform-specific hardware inter-

face to change the DVFS state. There are multiple cpufreq governors accessible through

linux sysfs filesystem [44].

Ondemand: The governor estimates the CPU load using its own worker routine and

computes the fraction of time CPU was not idle. The ratio of non-idle to the total CPU

time is estimated as load. In multi-core platforms, governor is attached to multiple CPUs.

Therefore, load is estimated for all of CPU’s and highest is considered for load estimate.

The CPU frequency values are proportional to the estimated load, therefore maximum load

corresponds to highest frequency [45].

Conservative: This governor estimates the load similar to the ondemand governor de-

scribed above. It does not change frequency proportionately as ondemand governor, but

17

Applications DVFS states acquisitionCPU

APQ8096

PC

adb commands

 Invoking applications

 Log Frequency adb pull

(script executes in

background)

Frequency Time-Series

Figure 3.1: Data acquisition: (a) A methodology for DVFS states trace acquisition

instead it modulates frequency, once the load exceeds the defined higher or lower threshold

of CPU load.

Interactive: This governor also estimates the load similar to ondemand and conservative

governor. But, it aggressively scales the CPU frequency under intensive activities. To

accomplish this, it configures a timer and if the CPU is very busy after coming out of idle,

during the timer interval, it immediately ramps the frequency to the highest value. If the

CPU is not sufficiently busy, then the governor evaluates the load and changes the CPU

frequency.

3.2 Characterization of DVFS Signatures

We present following studies to characterize DVFS signatures. We show impact of cpufreq

governor selection on information leakage. We demonstrate influence of background pro-

cesses on DVFS signatures. We also show uniqueness in DVFS signatures of applications

using Welsh’s t-test.

3.2.1 DVFS Trace Acquisition

DVFS Traces are collected from a Intrinsyc APQ 8096 Development Kit, which has an

embedded Snapdragon 820 system on module(SoM) quad-core processor. It has 2 little

and 2 big cores, with highest operating frequency of 2.2 GHz. It has 32 GB of internal

18

storage and 3GB of RAM [Figure A.1]. The Snapdragon host android Nougat 7.0 operating

system.

Evaluated Applications: The proof of concept is demonstrated by measuring DVFS

states of android applications. Although evaluated android applications are benchmark ap-

plications[42], similar approach is generalized to any android application. The benchmark

applications, namely whetstone, dhrystone, linpack and loops are CPU bound benchmarks.

For instance, linpack benchmark performs floating point operation like addition and mul-

tiplication, busspeed and randmemi are memory bound benchmarks. Randmemi tests for

data transfer speed from caches and memory. We also used some multi-threaded CPU

performance benchmark in the dataset.

DVFS State Data Collection: The DVFS states of a core are derived from cpufreq mod-

ule in linux /sysfs file system. We generated a compiled C binary that reads the CPU oper-

ating frequency state, logs the timestamp and save these values to a file. This file runs in the

background along with profiled application as shown in Figure 3.1. The ARMv8 processor

has 4 cores, two little and two big cores. The two little cores have shared power domain,

and vice-versa for the other. The scheduler can assign the process to any core and the tasks

can migrate between individual cores. Therefore, frequency states of both the cores are

captured, when application executes on the processor. The scripts are programmed and

executed simultaneously to capture the CPU frequency state of individual core.

Trigger, Log and Fetch: A separate script runs on desktop. It manages the invocation of

DVFS state acquisition script, initialization of android application activity, pseudo-random

inputs for interacting with application, and storing trace files on mobile device as shown in

Figure 3.1. This is achieved through android debug (adb) interface shell commands. Each

profiling android application’s package name and activity name is extracted from apk dump

and saved to this script running on PC. The pseudo random touch events for interaction with

the application are simulated using monkey tool[46]. We set the percentage of system keys

inputs to zero and gave 500ms delay between every input. The DVFS state trace collection

19

Application

A
p
p

li
ca

ti
o
n

Figure 3.2: Heatmap of Maximum T-statistic between DVFS signatures for possible pairs
of applications

time is set for 10 seconds for experiments. It can be tuned for different settings. Finally,

the DVFS state trace is saved in the internal storage of mobile device.

3.2.2 Uniqueness of DVFS Signatures

The workload characteristics of applications have unique correlation with DVFS states. We

applied Welsh t-test to establish uniqueness in DVFS signatures of different applications. In

this particular case, the null hypothesis is ”DVFS signatures of applications selected from

different classes have similar means”, therefore they are not distinguishable. We study the

evidence of unique distinguishable features of different applications by obtaining Welsh

t-test scores among all possible pairs of an application’s raw DVFS signatures.

First, we perform pairwise t-test on DVFS signatures of different applications to es-

tablish that signatures are unique and distinguishable. We selected ondemand governor

and corresponding DVFS signatures of benchmark applications. Altogether, we perform

77 unique t-tests. We take multiple observations for DVFS traces of each application (100

20

traces) and perform a 2-sample t-test at each time point and obtain variation of t-statistic

over time samples. We reject the null hypothesis if t-statistic at any time point crosses the

threshold. The maximum t-statistic score computed over time samples for all possible com-

binations of t-test is represented using a heatmap as shown in Figure 3.2. The t-test results

for all possible pairs of applications except (7,14) have maximum t-statistic greater than 4.5

or smaller than –4.5. This observation shows DVFS signatures of evaluated applications

are distinguishable since they have distributions with different means

Second, we perform the t-test on DVFS signatures of same application collected over

multiple iterations to establish they are non-distinguishable.We equally split the collected

traces for an application into two groups. The traces belonging to a sub-group are selected

randomly and size of each sub-group is 50. We again perform a 2-sample t-test at each

time-point and observe the variation of t-statistic over time. We reject the null hypothesis

if t-statistic at any time point crosses the threshold. The maximum t-statistic score com-

puted over time samples for 14 possible t-test combinations is represented along diagonal

in heatmap plot shown in Figure 3.2. We can confirm from observations in Figure 3.2, that

t-statistic is below the threshold and therefore it don’t disproves the null hypothesis, imply-

ing the two populations have been selected from similar distributions with equal means.

The t-test analysis establishes that DVFS signatures of different applications are dis-

tinguishable. However, the t-test itself may not provide a direct approach for detection of

individual applications.

3.2.3 Impact of Governor Selection

We study the leakage behavior of different DVFS governors. To perform this study, we

characterized an application’s behavior by fixing one of the possible DVFS state and ob-

served the likelihood of the DVFS state at every time point. We took 100 instances of

DVFS state time-series of the benchmark application, “LinpackSP2” and calculated occur-

rence probability of that DVFS state [P(occurrence)] over 100 instances of the same trace.

21

conservative interactive ondemand

Time (s)

P
(O

cc
u

r
a
n

ce
)

DVFS state : 1593600KHz

Figure 3.3: Likelihood occurrence of states 1593600KHz at every time sample for a bench-
mark application with all governors

Figure 3.3 shows the likelihood of occurrence of frequency state (1593 MHz) for an appli-

cation with DVFS state signature generated from different CPUFreq governors. A higher

likelihood of particular states across time, indicates less likelihood of its switching to dif-

ferent states. A value near 0.5 indicates, other states might have higher chances at those

time-point. It can be concluded from Figure 3.3, governors have different leakage behavior

for the same application.

3.2.4 Impact of Background Processes

In smartphones, foreground activity of application depends on user inputs which dynam-

ically varies CPU utilization of the task contributing to the CPU load. In response to the

CPU load, cpufreq governor scales voltage and frequency states of the CPU. In smart-

phones, there are numerous system level threads and user applications simultaneously con-

tending for resources. But maximum CPU load is contributed by application running in the

foreground, which the user is currently interacting with, whereas the background user level

22

Time (s)

C
P

U
 l

o
a
d

 a
n

d
 T

a
sk

 l
o

a
d

E
st

im
a
te

CPU Load Task Load

Figure 3.4: CPU load and Task Load Estimate generated using ftrace tool to demonstrate a
high correlation between CPU load and foreground process

applications may not be actively executing on CPU core. Moreover, smartphones prioritize

performance of applications to enhance Quality of Service(QoS). To understand the impact

of background processes on DVFS state signature of targeted application, we evaluated

correlation between CPU load and targeted application task load. A strong correlation be-

tween them implies reduced influence of background tasks in DVFS state signature. This

is demonstrated through a motivating example detailed below.

The CPU load and task load are monitored using HMP scheduler events using ftrace

framework in Linux [25]. It has multiple trace point events for kernel functions. The

sched update task ravg is an HMP scheduler trace event which tracks updates on currently

running tasks [47]. It has various task related observable parameters which provide task

specific information like PID, current CPU its running on(cpu), cpu frequency(cpu freq),

cpu utilization of task in current window (sum) and cumulative CPU demand of all the tasks

in current window (curr runnable sum). For experimental evaluation, we initialized the tar-

23

PCA

win size

Raw DVFS

Windowed
FFT

(each window)

combine
windows

Train

Classifiers

KNN

SVM

RF

Hyper-
parameters

Fit

Project
Test

Train

Test

Window-based FFT and PCA

Interpolation

Fit

Predict

Train Labels

Predicted
Labels

Figure 3.5: The proposed methodology for application classification. Pre-processing and
feature extraction performed on short sequences of DVFS states time-series. The feature
vector is generated by combining windows and subsequently passed to classifier

geted application, an android benchmark, ’LinpackSP2’ [42] that executes for duration of

approx. 7.5s in presence of system level threads running in the background and collected

the sched update task ravg trace events for duration of 10s. It comprises of all currently

running processes, and we observe the task load(sum) for targeted application and cumula-

tive CPU demand (curr runnable sum). Figure 3.4 shows the trend of these two variables

for a particular CPU core, on which targeted application was executing for majority time.

The plot depicts a high correlation between task load and cumulative CPU load, suggesting

that maximum load is contributed by currently executing application.

3.3 Application Inference Using DVFS Signatures

3.3.1 Application Inference Methodology

We discuss the detailed methodology used in DVFS based application classification. Fig-

ure 3.5 shows an overview of the proposed classification approach.

Pre-processing and Feature Extraction: The input dataset comprises of current operat-

ing frequency time-series of both the CPU cores during runtime of the android application.

Instead of choosing the exact frequency states, we chose frequency indexes (0 to 29) to

avoid need for normalization of data as some machine learning algorithms (e.g., support

vector machines) do not perform well if the input data has large values. The entire time-

24

series length is partitioned into non-overlapping smaller sequences of finite length, and

Fast Fourier Transform (FFT) is performed on each of short sequences. The amplitude of

the Fourier transform is used as features. This is followed by dimensionality reduction on

FFT of individual short sequence using principal component analysis (PCA). The variance

in the dataset is evaluated across multiple instances of same application under background

noise conditions as well as different applications. We selected the components that meet

99% variance in individual short sequence window. The number of principal eigen vectors

will vary with different governors. Finally, the reduced sequences are concatenated to form

feature vector. The proposed methodology is shown in Figure 3.5.

Machine Learning Algorithms: To learn program runtime characteristics from DVFS

states, we chose supervised machine learning algorithms suitable for varying type of datasets.

Both our training and testing datasets vary a lot in terms of dimensionality, number of ob-

servations and noise characteristics. The noise in turn depends on the selected DVFS gov-

ernor, application that is being executed, the sampling speed at which the DVFS monitor

is capturing the frequency states and essential system and user applications running in the

background.

• Nearest Neighbors (KNN): KNN algorithm can classify datasets with linear or non-

linear distributions. It selects k neighbors from the N-dimensional feature space. The

neighbors are assigned weights based on distance metric (here Euclidean). K-NN

performs well in low-dimensional feature space, with large number of observations

which is the case with DVFS dataset.

• Support Vector Machines (SVM): Like KNN, SVM can also classify linearly or non-

linearly distributed datasets with a proper kernel (linear, poly, radial basis function

RBF) It constructs a hyperplane to divide the feature space. The hyperplane is chosen

such that it maximizes the margin between the features. For noisy as well as high

dimensional data, SVM tends to outperform other ML algorithms. But drawback is

increased training time.

25

• Random Forest (RF): Random forest is an ensemble learning method, that uses re-

sults from multiple decision trees. Using ensemble of decision tress avoids overfit-

ting problem. These commonly applied to multi-class classification problem. We

haven’t performed detailed hyper-parameter optimization but tested out classifiers

performance by tuning the parameters

3.3.2 ML Model Building

We used several supervised machine learning algorithms to learn features derived from

DVFS states time-series of different applications, and respective applications as their labels,

thereby forming a classifier.

The dataset comprises of 14 android benchmark applications. During training, each

android application of the dataset is executed for a duration of 10 seconds in presence of

default activities executing in the system. There are no constraints imposed on background

scenarios during training. The training environment is reflective of true android mobile

phone scenario created by end user. As described in section 3.2, user can start multiple

android applications, but at particular time, user is interacting with one application in the

foreground. The DVFS signature is reflective of cumulative activity of CPU core, but its

dominated by foreground application. User interface (UI) is an essential component of an-

droid applications, and in order to collect DVFS states of android application, we need to

provide interactive user inputs. To clarify, “user interaction” do not imply a physical inter-

action between user and a device. The interaction can be virtual, aided by specific tools[37].

For instance, fuzzer tools like monkey can simulate such pseudo-random UI events. Also,

user input interactions are limited to smartphones and do not extend to most of IoT devices.

Moreover, the threads can be scheduled on either core and as well might migrate between

cores. Therefore, it is essential to capture frequency states from both cores. In addition

to this, multiple instances of DVFS state traces are acquired for every profiled application.

This ensures that variations arising due to dissimilar background conditions are considered.

26

Table 3.1: F1Score for Application Inference with different governors

CPUFeq Governor KNN SVM RF
Interactive 0.7 0.79 0.83
Ondemand 0.84 0.95 0.97
Conservative 0.64 0.64 0.7

We fixed the number of training instances per application as 75 in our experiments. The

number of samples in DVFS state time-series is 20k for individual core. The feature vec-

tors generated after pre-processing DVFS state time-series of individual core as described

in subsection 3.3.1 are concatenated. There are 14 labels one for each application.

3.3.3 ML Model Evaluation

We collected multiple DVFS state time-series traces of all the application learned by the

model under different background conditions every time. We tested each application with

25 instances. The feature vector is generated by computing FFT on windowed sequence of

time-series trace and projected to corresponding eigen vectors to form the reduced repre-

sentation. Reduced feature representation of windowed sequence is concatenated to form

feature vector. Finally, performance of the classifier is evaluated on the testing dataset.

Accuracy Analysis: Table 3.1 shows F1score for application classification using differ-

ent supervised machine learning models and DVFS states features extracted from different

cpufreq governors. The F1score are highest for random forest classifiers in comparison to

SVM and KNN. On comparing classification accuracies with different ML models, KNN

does not perform optimal fitting. It can be concluded it is not the best algorithm when data

is noisy, or features are not consistent. The trend in F1score across different cpufreq gover-

nors clearly shows the algorithmic differences of these governors. The F1score shows high-

est value for features extracted from ondemand governor. We also obtained ROC curves

for RF inference model as shown in Figure 3.6. A higher AUC (higher TPR for lower

FPR) is observed for features derived with ondemand governor compared with interactive

27

T
ru

e
P

o
si

ti
v

e
R

a
te

(T
P

R
)

False Positive Rate (FPR)

Receiver Operating Characteristics

Benign and Malware

Interactive

Conservative

Ondemand

Figure 3.6: ROC curves generated for benchmark application classification with RF infer-
ence model evaluated across all governors

and conservative. These results indicates DVFS state variation of ondemand governor has

more distinguishing features followed by interactive and conservative. The trends are in

consensus with their algorithmic behavior as described in section 3.1.

The high detection accuracy on application classification summarized in Table 3.1

shows that ML model has extracted unique features of different applications and subse-

quently distinguish them with high confidence scores. The results re-confirms the evidence

of unique distinguishable features of different applications as shown via Welsh t-test scores

on raw DVFS signatures in subsection 3.2.2

Impact of Time-Series Length: In above application classification task, we kept the du-

ration of DVFS signature fixed for 10s. It is essential to understand how much data is

actually required to attain the F1score as shown in Table 3.1. In general, longer duration

of DVFS signature will increase data collection, training and inference time. But, it will

also improve the accuracy. Therefore, it is ultimately a trade-off between model accuracy

28

 Duration of DVFS Signature (s)

F
1
 s

co
re

Interactive

Conservative

Ondemand

Figure 3.7: F1score vs Duration of DVFS signature for different governors evaluated using
RF model

and training time. To study the effect of time-series duration on model accuracy, we trained

the model on different duration of time-series and observe the F1 score on testing dataset.

The plot for depicting this trend is shown in Figure 3.7. As expected, we can observe that

test accuracy increases with longer time-duration of the DVFS signature. Interestingly,

we observe that Certainly, features derived from interactive and conservative governor re-

quire more data for improving the classification score. On the other hand, features derived

from on-demand governor can classify these 14 applications with 0.97 F1 score with 8s

time-samples. Therefore, applications can be classified with 10s of data collection with on-

demand governor; however, for higher accuracy using other governors we need to collect

longer duration of data.

29

Known Applications (Recall)

U
n

k
n

o
w

n
 A

p
p

li
ca

ti
o

n
s

(R
e
ca

ll
)

Recall Known and Unknown Applications

For Different Decision Thresholds

0.9

0.05

0.05

0.05

Interactive (AUC – 0.86)

Conservative (AUC – 0.79)

Ondemand (AUC – 0.94)

Figure 3.8: Recall for known and Unknown application generated using trained RF model
evaluated across different decision thresholds

3.3.4 Identifying Unknown Applications

We evaluated the machine learning model on a dataset of applications whose features are

not learnt by model. These are referred as unknown applications. We demonstrate that this

trained model can be used to flag a potentially malicious or application not known to user.

The trained model with known applications dataset is applied to a test dataset of some of

the unknown applications. We used applications in MiBench suite [48] for the testing and

measured 40 instances of each program. To detect the unknown program, pre-processing

and feature extraction is performed, and then prediction probabilities are obtained from the

machine learning model. We define a decision threshold based on probability to classify the

unseen application in the unknown program class only when probability is less than deci-

sion threshold. We varied this decision threshold that subsequently introduced False nega-

tives (FN) in identifying known applications. Therefore, there exists this trade-off between

30

recall for known and unknown applications at different thresholds. A plot demonstrat-

ing this trend for different governors is shown in Figure 3.8. The model generates higher

probability of an example learned by model in comparison to application from unknown

application. Therefore, at lower threshold, higher recall is observed for known applications

and vice-versa. Higher AUC for training model derived from ondemand governor indicates

more distinguishability between features of known and unknown application (Figure 3.8).

3.4 Summary

This chapter experimentally demonstrated identification of applications by deriving fea-

tures from DVFS states of a processor’s core and using supervised machine learning model

to establish their subsequent correlation. The Welsh t-test of analysis on DVFS signatures

shows unique signatures for different applications. The F1score of application classifica-

tion is > 0.7 evaluated across different machine learning models and cpufreq governors.

The highest F1 score and AUC score obtained for ondemand DVFS governor indicates

highest information leakage. We also showed identification of unknown applications using

the learned model based on known applications. The results show > 0.79 AUC on recall

curves for known and unknown applications evaluated with RF model and all cpufreq gov-

ernors. The subsequent chapter extends the ML methodology to demonstrate feasibility of

a detecting malware application from benign.

31

CHAPTER 4

SIGNATURE-BASED MALWARE DETECTION USING DYNAMIC VOLTAGE

FREQUENCY SCALING SIGNATURES

The computing devices generate, process and communicate large amount of sensitive data

which is susceptible to malware attacks, thereby compromising security and privacy. The

software-based malware detectors, particularly AntiVirus (AV) are vulnerable to software

exploits and require consistent updates. Moreover, many AV software are power hungry

and hence less suitable for energy constrained devices. Alternatively, hardware-based mal-

ware detectors (HMD) have gained interest [6, 49, 12]. HMD can be implemented in

hardware, remain isolated and cannot be easily tampered [12]. HMD are based on features

derived from hardware events such as micro-architectural, power, electromagnetic emis-

sions. HMD based on performance counters vary across different architectures [13]. Also,

limited number of performance registers requires selection of relevant HPC. Similarly, de-

tector based on EM emissions requires external side-channel measurements.

This chapter presents a power based hardware malware detector (P-HMD). The power

management is an essential hardware feature which is architecture agnostic and pervasive

component common to broad spectrum of devices. In particular, we focus on leverag-

ing information leakage from power management signatures like, Dynamic Voltage and

Frequency Scaling (DVFS) states for malware identification. We propose to utilize super-

vised machine learning models Support Vector Mchines (SVM), Random Forest (RF) and

K-Nearest Neighbors (KNN) to learn features derived from DVFS states time-series of be-

nign and malware applications. The ML methodology used to develop correlation between

DVFS states and application runtime is extended to demonstrate feasibility of a malware

detector (Figure 4.1). The malware detector can learn from features of DVFS signatures

under different settings of governors such as ondemand, conservative, interactive. Since,

32

DVFS
Monitor

DVFS
Driver

V,F
Table

PLLs,
Regulators

V,F

SW HW

(a)
CPU0

4

Classifier
Pre-

processing
Feature

Extraction

ML model

Figure 4.1: (a) Dynamic voltage frequency scaling, hardware-software co-optimization
approach for power management (b) A machine learning based malware detector using
DVFS states features

DVFS governors also show differences in power behavior of applications, therefore, we

show existence of a power-security aware design space to meet energy efficiency as well

as provide security against malware. A secure detector design is proposed for practical

on-device malware detection system with cloud-based software updates features.

The experiments are performed on the Intrinsyc Development Kit Open Q 820 SOM,

hosting Android OS, with underlying linux kernel.We used android benchmark dataset[42]

for benign applications and malware samples were collected from Drebin dataset[50]. We

have evaluated malware detection accuracy using features derived from cpufreq governors.

4.1 Malware Detection

We extend the machine learning (ML) methodology used for distinguishing applications

for malware detection. The DVFS state time series of a processor is correlated to the

application(s) scheduled on the core. Hence, DVFS state transitions can capture differences

between benign and malware applications. The experimental setup used for this analysis is

33

Table 4.1: Training and Inference configurations for Malware Detection

Configuration Training Inference
Applications 14 benign, 16 malware 14 benign, 144 malware
Traces 2250 494
window size 200 samples (100 ms)
PCA n components = 6
RF n estimators = 40, gini impurity
SVM C=1, linear kernel

described in subsection 3.2.1

4.1.1 ML Model Building

The benign dataset comprises of android benchmark applications as described in sec-

tion 3.2. It comprises 14 android apps. The malware samples are collected from Drebin

dataset [50]. It comprises of 179 different malware families. Although benign applications

are benchmarks, the methodology is generally applicable to android applications. In order

to create a near balanced dataset, we selected only 16 android malware applications, each

belonging to different family.

Each malware application composition has benign as well as malware proportion. Train-

ing is not performed on malicious portion separately, but instead classifier sees both benign

and malware codes. Therefore, the entire DVFS state time-series is labeled as malware.

Different malwares have their own activation mechanism and payloads as described in [51]

and it is well understood that power behavior of these applications will be unique, but we

are interested in runtime interactions of android applications with DVFS states of a proces-

sor. The dataset comprises of 14 benign benchmark applications and 16 malware applica-

tions. During training, each android application of the dataset is executed for a duration of

10 seconds in presence of default applications running in the system. As described earlier,

there are no constraints imposed on background scenarios during training. In addition to

34

this, multiple instances of DVFS state traces are acquired for every benign and malware

application in the dataset. This ensures that variations arising due to dissimilar background

conditions are considered. We fixed the number of training instances per application as 75.

The configuration for benign and malware classification is summarized in Table 4.1.

4.1.2 ML Model Evaluation

The testing dataset comprises of new samples of android malware, not trained on the model.

Since, it is imperative to correctly predict malwares compared to benign. Therefore, goal

is to obtain lower false negatives (FN) and minimize False Positives (FP). The trained su-

pervised machine learning model is tested on dataset comprising of 144 different malware

applications which are variants of malware applications used in training. These belong to

the same malware family, on which the model is trained, but it’s a variant of those malware

applications. It comprises of 14 android benchmarks applications measured under different

background conditions, for 10s duration. We measured 25 instances each of these benign

applications. The configuration during evaluation for benign and malware classification is

summarized in Table 4.1.

Accuracy Analysis

Since RF classifier shows relatively higher F1score, we obtained the learning curves for RF

trained model with features derived from different governors as shown in Figure 4.2. The

training score attains highest value at lower number of training examples for ondemand and

interactive governor compared to conservative. It indicates a low bias in the trained model.

Similarly, an increase in validation scores with number of training examples and attaining

close to training score indicates low-variance and a good generalizability of model for new

examples in case of ondemand and interactive governor. In contrast, validation score does

not improve with increasing number of training examples for conservative governor, it also

shows comparitely higher variance, and poor generalization of model.

35

 # Training Examples

Learning Curves for Benign and Malware

Classification for different governors

T
ra

in
in

g
 a

n
d

 V
a

li
d

a
ti

o
n

 S
co

re

Interactive

Conservative

Ondemand

Training Scores

Validation Scores

Figure 4.2: Training and Validation Score against number of training examples (Learning
Curves) generated with RF model for features dervied from different governors.

Table 4.2: F1Score for Benign and Malware Classification with different governors

cpufreq governor KNN SVM RF
Interactive 0.88 0.78 0.78
Ondemand 1 0.72 0.99
Conservative 0.57 0.98 0.97

Table 4.2 shows the F1score on testing dataset evaluated with different classifiers and

DVFS states features generated from different governors. The F1score are highest for

RF classifiers in comparison to SVM and KNN. On comparing classification accuracies

with different ML models, we can conclude, that KNN does not perform optimal fitting.

These results indicate the model is generalized to variants of existing malware samples

learned during training. The performance of classifier across features derived from different

cpufreq governors is evaluated using # False Positives and # False Negative. Table 4.3

shows the confusion matrix values with RF classifier. FP indicates the number of benign

samples being labeled as benign and vice-versa for FN. The combined FP and FN scores for

36

Table 4.3: Confusion Matrix Generated from Random Forest Classifier for different gover-
nors

cpufreq governor # TP # FP # TN # FN
Interactive 41 6 344 103
Ondemand 142 0 350 2
Conservative 144 15 335 0

ondemand is lowest followed by conservative and ondemand. These results also indicate

features derived from ondemand governor have more distinguishability compared to other

governors. It also indicates more information harnessed from ondemand governor.

4.1.3 Power and Security

The power consumption of android applications changes with different cpufreq governors

and consequently malware identification accuracy as shown in Table 4.2 and Table 4.3.

The tradeoffs between average power consumption of different applications and malware

identification accuracy are evaluated for different governors. We measured average power

consumption of android benchmark and subset of malware applications (Fig. Figure 4.3).

Power is measured for application runtime duration of 10s by computing current drawn

(averaged over 10 measurements) from 3.8V buck converter supplying current to the Snap-

dragon processor using a 5m on-board resistor. The average power consumption accu-

mulated across all benign apps is higher compared to malware apps for all governors. En-

abling conservative governor dissipates highest power for benign and malware applications.

The power consumption of applications under ondemand governor is least when averaged

across all applications. Moreover, features extracted from ondemand governor also shows

higher application identification scores (0.97) and lower number of False Positives and

False Negatives for malware identification. In summary, applications dissipate relatively

less power and shows higher identification accuracy with ondemand governor compared to

interactive and conservative.

37

A
v

er
ag

e

P
o

w
e
r

(W
)

interactive conservative ondemand

Benigns Malwares Average

Figure 4.3: Average Power for benign and malware applications with different cpufreq
governors

4.2 Secure Detector Design

The realization of detector encompasses multiple design choices depending on software or

hardware. The hardware based implementations may include machine learning inference

engines as accelerators, or dedicated core etc. In software, machine learning inference can

be executed at kernel or flashed in firmware. Allocating higher privileges to detector creates

more secure detection framework. First, it will not only be useful for monitoring malicious

activity at application level, but they can potentially detect malware exploits at kernel level.

A hardware centric approach to detect rootkits using hardware performance counters is

demonstrated in [51]. Second, the detector won’t fail if system level software gets compro-

mised. More recently, more secure feature of trusted execution environments (TEE), like

Trustzone are extended to IoT based platforms. Implementing such detector will ensure

that underlying detector code and data is protected from tampering or adversarial attacks.

The specific tasks performed by proposed detector are described below

38

Known trusted
application

Unknown
application

IoT Cloud

APK

DVFS
signatures

Updated Model

DVFS

Monitor

IoT Device

Detector

Figure 4.4: On-Device DVFS based detection for red-flagging malware and detailed mal-
ware analysis and model updates on IoT cloud servers

Data Acquisition

The data acquisition step involves polling values of DVFS states. In linux based platforms,

DVFS states can be accessed through CPU Frequency scaling infrastructure. The current

frequency state of all CPU cores are sampled periodically for a specified duration. In our

proposed DVFS based detector data is collected for 10s duration.The polling of DVFS

states from cpufreq module introduces noise in the profiled application’s DVFS signature.

We have taken this into consideration during training by collecting multiple instances of

same application

Data Analysis

The DVFS signature of application is analyzed by detector (ML inference model) as shown

in Figure 4.4. The detector determines if DVFS signature belongs to set of trusted appli-

cations (known) else it is detected as unknown. A new application(malware or benign)

will be first be detected as unknown application. A detected unknown application will be

classified as “malicious” by default and flagged for further analysis at the cloud servers to

determine whether the application can be trusted.

39

Threat Response

Once the application is redflagged, it is deleted from the system and more detailed malware

analysis is performed to scrutinize its behavior. Detailed malware analysis is both time

and resource consuming task and it cannot be efficiently performed on-device. It can be

analyzed on cloud servers by sending detected application. If the application is identified

as threat after detailed analysis, IoT devices should be notified about updating ML model

with DVFS signatures of the detected “malware” application.

Model Updates

ML Model updates are required under multiple scenarios. An application’s power signature

can change on software updates. Also, the proposed detector is trained on limited malware

and trusted applications. Therefore, model would also require updates about new malware

applications and new trusted applications to be included in the existing model. Considering

our current approach, an update would involve retraining the machine learning model with

pre-existing data and new data and finding the best fit model using hyper-parameter opti-

mization. In our current approach, any update or a new application (trusted or un-trusted)

will first be detected as an unknown application. For a software update or a new trusted

application, the detected application can be mapped as “known”. This involves steps like,

generate a trigger to enable collection of the DVFS signatures, send the collected DVFS

signature to the cloud (or gateway) for re-building of the model, and receive the new ML

model from cloud once re-training is performed. (Figure 4.4).

We believe that the retraining is better performed at cloud or at the gateway depending

on the available processing power.The primary overhead for the edge device will be data

collection and data transfer associated with the model creation.The upload data volume for

unknown application is estimated around 23MB [Samples per trace (40K) * Training Ex-

amples (75) * size(float64)]. The download data volume from cloud servers comprising of

retrained model is estimated around 10MB [Apps (31) * Training Examples (75) * Feature

40

Vector Length (600) * size(float64)]. The model fitting and optimization will be performed

at the cloud, and new ML models can essentially be deployed to all edge devices that are

based on same OS.

4.3 Implementation Challenges

Practical implementations of the proposed detector requires addressing challenges like,

scalability of the detector with increasing data, number of applications and type of plat-

forms.

4.3.1 Platform Scalability

The experimental analysis is performed on an Android platform, but we have only used

CPU Frequency scaling feature of the Linux OS(no Android-specific functions). Linux is

a prevalent OS in many devices in the IoT ecosystem (gateway, edge, and resource con-

straint devices). In IoT developers survey 2019, linux is still dominant OS for gateways

and edge nodes [52]. The platforms based on linux kernel have CPU frequency scaling in-

frastructure like cpufreq, cpuidle. Therefore, we believe the observations made in this work

will be applicable to a significant portion of IoT ecosystem. Conclusively, the fundamental

observations made in the paper are applicable to most of the modern processors/SoCs.

4.3.2 Algorithm Scalability

A new application (benign or malware) would have a unique DVFS behavior and it would

eventually lead to unique features. At the best case, if features of new applications exhibit

similarity with existing benign or malware class, then the current model may perform well.

If the signature of the new application is different, the hyperparamaters of the current model

must be re-tuned (as discussed above) to generate a new version of the current ML model.

At the extreme case, as the numbers of applications increase the non-linearity in the feature

space is likely to grow as well making it difficult to classify the applications using simpler

41

ML models. In such cases, a non-linear machine learning algorithm like RF, or ultimately,

deep learning based approach, would be more scalable than linear algorithms like SVM.

The future work on this topic would consider applying complex non-linear ML algorithms

like deep neural networks.

4.3.3 Time-Series Length

The time-duration of the data collection during training and inference will impact clas-

sification/detection accuracy. In principle, the time-series of DVFS states of individual

application should be collected over long enough duration to ensure DVFS states are moni-

tored for different phases of application execution. We expect a longer time-series of DVFS

data will increase overall detection accuracy.

4.4 Comparison with HMD

Table 4.4: Comparison of proposed work with existing hardware based malware detectors

Reference Information Platform Performance Features
Detection
Algorithm

[6]
Performance
Counters
(HPC)

OMAP4460,
ARM
Cortex-A9,
Android 4.1

83% AUC for
10% (FPR)

368M samples
Decision
Trees, ANN

[16]
Power Sig-
nal (AC)

Embedded
Medical
Device

94% (known)
and 85% (un-
known)

8 time-domain
features (statisti-
cal), spectral

RF, 3-NN,
Perceptron

[49]
Performance
Counters
(HPC)

Intel AT-
LASEDGE,
ARM pro-
cessor

93% 2, 4, 8 HPCs
MLP, OneR,
JRip

Proposed DVFS

Snapdragon
820,
ARMv8
processor,
Android 7.0

F1score = 99%
(malwares vari-
ants)

DVFS states (2
CPU cores)

SVM, RF,
K-NN

42

There have been prior works that leverages machine learning methods using features

derived from software, hardware or combined for malware detection[6][16][49][10]. But,

no prior methods have focused on feasibility of DVFS based power signatures malware

analysis and subsequent detection. We compare the proposed DVFS based detector against

hardware feature-based machine learning techniques, like performance counters, power

and EM side-channel etc. To show a fair comparison, we selected literature that explores

signature-based approach for malware detection. The summary of the comparison is de-

scribed in Table Table 4.4. We compare the detectors based on machine learning perfor-

mance metrics, like precision, recall, AUC etc, and their feature complexity to access time

to detection (inference time).

The performance of DVFS based detection is comparable to other hardware-based de-

tection techniques as tabulated in Table 4.4. Note, datasets used for different detectors are

not identical. For instance, J.Demme et.al. have evaluated the accuracy on 37 malware

families [6]. S.M.P Dinakarrao et.al. have considered malwares belonging to 4 categories,

namely, backdoors, trojan, virus, rootkits in [49]. S.S. Clark et.al. targeted specific mal-

wares for medical devices [24]. The complexity of detector and time to detection can be

evaluated using feature dimensions. J.Demme et.al. have demonstrated detector with 368M

performance counter samples of malware and non-malware in ML model [6]. S.M.P Di-

nakarrao et.al. have shown reduced feature complexity of OneR classifier detection model

for IoT devices using 2 HPC [49]. This would have similarities to DVFS based detector

which relies on DVFS states from 2 cores. The exact comparison on feature complexity

also depends on length of data collection, which indeed is different. These key insights

derived from these comparisons are DVFS based malware identification is much simpler

and has smaller footprint due to its low feature complexity.

43

4.5 Summary

This chapter experimentally demonstrated an ML methodology to detect malware appli-

cations from benign by deriving features from DVFS states of a CPU core. We showed

an extension of the proposed machine learning methodology of distinguishing application

to malware detection. The experimental results show > 0.88 F1score using RF model

between benign and malware applications evaluated across all governors. We explored

power secure awareness of selecting cpufreq governor by evaluating power consumption

of different benchmark and malware applications. The applications dissipate less power

on average with ondemand governor configuration and also results in higher detection ac-

curacy. A framework for practical on-device malware detection system with cloud-based

software updates features is discussed. A comparison with other HMD shows that DVFS

based detection is simpler with smaller memory footprint due to its low feature complexity.

The detection of malware application is followed by analyzing its behavior such as

identifying malware family. The next chapter demonstrates ML methods and spectral and

wavelet-based feature extractions from Electromagnetic signal for classifying detected mal-

ware into malware family.

44

CHAPTER 5

REMOTE SIGNATURE-BASED MALWARE DETECTION AND FAMILY

CLASSIFICATION USING ELECTROMAGNETIC EMISSIONS

Physical side-channels incorporates fine-grained information about program’s instruction

sequences, control flows and data [37, 23]. As an alternative to on-device detection, there

is a growing interest in developing remote malware detectors that leverage physical side-

channels such as power and EM emissions[26, 16]. Recently researchers have demon-

strated the capability of detecting malicious applications by remotely monitoring EM emis-

sions from a device[26, 16, 15, 14, 27]. The detectors leveraging EM side-channel emis-

sions perform external monitoring and subsequent detection, thereby eliminating the need

for on-device implementation.

A large proportion of malwares are variants of baseline characteristic family, which

emphasizes need to evaluate malware behavior and subsequently classify them into fami-

lies[53, 5]. Generally, malware writers create multiple variants of malwares by adopting

obfuscation techniques to evade detection. But these variants have similar underlying func-

tionality like registering to premium services, stealing contacts, SMS etc. Since malware

samples are abundant, it is efficient to categorically separate them into groups based on

their unique behavior. Moreover, malware families have similar removal techniques and

their signatures guides robust anti-virus solutions [5]. Hence, along with detection, the

classification of malware into families is critical for detailed analysis.

This chapter presents a signal processing and machine learning (ML) approach for

EM-based malware analysis that distinguishes malware applications from benign ones

along with identifying characteristic malware family of detected malware as shown in Fig-

ure 5.1. We utilize frequency and wavelet-based approaches for extracting features from

EM-signals to be used for detection and classification. We show that ML methods operat-

45

EM
Traces

ML Model 1
(Detection)

FFT
(spectral)

Malware

Benign

Physical/Remote
Access

EM Side-Channel
Acquistion Adversary

Malware

Spectrogram
(time vs frequency)

DWT
ML Model 2

(Classification)
Malware
Family

Figure 5.1: EM side-channel monitoring setup, feature extractor and machine learning
model for detecting threat and classifying its characteristic behavior

ing on features computed from 1D- Short Time Fourier Transform (STFT) can be used to

distinguish malwares from benign application. However, spectral features obtained from

EM-traces are not sufficient to distinguish between different malware families. To obtain

fine-grain temporal and spectral features from EM-traces, we propose to perform discrete

wavelet transform (DWT) of a spectrogram derived from EM side-channel trace which cap-

tures power spectral density variations along time and frequency axis of the spectrogram.

The developed ML methods operate on the multi-level wavelet coefficients to perform mal-

ware classifications. The ML detection and analysis model is trained on subset of benign

and malware applications. Any new/updated application is identified as “unknown” by

comparing prediction probability of model with pre-defined threshold. The model is re-

trained with features of new/updated application.

The experimental validation is done by performing EM side-channel measurements

on Intrinsyc Open-Q 820 Development Kit, Snapdragon 820 processor, Android 7.0 OS

[54] using passive EM side-channel probes[55]. The ML models are trained to android

benchmark applications (benign) and malware applications collected from drebin dataset

[50]. We consider Support Vector Machine (SVM) and Random Forest (RF) based ML

models for malware detection and classification.

46

EM side-channel

Acquisition

Embedded

Device

(Detection)
APK

Trigger

(UI/broadcast events)

Low-Pass

Filtering

FFT

PCA

RF,SVM

Benign Malware

Spectrogram

DWT

PCA

RF,SVM

Malware

Family

(Classification)

EM Traces

Figure 5.2: The EM side-channel detection and analysis framework comprises of EM side-
channel monitoring, acquisition, post-processing, feature extraction steps and ML infer-
ence model

5.1 Threat Model

Threat model assumes the attacker may have physical or remote access to the embedded

device to directly or indirectly install malware. The attacker can inject malware into the

system by physically accessing the device. Alternatively, the attacker can package the mal-

ware within a benign application and an user interacting with device unknowingly installs

the malware-infected application on the device. Once installed, the malware gets triggered

using an in-build trigger mechanism.

47

5.2 Malware Detection and Analysis Framework

The remote malware analysis framework comprises of an EM side-channel acquisition unit

that monitors and collects EM side-channel emissions from the computing device. The mal-

ware detection block collects the sampled EM side-channel traces and subsequently learns

patterns in EM signatures through ML models. The objective of malware detection block

is to red-flag EM signature of malware infected applications during their runtime. The de-

tection of malware application is generally followed by analyzing a malware application to

identify patterns representative of known malware behaviors. The malware analysis unit

derives fine-grained features from the collected EM side-channel signatures and classifies

the detected EM side-channel signature among known malware families. The malware de-

tection and analysis framework assume no prior knowledge about the application (malware

or benign) under execution. The framework can recognize the application start by abrupt

modulations in EM side-channel activity.

5.2.1 EM Side-Channel Acquisition

The objective of the EM side-channel acquisition block is to obtain a EM side-channel

trace. A trace comprises of uniformly sampled time-varying Electromagnetic energy. The

side-channel acquisition block comprises of far-field antenna, a low-noise amplifier (LNA)

and oscilloscope to sample the acquired signal. The details on selection of EM probes (near

and far-field), amplifiers and signal acquisition setup have been explored in context on EM

side-channel acquisition. The remote side-channel detection would require high-gain, high

bandwidth antennas. The prior works on leveraging EM side-channel for mounting attacks

and more recently detecting malwares have demonstrated use of loop antenna’s [24], horn

antenna, panel antenna [27] and even microphones to collect EM side-channel signatures

[26]. Similarly there are numerous choices in signal acquisitions, like oscilloscopes, spec-

trum analyzers, and software defined radio’s (SDR).

48

Low Pass High Pass

2 2

Low Pass High Pass Low Pass High Pass

2 2 2 2

rows rows

(columns)

Cj

CAj+1 CD
h

j+1 CD
v

j+1 CD
d

j+1

Decomposition

Figure 5.3: 2D DWT as filter bank decomposes input spectrogram into approximate, hori-
zontal, vertical and detail coefficients.

5.2.2 Feature Extraction

The collected EM side-channel traces are input to the malware detection unit. The fea-

ture extraction block derives application specific features from the EM side-channel traces.

Generally, both time and frequency domain-based information are used for feature extrac-

tion. Fourier techniques are one of the unique descriptors, which gives spectral content of a

signal at multiple frequency points. We applied windowed FFT on EM side-channel traces

to derive features for detection.

The FFT based feature extraction method ignores the temporal variations in EM side-

channel trace. The malware analysis unit classifies the detected malware into respective

families, which requires deriving fine-grained patterns pertinent to malware family from

EM side-channel trace. These fine-grained patterns can lie at different time points in dif-

49

Spectrogram (C)
CD

h
8

CD
v
8 CD

d
8

CA8

Level 8 Coefficients

(W)

(L)

DWT

(a) (b)

Figure 5.4: (a) Spectrogram of EM side-channel trace gives power spectral density varia-
tions (psd) against time. (b) DWT applied on spectrogram resolved at level 8

ferent frequency regions. Therefore, first we segment EM side-channel trace into multiple

short windows, compute short time fourier transform (STFT) and finally aggregate win-

dows to obtain a spectrogram. It depicts power spectral density (PSD) variations of the

EM side-channel trace over time. A spectrogram generated from EM side-channel trace

is demonstrated in Figure 5.4(a). The subsequent step is to derive features from the spec-

trogram. Since, unique patterns can lie in multiple frequency regions, the spectrogram is

resolved at multiple frequency bands with a wavelet basis by performing a 2D – DWT.

A 2D – DWT is computed by applying scaling and wavelet basis functions to 2D input

like spectrogram. It comprises of one scaling function and 3 wavelet basis function. The

wavelet transform on 2D input is demonstrated in the equation below

wϕ(j0,m, n) =
1√
MN

M−1∑
x=0

N−1∑
y=0

f(x, y)ϕ(j0,m,n)(x, y) (5.1)

wψ(j,m, n) =
1√
MN

M−1∑
x=0

N−1∑
y=0

f(x, y)ψi(j,m,n)(x, y) (5.2)

where, wϕ(j0,m, n) are approximation coefficients, j0 is the starting scale factor and

wiψ(j,m, n) represents the horizontal, vertical and diagonal coefficients. M and N repre-

50

sents size of 2D input f(x, y). The wavelet decomposition steps at each level is described

in Figure 5.3. At the first level, rows of the 2D input are lowpass and highpass filtered

followed by downsampling. Next, columns of filtered rows are high-pass and lowpass fil-

tered and downsampled. The wavelet transforms on a 2D input, like an image measures the

intensity variations across horizontal, vertical and diagonal directions. Also, scaling factor

of wavelet basis can be modulated to resolve the 2D input at multiple levels. Lower resolu-

tion levels give information about larger structures in 2D input and higher resolution give

details. A plot demonstrating the 2D – DWT on spectrogram at lower resolutions (level 8)

with symlet basis function is demonstrated in the Figure 5.4(b).

The multi-level wavelet decomposition on the spectrogram is followed by aggregating

coefficients to be used as features. There can be multiple statistical metrics that can be used

to derive features from the wavelet coefficients. We used average of the coefficients along

both axes as features. The feature vector comprises of aggregating the mean values of all

wavelet coefficients from all the decomposition levels. DWT also depends on selection of

mother wavelet or wavelet basis function. We explored multiple wavelet basis including

haar, symlet, daubechies and evaluated the performance for classifying malware family

using these evaluated wavelet bases. The feature vector (F.V.) obtained from the wavelet

decomposition is given by:

F.V. =
L∑
i=0

CAk
W∑
i=0

CAk
L∑
i=0

CHk

W∑
i=0

CHk

L∑
i=0

CV k

W∑
i=0

CV k

L∑
i=0

CDk

W∑
i=0

CDk...

(5.3)

where, CAk, CHk, CV k, CDk represents different wavelet coefficients at decomposition

level k. L and W denotes the length the length and width of wavelet coefficients.

51

5.2.3 Dimensionality Reduction

The feature extraction block is followed by dimensionality reduction. The feature vector

comprises of FFT coefficients from high-dimensional segmented EM side-channel trace.

Similarly, aggregating wavelet coefficients from multiple levels of decomposition results

in a high-dimensional feature vector. We applied principal component analysis (PCA) for

reducing the feature dimensions. PCA is a dimensionality reduction technique that projects

the multi-dimensional feature vectors along directions that maximizes variance. The di-

rections or number of principal components is a hyper-parameter that is selected such that

90% variance is retained in reduced feature vector. The principal component has highest

variance in their increasing order.

5.2.4 Machine Learning Algorithms

The reduced dimensional feature vector is fitted using ML models. The task of malware de-

tection and malware analysis requires distinguishing malwares against benign and different

malware families respectively, therefore a classification-based ML model is used for fitting

the feature vector. The selection of ML model is based on complexity of feature space.

We evaluated the linear separability in the feature space by selecting linear kernel of SVM

model and set the regularization parameter to very high value. This forces the optimizer to

make 0 error in classification. We fit the training data and evaluated the accuracy on the

same dataset. A 100% accuracy on the training dataset implies 0 training error, and optimal

fitting with linear kernel. We examined SVM(linear kernel) can linearly separate features

of benign and malware applications, but not individual malware families.

Random Forest(RF): To learn non-linear complexities of the feature space, we also

evaluated random forest classifier for malware detection and family classification. Random

Forest is an ensemble learning technique, which fits the training data to number of decision

tress specified by hyper-parameter (n estimators) and uses averaging to improve the predic-

tion accuracy and avoid overfitting. We selected random forest algorithm because decision

52

trees can fit non-linear training data and they are computationally less intensive compared

to neural network. We explored different hyper-parameter for RF model like quality of split

criteria, maximum depth of tree, maximum features for split.

Support Vector Machines(SVM): SVM algorithm finds a maximum separable hyper-

plane to divide the feature space. The SVM is a kernel based classifier with linear, rbf and

polynomial kernel functions to fit complex feature space. We explored hyper-parameters

like regularization parameter, non-linear kernels for the explored dataset.The SVM classi-

fier for multi-class classification is implemented in one-vs-one scheme

We applied randomized search to find optimal hyper-parameter configurations for high

validation accuracy and subsequently used the model with optimal configuration for infer-

ence. We used the scikit-learn python machine learning libraries for RF and SVM classifier

implementations.

5.3 EM Side-Channel Trace Collection

The proposed approach is demonstrated on Intrinsyc Open-Q 820 Development Kit [54].

The EM side-channel acquisition setup in described in Figure A.1. The EM side-channel

probes are placed in proximity to device for experimental feasibility purposes, but practical

detector would involve high gain antenna placed at distance from the device under analysis.

There are three computing platforms used for side-channel measurements as shown in

Figure 5.5. A Laptop is used to interface with experimental platform, a desktop is used

to record and save the EM side-channel traces by reading memory buffer of the calibrated

oscilloscope and experimental platform (Snapdragon 820) is used for triggering workloads.

A script is used to launch applications, generate trigger inputs for application as well as

oscilloscope to start and stop measurement. This script executes on laptop. The trigger

inputs to application are simulated using monkey tool and are sent using android debug

interface (adb) shell commands. We used broadcast events as well as user touches, swipes,

system level events as trigger inputs. Similarly, trigger inputs are sent to oscilloscope using

53

Send Trigger Inputs

Install APK

Initialize Application

Stop Application

Interface (platform)

Experimental

Platform

Trace

Collection

Figure 5.5: EM side-channel Trace collection setup and laptop interfaced with the experi-
mental platform to trigger workloads and synchronize data collection

Arduino Uno. A MATLAB script executes on desktop to read collected EM side-channel

samples and store in a file. The sequence of steps followed to capture a single trace is

detailed below:

• Initialize the default activity of targeted application using adb shell command

• Send a trigger (0-1 transition) to oscilloscope through Arduino Uno to start recording

EM side-channel signature

• Send trigger inputs to android application using adb shell commands for profiled

process duration

• Stop the targeted application using adb shell command

• Send a trigger (1-0 transition) to stop the oscilloscope

These steps are repeated to collect multiple EM side-channel traces of every single

evaluated application. The sequence of trigger inputs to application is kept same for all

captures. In case of malware applications, each trace capture is followed by rebooting the

platform to re-initialize to original state for subsequent capture. The two scripts running

54

on laptop and desktop are synchronized by specifying delay equivalent to time for saving

a trace file. Once, the signatures are collected, training and testing steps are subsequently

performed offline.

5.4 Distinguishing Malware Against Benign Applications

5.4.1 Dataset Generation

Benign Dataset: The benign dataset evaluated for this study comprises of 14 android bench-

marks. The benchmark applications comprises of whetstone, dhrystone, linpack and loops,

randmemi. Among these some are CPU bound benchmarks. For instance, linpack bench-

mark performs floating point operation like addition and multiplication while others like

busspeed and randmemi are memory bound benchmarks. Randmemi tests data transfer

speed from caches and memory.

Malware Dataset: For detection, we selected 1 application (1 sample) each from 14 ran-

domly chosen malware families during training. In addition to this, we selected 146 other

malware applications, selected randomly from same 14 malware families. But these, 146

malware applications are evaluated during inference and these are variants of 14 malware

applications selected during training.

The performance of malware detection during inference depends on uniqueness of the

derived features of malware and benign applications. The uniqueness in feature vectors of

these applications is contingent to similarities in EM side-channel traces. The EM side-

channel emission’s unique correlations with application during its runtime has been estab-

lished experimentally in prior works [36]. It can be concluded from those observations that

malware and benign applications have distinctive EM side-channel signatures. The training

and inference methodology steps are detailed in subsequent subsections.

55

5.4.2 ML Model Building

The malware detection methodology is evaluated on dataset comprising of benign and mal-

ware applications. We selected 14 android benchmark applications and 14 malware ap-

plications. Multiple EM side-channel traces are collected for each application in benign

and malware dataset. Increasing number of traces per applications improves learning un-

der uncorrelated noisy environment. The number of traces per application is fixed at 75.

The EM side-channel traces comprises of noise resulting from multiple factors, includ-

ing measurement noise, OS scheduling policies, context switching and concurrent thread

execution. We haven’t specifically introduced any constraints like core pinning, core iso-

lation etc. to minimize system level noise during EM side-channel data collection. In

addition to this, we have disabled external communication peripherals like Bluetooth, WiFi

and Modem, so that malware cannot send sensitive information to external servers. The

EM side-channel signatures are captured for duration of 10s and each signal is sampled at

2MHz frequency. EM side-channel traces are first segmented into 100ms window and each

segmented trace is filtered using low-pass butterworth filter at 2KHz cut-off frequency. The

filtered sub-trace is transformed into frequency domain by performing FFT on each win-

dow. This windowed FFT is performed on all sub-sequences of EM side-channel traces.

After performing FFT, PCA is applied separately on individual sub-traces to obtain a re-

duced dimensional representation of feature. The number of principal components in each

window is experimentally evaluated for retaining high-variance and set as 40. The feature

vector is formed by concatenating reduced representation of each sub-trace sequentially

and fitted using SVM and RF model. We explored linear kernel SVM and non-linear RF

model as detector. Table 5.1 shows different hyper-parameter configuration chosen with

SVM and RF model.

56

Table 5.1: Training and Inference configurations for Malware Detection

Configuration Training Inference
Applications 14 benign, 14 malware 14 benign, 146 malware
Traces 2100 496
Filtering butterworth, 2KHz cut-off frequency
window size 200K Samples (0.1 sec)
PCA n components = 40
RF n estimators = 40, gini impurity
SVM C=1, linear kernel

5.4.3 Model Evaluation

The test dataset comprises of 25 traces of 14 benign applications collected in different

background state and 146 new malware applications selected from 14 malware families

evaluated in the dataset. The new malware applications are variants of malware families

selected in training. EM side-channel traces are first segmented and FFT is applied on each

sub-trace. The windowed FFT of each sub-trace is projected to principal component axis

to obtain reduced representation of each window. Finally, feature vector is generated by

concatenating reduced feature dimensions from all windows. The feature vector is tested

on the trained ML model and performance is evaluated using F1 score. The validation

curve is obtained for malware detection using SVM and RF model as shown in Figure 5.6.

The training error is low with increasing number of training examples. This indicates low

bias and higher validation scores with increasing number of training examples indicates

lower varaince (no overfitting). The selected ML models have optimally fitted on EM side-

channel features. The cumulative test dataset accuracy (F1 score) with SVM model is 99%

and RF is 97%. The F1 scores of benign and malware classes with SVM and RF model are

described in Table 5.2. The training and inference configurations for malware detection is

shown in Table 5.1

57

Table 5.2: F1-scores for benign and malware applications with different detection models

Class/Model SVM RF
Benign 0.99 0.97
Malware 0.98 0.94

Figure 5.6: Validation Score against number of training examples (Learning Curves) using
SVM and RF model for malware detection

5.5 Distinguishing Malware Family

5.5.1 Dataset Generation

For classification, 137 malware applications selected from 8 malware classes. We selected

these malware families, “Adrd” , “BaseBridge”, “DroidKungFu”, “Geinimi”, “GinMaster”,

“Goldream”, “Kmin” and “Yzhc”. We selected these 8 malware families out of 154 dif-

ferent families in drebin dataset for following reasons. First, selected malware families are

58

Table 5.3: Number of Samples and Selected Malware Families from Drebin Dataset

Malware Family Samples
Adrd 11
BaseBridge 25
DroidKungFu 19
Geinimi 3
GinMaster 19
Glodream 19
Kmin 18
Yzhc 23

among the top 20 common malware families in the drebin dataset [50], which have higher

number of samples in comparison to other 134 malware families, having fewer than 10

malware samples. Second, datasets aside from drebin, for instance MalwareGenome [51],

Contagio-Dump [56] and VirusShare [57] also includes these 8 selected malware families,

which are among the common malware families. Third, selected malware families have

been explored in various android malware detection/family classification research, even

most recently [58, 59]. Finally, selected malware families share one of the common mech-

anisms for activation, i.e., registering to android system events, “BOOT COMPLETED”,

which triggers malware activity on system reboot [60]. The number of samples of each

malware family is shown in Table 5.3. Although, malware classification framework is an-

alyzed on 8 malware families, But the proposed framework can be extended to multiple

malware families.

5.5.2 Distinguishing Malware Family Using Welsh’s t-test

An application’s unique correlation with EM signatures is not indicative of similarity be-

tween features of multiple applications belonging to same malware family. There are mul-

tiple approaches both statistical and visualization based utilized to analyze distinguishably

between two signatures like KL divergence, dynamic time warping, t-test, T-SNE etc.

We present Welsh’s t-test to evaluate “if the EM side-channel signatures of two mal-

59

Welsh’s t-test

N1

observations

N2

observations

Malware

Family A (X1)

Malware

Family B (X2)

20M Samples

20M Samples
t-stat,

p-val

Figure 5.7: Welsh t-test analysis on spectrograms of applications selected from different
malware families

ware families are distinguishable”.. Eventually, the uniqueness in feature vectors of a

malware family is contingent to similarities in EM side-channel traces. Therefore, we per-

form welsh’s t-test on input space rather than reduced feature space. We performed welsh’s

t-test analysis on spectrogram input. The welsh’s t-test analysis is compared using dissim-

ilarity score (D.S.), which gives proportion of trace points where t − statistic > |4.5|. A

higher dissimilarity score indicates more distinguishable input signatures of malware fam-

ilies. Dissimilarity score is given by equation Equation 5.4 and its value ranges between 0

and 1

D. S. =
Trace Points, ∋ (t− statistic > |4.5|)

Trace Length
(5.4)

First, a pair-wise t-test is performed on applications selected from different malware

families to establish distinguishability between malware family. The t-test is applied at all

time/frequency points of the represented input. Welsh’s t-test analysis on spectrogram in-

put of applications is shown in Figure 5.7. The number of observations (n1 or n2) includes

60

N2

observations

Time

F
re

q
u
en

cy

T-test - “Adrd” and “Yzhc”

Figure 5.8: T-statistic scores represented as 2D plot, where black regions represent t −
statistic > 4.5 or t− statistic < −4.5

multiple instances of all applications in the selected malware family. The number of ob-

servations vary between malware families. The null hypothesis is rejected for every time,

frequency point where t-statistic crosses the threshold. The t-statistic plot for a spectrogram

input can be represented in a 2D plane as shown in Figure 5.8. The plot shows t-score plane

corresponding to t-test between “Adrd” and “Yzhc” malware family. The black portions of

the trace correspond to rejection in null hypothesis, which eventually indicates regions of

statistical variations or distinguishability between two malware families and vice-versa for

white regions.

Second, t-test is performed among applications belonging to same malware family to

demonstrate more similarity and less distinguishability. Here, input traces of applications

selected from malware family are split into two groups. Then t-test is performed at all

time / frequency points of the representative input. The number of observations (n1 and

61

1e-7

1e-5

1e-3

1e-2

0.1

0.2

0.5
Spectrogram

Different Malware FamilyAdrd

BaseBridge

DroidKungFu

Geinimi

GinMaster

Gloadream

Kmin

Yzhc

Figure 5.9: Heatmap plot of dissimilarity score (time or frequency points), where t −
statistic > |4.5| evaluated for spectrogram of raw trace

n2) for t-test is comparatively lower than testing for distinguishability between malware

families. The null hypothesis is rejected for every time, frequency bin when t-statistic

crosses the threshold. We obtained t-score plane corresponding to applications belonging to

“Adrd” malware family. We observed that the number of black regions on the t-score plane

got significantly lowered, with very few rejections of the null hypothesis, indicating more

similarity and lesser distinguish-ability between applications of “Adrd” malware family.

Welsh’s t-test results: The input traces of applications within same malware family

should retain more similarities and less differences when compared across malware fam-

ilies. We tested this hypothesis by measuring dissimilarity score for all possible pairs of

malware families and obtained a heatmap plot of dissimilarity score for spectrogram input

as shown in Figure 5.9. The plots are symmetric along the diagonal which corresponds

62

Table 5.4: Training and Inference Configurations For Malware Family Classification

Configuration Training Inference
Applications 137 137
Traces 548 137
PCA n components=20
Spectrogram window = hamming, window size = 10000

overlap = 50%, mode = psd
Wavelet haar, symlets (order=5), daubechies (order=5)
RF n estimators = 1 to 500, information gain = gini,entropy

max depth = 2 to 20, max features = 2 to 8
SVM C,gamma = 1,10,100,1000, kernel=linear,rbf,poly

degree = (2 to 6)

to applications of same malware family. The lower intensity regions on heatmap indi-

cates more similarity and less distinguishability between selected pairs and vice-versa for

high-intensity regions on heatmap plot. The low-intensity regions across diagonal indi-

cates more similarity among applications of same malware family, and increasing intensity

regions, indicates more distinguishability among applications of different malware family.

5.5.3 ML Model Building

The dataset comprises of 137 malware applications selected from 8 malware families in

drebin dataset [50]. We collected 5 traces for each selected application. The training dataset

is formed by collecting EM side-channel signatures of 80% of applications selected from

each of malware family. These applications are selected at random by keeping fixed seed.

The number of applications per malware family is shown in Table 5.3. The EM side-

channel trace includes noise arising from numerous sources like measurement noise, OS

scheduling policies, kernel level threads and context switching. We did not specifically

impose any constraints during side-channel acquisition of profiled application.

First step in training procedure is to generate a spectrogram of each EM side-channel

trace. We tested different configurations of window size for generating spectrograms. We

63

experimentally varied length of segment for computing the windowed FFT and obtained

the power spectral density (PSD) variations with time. The length of segment is selected

appropriately for finer resolutions in both time and frequency. The output comprises of

frequency bins, time samples and PSD at each frequency and time-point. In second step,

the spectrogram is resolved at multiple levels and each level generated set of wavelet co-

efficients for performing 2D-DWT. We experimented with different wavelet basis function

namely haar, symlets and daubechies. We followed similar steps of feature extraction as

described in subsection 5.2.2 to obtain feature vector. Lastly, we reduced the feature di-

mensions by applying PCA and finally fit the reduced dimensional feature vector using

ML model. We explored multiple hyper-parameter configurations described in Table 5.4

and used randomized search algorithm to derive at best hyper-parameter configurations for

highest cross validation accuracy. In our experiments, different hyper-parameter configura-

tions ranges were explored, and 100 iterations of random sub-sampling was used to select

hyper-parameter configurations. Different configurations during training are detailed in the

Table 5.4.

5.5.4 Model Evaluation

The trained ML classification model is tested on dataset comprising of 20% of the remain-

ing applications of each malware family. The testing dataset has 137 examples belonging to

8 malware families. The EM side-channel traces are converted to a spectrogram and DWT

is applied to resolve the spectrogram at multiple levels, with each level generating set of

approximation and wavelet coefficients. The feature vector is averaged of coefficients at all

decomposition levels. The feature vector dimensions are projected to PCA to form reduced

dimensional vector and output is evaluated on trained machine learning model with optimal

hyper-parameter configurations.

Accuracy Results: The inference accuracy for different ML models and feature extrac-

tion techniques is summarized in Table 5.5. The test dataset inference accuracy (F1 score)

64

Table 5.5: F1 scores for Malware family classification with different ML models

Features/Model SVM RF
2D-DWT (haar) 0.87 0.81
2D-DWT (sym5) 0.88 0.81
2D-DWT (db5) 0.74 0.77

Figure 5.10: Validation Score against number of training examples for different wavelet
basis using SVM model for malware family classification

is also evaluated for different wavelet basis as described in Table 5.5. The F1 scores

are calculated for optimal configurations of both SVM, RF model. The optimal hyper-

parameter configurations for SVM are (C = 1, gamma = 10, kernel = rbf) and RF are

(n estimators = 350, max features = 5, gini impurity). The optimal configurations

for both ML models depict a higher non-linearity in features of different malware family.

We observe that selection of wavelet basis function also influences the classification accu-

racy. We obtained higher inference accuracies with “haar” and “symlet” basis compared to

“Daubechies”.

Learning Curves: We obtained the validation curves corresponding to best hyper-parameters

65

Table 5.6: Impact of PCA on F1 scores For malware family classification

Features/Model PCA No-PCA
2D-DWT (haar) 0.87 0.86
2D-DWT (sym5) 0.88 0.89
2D-DWT (db5) 0.81 0.82

for different basis function as shown in Fig. Figure 5.10. Low bias obtained during train-

ing with SVM model is result of higher training score with increasing number of training

examples. Furthermore, comparatively higher variance is obtained during training for all

evaluated basis function. Although, validation score is increasing with number of train-

ing examples, it implies given more training data, better fitting can be achieved. We also

infer trend in validation scores with increasing training examples are similar for different

wavelet basis, but selection of haar wavelet offers more generalized model with compara-

tively lower-variance.

Impact of PCA: To verify the significance of applying PCA, we evaluate classification

accuracy in two scenarios. In first case, feature vector is directly fitted to classification

model and in second case, reduced feature vector after applying PCA is fitted. We selected

SVM model and fixed the optimal hyper-parameters configurations that were obtained for

malware family classification. F1 scores are summarized in Table Table 5.6 for malware

family classification using SVM model. We observe the F1 scores are very close or similar,

both with or without PCA as processing step. Therefore, we conclude (PCA) step is not

applied to improve separability of feature space, but instead to remove redundant informa-

tion and obtain less-complex feature space for optimal fitting. The feature vectors obtained

prior to applying PCA are already distinct for each malware family.

Welsh’s t-test vs F1 scores Comparison: We compare relations between t-test derived

dissimilarity score and F1 scores. This comparison answers: “Does more distinguishable

malware families have higher classification accuracy ?”. To draw this comparison, we

obtained confusion matrix for malware family classification with highest inference accu-

66

Adrd

BaseBridge

DroidKungFu

Geinimi

GinMaster

Gloadream

Kmin

Yzhc

10 1

24 1

1 2 10 3 1 2

3

1 17 1

1 2 16

1 17

23

Figure 5.11: Confusion matrix for malware family classification using proposed feature
extraction techniques and SVM model

racy in Table 5.5 and compared with heatmap plot of dissimilarity score evaluated for DWT

output at level 2 as shown in Figure 5.9.

We make following key deviations: First, we observe, “Yzhc” malware family has

a greater number of high-intensity regions against other malware families. This is also

reflected in higher F1scores and no False Positives (FP) and False Negatives (FN) in con-

fusion matrix for this malware class as shown in Figure 5.11. Second, we observe higher

intensity regions for “BaseBridge” malware family against 4 others, where dissimilarity

score > 0.1 as shown in Figure 5.9. Also, “BaseBridge” malware family is classified with

higher F1 scores and fewer False Negatives (FN). Third, “DroidKungFu” and “Adrd” have

greater number of low-intensity regions. A lower dissimilarity score for “DroidKungFu”

is also reflected with higher FP and FN in confusion matrix for this malware class. But,

“Adrd” has contrasting behavior. Although comparison between t-test and classifier output

provides interesting insights. However, t-test results may not necessarily dictate a classi-

fiers output. Even though t-test results may show close similarity between two malware

67

families, an ML model may still separate their feature vector using complex non-linear

kernels.

5.5.5 Analysis on Feature Selection

To understand the significance of applying a second discrete wavelet transform (DWT)

on spectrogram, we evaluate relevance of features using mutual information metric and

inference accuracy (F1 scores). The ML model is evaluated for different feature extraction

techniques to quantify the significance of applying DWT on spectrogram. We evaluate the

inference accuracy for three different feature extraction techniques.

1D-DWT on Raw Trace: A 1D-DWT decomposes raw time domain EM signal using

a scaling and a wavelet function to generate two sets of coefficients: approximate and

detail. The EM signal is also resolved at multiple decomposition levels. We derived 5

time-domain features by computing mean, variance, skewness, kurtosis, interquartile range

on approximation and detail coefficients. These time-domain features have been explored

in the earlier works on malware detection [16]. The feature vector comprises of aggregating

these 5 time-domain features derived from wavelet coefficients at all decomposition levels.

Spectrogram: A spectrogram resolves EM side-channel trace into time, frequency bins

and gives frequency response over time. We obtained power spectral density (PSD) in each

frequency bin of spectrogram and used them as features.

2D-DWT on Spectrogram: Features are derived from DWT coefficients by applying

2D-DWT on spectrogram. A DWT on spectrogram reveals PSD variations over 2D space of

time and frequency. We obtained mean of wavelet coefficient (approximation, horizontal,

vertical, and diagonal) along both time and frequency axis and used them as features. The

average value of approximation coefficient accumulates PSD variations. The average value

of horizontal, vertical, and diagonal coefficient aggregate PSD variations along respective

directions. The feature vector comprises of aggregating mean of all wavelet coefficients

from all the decomposition levels.

68

Table 5.7: F1 scores for different features - Malware family classification

Features/Model SVM RF
Windowed FFT 0.74 0.47

1D-DWT (haar) 0.18 0.37

Spectrogram 0.69 0.67

2D-DWT (haar) 0.87 0.81
2D-DWT (sym5) 0.88 0.81
2D-DWT (db5) 0.74 0.77

The inference accuracy for different ML models and feature extraction techniques is

summarized in Table 5.7. We obtained lowest inference scores on 1D-DWT with time-

domain EM signal. We obtained highest F1 score for features selected from DWT on

spectrogram instead of spectrogram alone or DWT applied on raw trace. We obtained 2.1x

and 1.2x improvement in F1 scores with DWT on spectrogram in comparison to 1D-DWT

on raw trace and spectrogram alone. Additionally, results show that spectral features have

higher relevance to malware family classification task, as depicted with higher F1 scores.

Mutual Information Results: We evaluate MI between features and label (y) for eval-

uating malware family classification. The higher relevance of a feature is reflected in higher

MI score. Figure 5.12 shows variation of mutual information scores for first 625 selected

features derived for two cases: spectrogram alone and DWT on spectrogram. We only

selected features from approximation coefficients of DWT because they had highest MI

scores compared to horizintal, vertical and diagonal coefficients. Therefore, Figure 5.12

compares approximation coefficients at level 2 and level 3 decomposition. We can con-

clude that information gain is enhanced by performing a second transformation (DWT) on

spectrogram as observed with higher MI scores for most features. Therefore, mutual de-

pendence of features derived from DWT on spectrogram is higher in comparison to spec-

trogram alone. Similarly, we also observe mutual dependence of features at level 3 decom-

position is slightly higher compared to level 2. The MI analysis and F1 scores shows that

69

Figure 5.12: Mutual Information (MI) scores for features derived from spectrogram and
DWT with haar basis

a second transform i.e., DWT on spectrogram improves the classification performance.

5.6 Unknown Application Detection and Machine Learning Model Updates

The proposed malware detection and family classification framework is trained on subset

of benign and malware applications. The model would require updates under following

scenarios. The software updates to the applications in training dataset or addition of new

benign or malware applications to existing dataset. The ML model updates can be managed

in two steps.First, the trained ML model should detect new/updated benign or malware

application as “unknown”, features of which are not seen before. Once the application is

detected as unknown, further forensic analysis scrutinizes to find existence of anomalies in

its behavior. Second step is to re-train the model with features of new/updated applications.

Since, EM side-channel based detection is external, and not implemented on moni-

tored device, feature extraction and re-training of new/updated EM side-channel signatures

can be performed remotely. Subsequently, we discuss the methodology for detection of

70

0.4

0.45

0.5

0.55

0.60.70.80.9

Figure 5.13: Recall Known vs Unknown Malware Family evaluated at different decision
thresholds using RF model

unknown applications.

5.6.1 Detecting Unknown Using Prediction Probability

We detect an unknown application by comparing predicted probabilities derived from clas-

sifier model with a pre-defined threshold. If prediction probability of test sample is less

than decision threshold, ML model has lower confidence is classifying the test sample as

“known” sample and therefore, it is detected as unknown. The key observation of utilizing

prediction probability derived from classification model for unknown application detection

is due to disparity between prediction probabilities of an already seen “known” and “un-

known” example. Generally, higher probability is expected from an already seen “known”

example in comparison to out-of-distribution unknown example. The probability estimates

from classifier’s output is obtained using Platt scaling method.

71

0.45

0.9

(b)(a)

Figure 5.14: (a) Distribution of predicted probability estimates for unknown malware fam-
ily “DroidDream” and known malware family. (b) Recall known vs unknown malware
family evaluated at different decision thresholds with SVM model

5.6.2 Unknown Application Detection

We selected benchmarks from MiBench suite as “unknown” dataset for evaluation purposes

[39]. We selected 10 benchmarks from MiBench suite at random and collected 40 EM side-

channel traces for each benchmark for 10s duration. Therefore, unknown dataset comprises

of 400 examples. The ML model is already trained on a set of benign and malware appli-

cations described in Table 5.1. The number of “known” test examples are 496. We applied

similar post-processing, feature-extraction steps as described in subsection 5.4.3 for the

“unknown” dataset and finally obtained predicted probabilities. The selection of decision

threshold to detect unknown example would require re-evaluation of F1 score for known

and unknown examples. We obtained variation in recall scores of both known and unknown

malware examples for different selected thresholds as shown in Figure 5.13. The optimal

selection of detection threshold should give a higher recall for both known and unknown

applications. A plot depicting the recall for known and unknown applications is shown in

Figure 5.13 with RF model. We observe a decision threshold of (0.6) can detect unknown

applications with 99% accuracy and known applications with 95%.

72

5.6.3 Unknown Malware Family Detection

We selected “DroidDream” malware family from drebin dataset for evaluating unknown

malware family detection using trained malware classification model. We selected 16 ap-

plications from “DroidDream” malware family and 5 traces are collected for each applica-

tion. EM side-channel traces are collected for 40s duration. In total, we have 137 examples

of known malware family and 80 examples of unknown family. We applied similar DWT

feature-extraction steps described in subsection 5.2.2 and finally obtained the prediction

probabilities.

Figure 5.14(a) shows distribution of predicted probability of an unknown malware fam-

ily, “DroidDream” and known malware family during inference. We observe probability

estimates of known examples is concentrated more towards probability greater than 0.8.

But probability of unknown examples is distributed between 0.2 and 0.8. We selected a

decision threshold and re-evaluated recall scores of both known and unknown examples.

Finally, we obtained a variation in recall scores of both known and unknown malware ex-

amples for different selected thresholds as shown in Figure 5.14(b). We expect higher

recall for correctly classifying known examples at lower threshold (<0.5). This is because

probability estimates for known examples is higher in comparison to unknown which gives

fewer False Negatives (FN) at lower threshold. We observe exactly opposite trend at higher

thresholds (>0.9). The three curves in Figure 5.14(b) depict the trend for wavelet basis

selection. We expect higher AUC for recall curves for “symlet” and “haar” basis due to

higher baseline classification accuracy obtained with these basis function as described in

Table 5.5.

5.7 Comparison with EM Side-Channel based Detector

Refer to Table 5.8

73

Table 5.8: Comparison with existing EM side-channel based malware detection

Reference Platform Detection Algorithm Features Performance

[16]
Embedded Medical
Device

Anomaly
3NN, Per-
ceptron, RF

Spectral,
statistical
(time)

85% Known,
94% Unknown

[14]
A13-OLinuXino
Board

Anomaly
STFT, KS
test

Spectral
peaks in
STFT

Detect injec-
tions (>315K
instructions)

[26]
PLC(Allen
Bradley)

Control
Flow In-
tegrity

Stacked
LSTM Net-
work

EM Spec-
trum

98.9% accu-
racy

[27]
FPGA ,TS-7250,
A13-OLinuXino
board

Anomaly
(DDoS, ran-
somware,
code-
modification)

Template
based
Pattern
Matching

EM Signal
(time-
domain)

Detect In-
trusions
(instructions >
200K)

[15]
Altera FPGA
Nios II, TS-7250,
OlimexA13

Anomaly
Hierarchical
DBSCAN

Short Spec-
trum

FP (< 0.1%)

[28]
D-Link (D-934L)
ESCAM (E-G02)
Xiaofang (X-1S)

Anomaly +
Signature

Autoencoders,
Seq2Seq,
CNN

Mel-
frequency
spectrogram

TPR = 92.7%,
FPR = 2.9%

[61]

Samsung Galaxy
SIII, Samsung
Galaxy S Duos,
Asus Padfone Infin-
ity

Signature

KNN,
KNN+DTW,
SVM, RF,
NN

-
Recall =
95.65%, Preci-
sion= 89.19%

[35]

Arduino Uno, In-
telAltera DE0-CV,
TS-7250 Single-
Board-Computer,
A13-OLinuXino

Anomaly K-S Test
Spectral
Spikes in
STFT

TP = 100%,
FP = 0%

Proposed
Intinsyc Open-Q
820 System on
Module

Signature SVM, RF

STFT,
2D-DWT
on spectro-
gram

F1score =
99% (detec-
tion), F1score
= 88% (classi-
fication)

74

5.8 Summary

This chapter demonstrated ML methodology to detection malware applications and classify

detected malwares into characteristic malware families. Unique data-processing methods

are demonstrated by coupling 1D-STFT and 2D-DWT on spectrogram of EM side-channel

traces to extract fine-grained patterns of different malware families. The uniqueness in

spectrograms of applications selected from different malware family is evaluated using

Welsh’s t-test. Welsh t-test analysis showed more similarity and less distinguishable DWT

coefficients for applications selected from same malware family and vice-versa. The ex-

perimental analysis on Snapdragon 820 shows 0.99 F1 score in detecting malwares and

0.88 F1 score in classifying detected malware into 8 respective families using SVM, RF

models. Updates to malware detection and analysis framework are demonstrated by first

identifying “unknown” application or malware family and subsequently re-training model

with new EM signatures. The results showed 0.99 recall for detecting “unknown” bench-

mark applications and 0.87 recall in detecting “unknown” malware family.

The next chapter performs analysis on the detected malware to identify actions such as

shellcode injections by learning from RAPL traces of non-infected application and detect-

ing anomalies in free energy variation of an RBM model.

75

CHAPTER 6

ANOMALY-BASED SHELLCODE EXPLOIT DETECTION USING

RESTRICTED BOLTZMANN MACHINE

The persistent threat and evolving nature of malware require robust and early-to-detect

engines to identify malware or potential intrusions in the early stages before infecting the

end device. This requires detection of malware actions in the early stages by identifying

deviations in the correct operation of the targeted executable. A typical attacker launches

malware payload in a multi-stage process by first sending crafted shellcode to exploit a

target’s vulnerability. Second, shellcode residing in the victim’s memory of the vulnerable

program either reverts a shell session offering attackers remote access or download and

execute task-specific malicious payload to achieve the attacker’s objective.

A malware detection aimed at exploit-centered detection identifies malware infection as

early as shellcode completes execution. Detecting the malware in exploit stage would sub-

stantially minimize the severe repercussions from the spread of malware infection. But, the

challenge of detecting shellcodes is their short-lived execution. A. Tang et al. have shown

stage-1 shellcode detection on Internet Explorer (IE) exploits by identifying anomalies in

performance counters using oc-SVM [9]. Since, performance counters-based anomaly de-

tectors require the selection of micro-architectural events, it is more intuitive to measure a

single event comprehensive of HPC that simplifies the feature selection process. Moreover,

anomaly patterns can be localized in this single event over time, as demonstrated in [28].

We utilized Running Average Power Limit (RAPL) interface accessible on Intel plat-

forms to detect anomalous patterns resulting from shellcode executions. RAPL is an inter-

face comprising of non-microarchitectural model specific registers (MSR) [62]. There are

multiple regsiters with RAPL interface. We used MSR PP0 ENERGY STATUS register

that reports actual energy consumption of a core power plane [62]. This specific register

76

(Executes URL)

HTTP GET

(Request to

Fake Webpage)

Target

Initiates

Connection

Power Meter

RAPL Trace

(RAPL

Traces) Trace

Processing
RBM

(RAPL

Traces) Trace

Processing
RBM

(benign)

(infected

+ obfuscated)

(Free

Energy)Anomaly

Detector

Model Building

Deployment

(a)

(b)

(c)

Figure 6.1: (a) A Remote Shellcode Injection Exploit Stage in malware infection process.
(b) RBM learns patterns in RAPL traces under normal operation of victim application. (c)
RBM detects anomalies in RAPL sequence by comparing free energy of infected browser
against benign

represents the total amount of energy consumed [62]. The register uses on-chip measure-

ments of activities coupled with software based power models to provide a real-time esti-

mate of energy. We utilize MSR PP0 ENERGY STATUS register within RAPL interface

because of easy accessibility in software.

This chapter presents a detection framework to identify anomalous patterns in MSR -

PP0 ENERGY STATUS register values that corresponds to shellcode injections using a

Restricted Boltzmann machine (RBM) model as shown in Figure 6.1. An RBM is a gen-

erative stochastic artificial neural network described by an energy-based model. An RBM

model learns the variations in MSR PP0 ENERGY STATUS register value corresponding

to a targeted vulnerable application by minimizing the free energy between input and re-

constructed output as shown in model building phase in Figure 6.1(b). We observed that

variations in MSR PP0 ENERGY STATUS register values are modulated during vulnera-

bility exploit phase. These abrupt variations in MSR PP0 ENERGY STATUS register are

reflected as increase in free energy of RBM model, which forms the basis for detection.

77

The experimental validation is performed on Lenovo Ideapad 3 comprising of Intel

i5, 10th Generation IceLake processor, Quad-Core hosting Ubuntu 18.04 OS. The exploits

are generated using Metasploit penetration testing tool. To evaluate the framework, we

simulated real exploits targeting CVE-2014-8636 and CVE-2015-0802 vulnerabilities of

the Firefox browser and selected reverse TCP shell as malicious payload. The Firefox

binary is obfuscated using shakata ga nai encoder to generate a polymorphic malware

payload [63].

6.1 Characterization of MSR PP0 ENERGY STATUS Register Trace

6.1.1 RAPL Interface

The RAPL interface is a feature introduced in the Sandy Bridge Architecture on Intel

Processors. The RAPL interface has multiple power domains, package, core, uncore and

DRAM power planes. For each of these components, RAPL interface allows setting power

limits of core, uncore, DRAM components and also provides energy consumption infor-

mation. The RAPL energy counter MSR PP0 ENERGY STATUS for core power plane

(PP0) can be accessed through model-specific registers (MSRs). These counters are 32-bit

registers that indicates the total amount of energy consumed since the last time this register

was cleared. The counters are updated approximately once every 1ms. The MSR’s are

accessible on linux platforms using msr driver in /dev/cpu/ < coreid > /msr/ directory.

6.1.2 MSR PP0 ENERGY STATUS Trace Acquisition

The experimental validation is performed on Intel platform. There are numerous control

registers on x86 platform, known as Model specific registers (MSR) which are useful for

program debugging, and performance monitoring. The energy consumption information of

a core package are updated in model-specific register (MSR), MSR PP0 ENERGY STA-

TUS on the selected platform [62]. This register comprises of 32-bit value, representing

the total energy consumed by all core devices and MSR is updated every 1ms. To profile

78

a workload, the MSR is polled by a profiler concurrently while profiled workload executes

on the core. The MSR read interval is tuned relative of register update interval, which is

1ms. The register values represents a count and can be converted to actual power values

using simple transformation. But, we didn’t use actual power values for the analysis. The

profiler and workload are executed on seperate core to minimize effect of noise resulting

from MSR read on the profiled workload. Finally, the timestamp and MSR count are logged

during workload’s execution and collected as trace files.

6.1.3 Code Injections in Benchmarks

Before describing the anomaly detection framework, it is important to examine if there are

reasonable deviations in MSR PP0 ENERGY STATUS values resulting from a code injec-

tion within a profiled program. To evaluate this task, we injected two arbitrary functions

within a CPU benchmark as described in algorithm below. In the first case, we injected a

square root function with an execution time of 100ms between two loops, each of which

counts floating-point and integer operations. In the second case, we injected a 20ms delay

function within the loop that counts number of floating-point operations.

Algorithm 1 Code Injection Between Loops
1: for i← 1 to 5 do
2: FLOPSBenchmark()
3: end for
4: sqrt()
5: for i← 1 to 5 do
6: IOPSBenchmark()
7: end for

In both cases, we first profiled the benchmark without code injection by executing the

benchmark on a single core and polling MSR PP0 ENERGY STATUS values by executing

profiler on another core for a 1sec duration. Then, we collected MSR PP0 ENERGY STA-

TUS values for the benchmark with code injections. The acquired MSR PP0 ENERGY -

STATUS traces are processed to remove systemic noise and traces are aligned. The plot

79

Algorithm 2 Code Injection Within Loop
for i← 1 to 5 do

2: FLOPSBenchmark()
delay()

4: end for
for i← 1 to 5 do

6: IOPSBenchmark()
end for

100ms

20ms

Figure 6.2: MSR PP0 ENERGY STATUS Traces of Code Injections in Benchmark appli-
cation (a) Between Loops (b) Within Loop

of the MSR PP0 ENERGY STATUS traces for both the cases is shown in Figure 6.2. We

observe the amplitude of MSR PP0 ENERGY STATUS samples increases in the region of

code injection for both cases. The duration of code-injection is also reflected in MSR -

PP0 ENERGY STATUS traces. The execution of 100ms square root function increases

the MSR PP0 ENERGY STATUS samples as shown in Figure 6.2 (a). Similary, the 20ms

delay function reduces the MSR PP0 ENERGY STATUS samples as shown in Figure 6.2

(b). Also, the peak corresponding to delay function repeats showing the loop frequency.

6.2 Anomaly Detection Framework

There has multiple components of functionality to attain anomaly detection task, namely

trace acquisition, post-processing traces, RBM inference and anomaly detection. The data

acquisition block monitors and periodically samples MSR PP0 ENERGY STATUS reg-

80

t

V
is

ib
le

 L
a

y
e
r

H
id

d
en

 L
a

y
er

sub-trace

1

0

S
ca

li
n

g

Aligned
Traces

Find Sampling
Interval

MSR
Traces

T
r
a

ce
 P

ro
c
es

si
n

g

Batch
Size

(b)

Resample
Traces

Noise
Removal

Low Pass
Filter

Trace
Alignment

T0

Anomaly Detector

Free Energy
(F)

{0,1}

Figure 6.3: (a) Processing acquired MSR PP0 ENERGY STATUS traces to remove sys-
temic noise, outlier removal, filtering, and alignment. (b) Building RBM model by training
each segmented sub-trace individually after scaling

ister. The acquired traces are post-processed to remove systemic noise, period noise by

filtering and alignment methods. The post-processed trace is evaluated on trained RBM

model to obtain free energy of the trace. The sequence of MSR PP0 ENERGY STATUS

trace that exceeds free energy beyond a specified threshold is detected as anomalous se-

quence. The sub-section below elaborates specifics of individual component.

6.2.1 MSR PP0 ENERGY STATUS Trace Collection

The acquisition of MSR PP0 ENERGY STATUS trace is described in subsection 6.1.2. To

train the DL model, we collected multiple iterations MSR PP0 ENERGY STATUS trace

for the profiled workload.

81

6.2.2 Post-Processing Traces

A MSR PP0 ENERGY STATUS trace represents variation of counter representing energy

consumption information against time. The raw MSR PP0 ENERGY STATUS trace has

multiple noise sources. The multiple noise sources are systemic noise due to uncertain

background core activity, periodic noise, non-uniform sampling interval, missing or re-

peated counter values, etc. Therefore, it is post-processed to remove or minimize these

noise sources before analyzing on an RBM network. The post-processing steps are de-

scribed below.

Resampling

The acquired MSR PP0 ENERGY STATUS traces have non-uniform intervals between

consecutive counter sample. A uniform sampling interval is required across all MSR PP0 -

ENERGY STATUS traces because analysis is performed in time-domain, and to estimate

anomaly detection time. A uniform sampling interval is obtained by finding highest occur-

rence of non-uniform interval first across entire trace, and then across all power traces in the

dataset. After obtaining uniform sampling interval, we generate uniform timing axis based

on number of samples. Finally, the samples of power traces are interpolated on uniform

time axis.

Noise Removal

We tacked to remove numerous noise sources using different schemes. The systemic noise

is introduced by abrupt changes in total workload of a core, which overshoots MSR PP0 -

ENERGY STATUS register counter. These abrupt fluctuations are noticeable randomly

across a MSR PP0 ENERGY STATUS trace. We remove the traces affected by systemic

noise as these are outliers in the training dataset. The outlier trace is identified if the am-

plitude of the counter at any time point exceeds the average trace by 3 times standard devi-

ation. The average trace is mean of all collected traces of a profiled program. Since, MSR

82

resets after an overflow, numerous missing counter values are encountered in MSR PP0 -

ENERGY STATUS trace. These 0 values are linearly interpolated from nearby samples

and updated. On the other hand, the repeated counter values are avoided by selecting the

MSR read interval, i.e. 1ms.

Low Pass Filtering

The MSR PP0 ENERGY STATUS trace also comprises of periodic noise introduced by

power supply. The period of the periodic noise can be derived by computing auto-correlation

of a MSR PP0 ENERGY STATUS trace for different lags. An auto-correlation plot shows

higher correlation for lag value that matches closely with noise period and lower elsewhere.

We derived the noise period by identifying average time interval between peaks in the auto-

correlation plot. But, we observed that removal of periodic frequency does not completely

eliminate periodic noise because of existence of harmonics of base frequency. Therefore,

we performed low-pass filtering with cut-off frequency at 50Hz to eliminate high-frequency

variations in MSR PP0 ENERGY STATUS trace.

Cross-Correlation Based Trace Alignment

The system-level threads context-switches with profiled program of a core introduces steady

mis-alignments across multiple MSR PP0 ENERGY STATUS traces of a profiled pro-

gram. In addition to this, activity of remaining core is also varying across multiple runs

of the same program, which also affects MSR PP0 ENERGY STATUS trace alignment.

The MSR PP0 ENERGY STATUS traces should be aligned because analysis is performed

in time-domain. We proposed to diminish the effect of misalignment by cross-correlating

MSR PP0 ENERGY STATUS trace with a template trace. The template trace is randomly

selected from among the noise-free filtered traces. The steps followed by cross-correlation

alignment is described here. First, we segment the template MSR PP0 ENERGY STATUS

trace to select a region to be aligned with. Second, we obtained the segmented trace in the

83

same time-region that is to be aligned. Third, a pearson correlation is evaluated between

segmented trace to be aligned and template trace for different offsets. Finally, the offset

corresponding to maximum correlation is applied to actual MSR PP0 ENERGY STATUS

trace (non-segmented) to attain an aligned trace.

The sequence or post-processing steps on acquired MSR PP0 ENERGY STATUS traces

are shown in Figure 6.3(a)

6.2.3 Model Building

RBM is a generative stochastic artificial neural network described by an energy-based

model demonstrated below. RBM is a two layered neural network with no intra-layer con-

nections. For a two layered RBM, energy function as shown in equation (1). Here, v is

visible layer state, h is hidden layer state, b is visible layer bias, c is hidden layer bias and

W is the weight matrix.

E(v, h) = −cTv − bTh− vTWh (6.1)

The joint probability over visible and hidden units can be expressed using energy func-

tion as shown in equation (2). Here, z is a normalization constant known as partition

function, which is intractable. Z is given by summing over all possible pairs of visible and

hidden vectors.

P (v, h) =
e−E(v, h)

Z
(6.2)

Since there are no within layer connections, probability of hidden variable is inde-

pendent given state of visible layer variables and vice-versa. The conditional probability

of hidden variable given visible variable is interpreted as stochastic neuron with sigmoid

function as shown in equation (3). Similarly, conditional probability of visible layer given

hidden state is described in equation (4). Free Energy of RBM is denoted by -ln(Z). In

84

reduced form, free energy is described in equation (5).

P (h = 1|v) = σ(W Tv + b) (6.3)

P (v = 1|h) = σ(W Th+ c) (6.4)

F (v) = −cTv −
∑

log(1 + eWv+b) (6.5)

The loss function or log likelihood over marginal distribution of v can be expressed as

difference between free energy of model and training data point v (shown in equation (6)).

The RBM is trained to maximize the log likelihood to estimate the parameters.

L = −Ln(P (v)) = F c(v)− F (6.6)

Here, F c(v) can be easily computed as h can be summed out analytically due to con-

ditional independence between layers. But, computing is intractable for F. The approxima-

tions to log likelihood is achieved using contrastive divergence (CD) learning. In a single

step of CD for binary RBM’s, first visible layer is initialized with training examples fol-

lowed by forward pass to attain activations for hidden layer. The hidden state is obtained

by sampling activation value from Bernoulli distribution. In backward pass, visible layer

activations are generated based on hidden state and visible state is obtained after sampling

from distribution.

To localize the anomaly in the MSR PP0 ENERGY STATUS trace, we first segment

the entire trace into multiple sub-traces and train each sub-trace on an RBM separately as

shown in Fig Figure 6.3 (b). The MSR PP0 ENERGY STATUS samples are real-valued,

which has to be scaled between [0,1]. Also, hidden and visible states are changed to ex-

pectations of activation values instead of binary sampling used in Bernoulli RBM. The rest

85

of the steps in training procedures remains similar to binary RBMs.

6.2.4 Rule-based Anomaly Detection

The outcome of the RBM model is free energy of each sub-trace in the MSR PP0 EN-

ERGY STATUS trace as shown in Figure 6.3 (b). The minor variations across multiple

MSR PP0 ENERGY STATUS traces of the same profiled program also shows minor vari-

ation in free energy values. We obtained the mean and variance (spread in values of free

energy) of free energy across multiple MSR PP0 ENERGY STATUS traces of profiled

program. During deployment phase, free energy of MSR PP0 ENERGY STATUS trace

are compared against free energy (validation). Any significant deviation in MSR PP0 EN-

ERGY STATUS register count value of profiled program during deployment is reflected as

increase in free energy for that sequence. The free energy of sub-trace that deviates from

the mean value by standard deviation is detected as an anomaly as shown in equation (6.7).

Anomaly = |µvalidation − FTestSample| > σvalidation (6.7)

6.3 Detecting Shellcode Injections in Browser Exploits

We experimentally demonstrate the proposed methodology in detecting stage-1 shellcode

attacks on vulnerable browser applications. From among the vast number of vulnerabil-

ities at OS and application level, we selected browser applications as the targets because

according to Common Vulnerability and Exposures (CVE) databases, browser applications

such as Chrome, Firefox and Internet Explorer report numerous distinct vulnerabilities. We

explored reverse tcp shell as stage-1 payloads, where the target machine initiates a connec-

tion to a network host (attacker). An attacker can launch advanced attackers upon access to

victim’s machine in stage 1.

86

6.3.1 Firefox Browser Vulnerabilities

Although there exist multiple vulnerabilities to hijack the Firefox browser during execu-

tion, we target CVE-2014-8636 and CVE-2015-0802 listed in the CVE database to demon-

strate proof of concept. CVE-2014-8636 is a javascript injection in privileged URI scheme

chrome://windows in Firefox. The javascript code is configured to call Firefox XPCOM

API to spawn reverse shell. This vulnerability affects Firefox 31-34 version. CVE-2015-

0802 is javascript injection exploiting a privilege escalation bug in resources:// URI, which

affects Firefox 35-36 version.

Firefox Proxy Prototype RCE - CVE-2014-8636

The details of the firefox exploit using proxy objects as means to execute privileged code

is dissected by Rapid 7 [64]. The exploit is implemented by leveraging improper privileges

exercised using proxy objects and messageManager interface in chrome:// window to

spawn reverse shell. Proxy objects create a proxy for another object, which can intercept

and redefine fundamental operations for that object. The proxy objects allow the execution

of chrome:// URI, a privileged zone permitted to run from unprivileged code. Firefox’s

chrome:// URI has full privileges of the browser. Any javascript executing from chrome://

URI can give the attacker a fully-working remote shell on user’s machine. To inject remote

shell, messageManager, a privileged Firefox API is accessible inside inside chrome://

window is utilized to send message between processes. The steps outlined in the exploit is

accessible in firefox proxy prototype exploit module on Metasploit [65]. The various steps

in executing this exploit is summarized below:

• Creating a Proxy Object

v a r p ro = O b j e c t . g e t P r o t o t y p e O f (document)

O b j e c t . s e t P r o t o t y p e O f (document , Proxy . c r e a t e (p r o p s))

• Click on HTML page

87

Application

Host OS

Hypervisor

Hardware

(VICTIM VM)

Core 1 Core 0

Guest

OS

Apps

Guest OS

Figure 6.4: Threat model describes ring-0 privileges for attacker on host machine. Attacker
initiates a reverse tcp shell listener on Core 1. The victim executes vulnerable Firefox
browser application inside virtual machine dedicated Core0

i f (! window . t o p . x && n== ’ nodeType ’)

• Open Privileged Chrome Window

window . t o p . x=window . open (” chrome : / / b rowse r / c o n t e n t /

b rowse r . x u l ” , ” x ”) ;

• Run reverse TCP shell payload

o p t s = { key => r u n p a y l o a d }

x . messageManager . l o a d F r a m e S c r i p t (’ d a t a : , ’ + key , f a l s e)

Joe Vennix describes “run payload method will return a configured piece of

Javascript code that will call Firefox’s XPCOM APIs to spawn a reverse shell” [64].

88

6.3.2 Threat Model

We assume that malware binary comprising of reverse tcp shell payload for remote access

enters the victim’s system through certain social engineering attack. The reverse tcp shell

can bypass the firewall because of connections initiated by victim. Meanwhile, the attacker

creates a remote listener session corresponding to the payload. As the victim downloads

and executes this payload, an outgoing tcp session is initiated, reverting the remote shell

to the attacker. We emulated this attack scenario by isolating the vulnerable application

in a virtualized environment using VM with dedicated resources and a secure boundary as

shown in Figure 6.4. The host (attacker) sets up listener reverse TCP session via Metasploit

on Core 1 as shown in Figure 6.4. The victim has a vulnerable firefox browser application

running inside VM on a dedicated core. Both attacker and victim have similar privileges.

6.3.3 System Configurations

The detector is tested on a personal computing platform Lenovo Ideapad 3, comprising of

Intel i5, 10th Generation IceLake processor. The data acquisition phase requires polling

MSR PP0 ENERGY STATUS MSR at 1ms update interval. We minimized the effect of

external noise factors by tuning system configurations such as disabling hyperthreading,

disabling Intel P-state, setting constant OPP. The profiler is scheduled on Core 1 and Core

0 is dedicated to virtual machine (VM) processing. We tested the framework on Windows

7 Ultimate Edition and Linux 16.04. The Firefox exploits are executed on target VM using

Metasploit Framework ver. 6.0.4 running on host OS. The user interactions (UI) with

browser are automated using selenium. The host machine and VM have connected to same

network.

6.3.4 Collecting Clean Browser State

We collected MSR PP0 ENERGY STATUS traces during the normal operation of the Fire-

fox browser. We selected ten commonly visited web pages as mentioned on Alexa [1].

89

HM VM HM VM

Run

Profiler

(Core 0) (Core 1) (Core 0) (Core 1)sync sync

MSR (PP0 Power Plane) MSR (PP0 Power Plane)

Execute

URL

Start

Listener

Run

Profiler
Execute URL

Exploit

(rd msr) (rd msr)

(a) (b)

Figure 6.5: (a) Collecting MSR PP0 ENERGY STATUS Traces of Clean Browser State
executing legitimate URLs. (b) Collecting MSR PP0 ENERGY STATUS Traces of In-
fected Browser State execution

Table 6.1: RBM Training and Inference Configurations For Detecting Firefox Exploits

Configuration Training Testing
Total traces 800 400
RBM Visible Layer Size (v) = 50

Hidden Layer Size (h) = 20
Epoch = 100

Sub-Trace Length = 50
Learning Rate = 0.01

Batch Size = 50 Batch Size = 1
Filtering butterworth, 50Hz cut-off frequency

These include social networking, entertainment, and content-based websites. Using the

selenium browser automation tool, we simulated user interactions such as clicks, scroll,

and text on the browser. We profiled only a few out of all possible states of browser op-

eration because it is infeasible to model the entirety. The model would require updates

as new phases of browser states are available. Therefore, RBM’s training in the proposed

framework is semi-supervised.

The first step in collecting MSR PP0 ENERGY STATUS traces of a clean browser

state is setting the configurations. The profiler runs on a dedicated core. The Firefox

browser initiates a session and executes a URL in Linux 16.04 VM dedicated to an isolated

90

core. The profiler reads the MSR while simultaneously browser runs inside VM. The file-

sharing mechanism synchronizes HM and VM. Figure 6.5 (a) summarizes the configuration

settings for collecting MSR PP0 ENERGY STATUS traces of clean browser state.

To train the RBM model, we collected 800 MSR PP0 ENERGY STATUS traces each

for a duration of 5s. These MSR PP0 ENERGY STATUS traces correspond to 10 selected

webpages navigated on opening a browser session. We introduced variability in trace col-

lection by randomly selecting from these 10 websites and executing URL. We obtained the

MSR PP0 ENERGY STATUS traces of different webpages and observed a unique pat-

tern, where phase of the browser during initial loading is similar but it diverges on loading

a specific webpage. The trace collection encounters numerous noise sources resulting from

the indeterminate background state of CPU core, context-switches, and variable network

latency. Therefore, these traces of clean browser state follows the detection framework’s

post-processing block. We followed the steps outlined in the post-processing block of

resampling, noise removal, filtering and alignment to obtain noise-free aligned MSR PP0 -

ENERGY STATUS traces. Since RBM model trains on real-valued data between 0 and 1,

the amplitude of aligned power traces is scaled. To train the RBM model, we first segment

the entire trace into multiple sub-traces. There are multiple RBMs to train each batch of

sub-traces. The number of RBMs equals the total number of sub-traces. The configuration

parameters of the RBM model are tuned to minimize the loss function. We experimented

with various configuration parameters and selected the ones which minimized the training

loss. Table 6.1 summarizes the configurations of multiple parameters during training.

6.3.5 Detecting Infected Browser State

To evaluate the proposed framework in detecting malicious browser states, we have to gen-

erate exploits targeting vulnerabilities in Firefox browser. We used the Metasploit tool to

create exploits. Metasploit has multiple in-build exploit and payload modules used for easy

execution of exploit code. We setup the required configuration parameters corresponding

91

Setup Phase URL

Figure 6.6: Scaled MSR PP0 ENERGY STATUS Traces of Infected Browser State
changes during shellcode exploit execution

to the exploit in Metaploit msfconsole tool such as IP address of target machine to exe-

cute a remote shell payload. Once, exploit executes, a listener event starts on the attacker’s

machine (HM). Figure 6.5 (b) summarizes the configuration required to collect MSR PP0 -

ENERGY STATUS traces of the infected browser state. Here, the profiler and Metaploit

module executes on a dedicated core. The Firefox browser initiates a session and runs a

malicious URL inside Linux 16.04 VM dedicated to an isolated core. Upon navigating the

malicious URL, exploit code runs and reverse shell session reverts to HM. Once the TCP

connection is established, file system of VM is accessible inside HM.

The objective is to detect the generation of this reverse TCP session. Therefore, we si-

multaneously collect the MSR PP0 ENERGY STATUS traces while the exploit runs inside

VM. We run the exploit code multiple times in different background state of the core and

collected 200 MSR PP0 ENERGY STATUS traces each for 5s. In addition, we collected

100 traces of clean browser state for evaluating the trained model. We followed similar

post-processing steps outlined in the detection framework block to obtain the aligned trace.

92

Figure 6.7: RBM’s Free Energy Variation over time during normal browser operation is
lower compared to shellcode exploit execution in region of exploit

Although we applied trace alignment step, it’s not required during testing. Next, we seg-

ment the MSR PP0 ENERGY STATUS traces using same sub-trace length used in training

to obtain multiple sub-traces. Further, all the sub-traces are evaluated on multiple trained

RBMs to get free energy scores. We collected free energies from individual RBMs and fed

to the anomaly detection block. The free energy of the sub-traces that satisfies the rule for

detecting anomaly is labeled 1, while others are 0. We compare the predicted labels against

the true labels for sub-traces in the exploit region to derive F1score and FPR scores.

Experimental Results

First, we plotted the scaled power traces both for the infected and clean browser state as

shown in Figure 6.6. We observe that the amplitude of scaled MSR PP0 ENERGY STA-

TUS traces for infected browser state increases in the exploit region and deviates from clean

browser state. We also concur that MSR PP0 ENERGY STATUS trace during loading of

browse application is similar initially and only change when webpage or malicious URL

93

runs. Second, we observe the trend in free energy over time both for MSR PP0 ENERGY -

STATUS traces of clean browser state and infected browser state as shown in Figure 6.7.

This trend is obtained by concatenating free energy corresponding to each sub-trace. We

observe that free energy in exploit region for infected browser state increases relative to

clean browser state as shown in Figure 6.7 (zoomed). Although, we expect free energies

in non-exploit region to be similar because of identical browser behavior. But, we observe

numerous non-exploit regions with non-overlapping free energy. This is attributed to irreg-

ularities in MSR PP0 ENERGY STATUS traces and inefficient trace alignment. Third, we

observe the outcome of the anomaly detection block for a selected infected browser state

as shown in Figure 6.8. The plot shows the absolute difference between mean free energy

of clean browse state and infected browser state denoted as DFM. It also depicts variance

between free energy of clean browser state. The region where DFM exceeds variance is

detected as anomaly (labeled 1). We observe anomaly detected in the exploit region. But,

anomalies were flagged in the non-exploit region as well. These irregularities correspond-

ing to MSR PP0 ENERGY STATUS variation resulting from variable network latency and

inefficient trace alignment.

We evaluate the efficacy of the proposed anomaly detector using F1score and FPR. The

F1score and FPR for correctly detecting shellcode exploits in the exploit region is 0.875

and 0.06.

6.4 Obfuscated Payload Detection

In practical malware attacks, the original shellcode or multi-stager payloads are concealed

to evade detection by intrusion detection system (IDS) on victim’s machine. Among vari-

ous defense bypassing mechanisms, we discuss obfuscation techniques for instance, string

manipulation, padding, polymorphism, encryption, compression, and metamorphism.

94

Figure 6.8: Anomaly detected where absolute difference between free energy of infected
and clean browser state is greater than standard deviation

6.4.1 Obfuscation Techniques

String manipulation and interleaving shellcode with NOP instructions is shown successful

in bypassing rudimentary static analysis. A more refined approach is to compress shellcode

along with executable binary. The inherent encryption increases effectiveness of evading

detection. In most cases, a static analyzer with most-updated signature repository can de-

tect simple obfuscations. Alternatively, polymorphism is a technique of morphing static

shellcode to evade signature analyzers. A polymorphic engine comprises of transfer func-

tion which decrypts the morphed binary to executable code. The executable is loaded and

run to achieve malicious actions. Finally, a new key is derived, and reverse transfer function

is applied on original executable to get back new morphed code. Polymorphic malware can

bypass static analysis because of changing nature of static binary. A Metamorphic mal-

ware obfuscates binary by inserting benign instructions, substituting opcodes, swapping

registers, and changing control flow. A metamorphic malware involves five steps. Disas-

95

Table 6.2: RBM Training and Inference Configurations For Detecting Obfuscated Payloads

Configuration Training Testing
Total traces 1600 900
RBM Visible Layer Size (v) = 20

Hidden Layer Size (h) = 10
Epoch = 100

Sub-Trace Length = 50
Learning Rate = 0.01

Batch Size = 50 Batch Size = 1
Filtering butterworth, 50Hz cut-off frequency

sembling opcodes, compressing disassembled code, permutation, expanding instructions,

and changing control flow jumps. A metamorphic malware can evade signature analyz-

ers, but the increased size and CPU workload makes them prone to side-channel based

detection.

6.4.2 Generating Obfuscated Payloads

We obfuscated malware payload using a polymorphic XOR additive feedback encoder,

shakata ga nai (SGN) included in Metasploit framework. The multiple steps in SGN algo-

rithm is summarized here [63]. First, a key is initialized. Then, location relative to EIP is

obtained. This step points to the location of starting payload. SGN uses fnstenv instruc-

tion to get the location. In the next step, a loop is iterated to decode the instructions of the

payload. A register is zeroed to be used as a counter to iterate the loop. SGN decodes in-

struction addresses by adding location relative to EIP and XORing with key obtained in first

step. Then relative location to EIP is modified and key is also modified. Finally, decoded

instructions are move towards execution. Generally, these steps are repeated for multiple

iterations. We assembled reverse TCP shell payload using SGN encoder for 3 iterations

and packaged binary in Firefox executable as separate thread. Generally, packaged mal-

ware has higher chance of evading during anti-virus scanning compared to vanilla binary

96

payload. We uploaded the packaged malware on VirusTotal website to check existence of

signatures in current anti-malware engines. We evaluated the detection of SGN obfuscated

malware executable.

To train the RBM model, we collected 1600 MSR PP0 ENERGY STATUS traces of

Firefox browser during normal operation. We collected MSR PP0 ENERGY STATUS

traces for only 1 sec duration for initializing browser. We collected MSR PP0 ENERGY -

STATUS traces for only 1 sec because malware operation of spawning a reverse TCP shell

is confined to within this region. First, the configurations of traces acquisition is set as

shown in Figure 6.5. In this case, Firefox executes on Windows 7 Ultimate Edition VM

dedicated to Core 0 and simultaneously profiler executes on host machine. The number of

energy samples to be collected are changed for 1s duration. Further, we followed the steps

outlined in the post-processing block to obtain aligned traces. the amplitude of aligned

MSR PP0 ENERGY STATUS traces is scaled between 0 and 1. To train the RBM model,

we first segment the entire MSR PP0 ENERGY STATUS trace into multiple sub-traces.

Each batch of the sub-trace is fed to individual RBM. We experimented with different

sub-trace lengths and observed best detection results when sub-trace length equals exploit

runtime (20ms here). The other RBM training configuration parameters such as learning

rate and epochs are tuned to minimize and stabilize the loss function. Table 6.2 summarizes

the configurations of multiple parameters during training.

6.4.3 Detecting Obfuscated Payload

The objective is to detect the obfuscated reverse TCP shell payload inside the Firefox

browser binary. We simultaneously collected the MSR PP0 ENERGY STATUS traces

while the obfuscated Firefox binary runs inside VM. The obfuscated Firefox binary runs

multiple times under different background state of the core and we collected 500 MSR -

PP0 ENERGY STATUS traces each for 1s. We also collected 200 traces of Firefox browser

under normal operation for validating the trained model. We followed similar post-processing

97

t-statistic = 4.5

t-statistic = -4.5

Figure 6.9: (a) Scaled MSR Traces of infected and clean Firefox browser (b) t-statistic
variation vs time samples identifies region of differences in MSR traces of two Firefox
version

steps outlined in the detection framework block to obtain the aligned trace. The scaled

aligned traces are evaluated on the trained model to obtain free energy scores. The free en-

ergy scores are fed on anomaly detector. The free energy of the sub-traces that satisfies the

rule for detecting anomaly is labeled 1, while others are 0. Finally, we evaluate detection

performance using F1score and FPR.

Experimental Results

First, we plotted the scaled MSR PP0 ENERGY STATUS traces both for obfuscated Fire-

fox binary and clean Firefox binary as shown in Figure 6.9 (a). Since we couldn’t high-

light the differences visually, we plotted the region of code obfuscation execution. We

deduce that MSR PP0 ENERGY STATUS profile may not necessarily increase amplitude

as shown earlier in Figure 6.6. Here, MSR PP0 ENERGY STATUS profile of obfuscated

Firefox is not modified, instead it extends for 50ms further to execute hidden payload as

shown in Figure 6.9(a). Second, we applied welsh’s t t-test between MSR PP0 ENERGY -

STATUS traces of clean and obfuscated Firefox to validate that MSR PP0 ENERGY STA-

TUS profile is altered by payload execution.. We observed highest leakage is visible in the

t-test plot in the region of payload execution as shown in Figure 6.9 (b). The region of in-

98

Payload

(Plain)

Payload

(repackaged +

obfuscated)

Payload

(repackaged +

obfuscated)

Anti-Virus

Anti-Virus

PowerShield

Easy

Detection

Difficult

Evasion

Figure 6.10: Comparison of proposed anomaly detector against existing anti-virus engines
for different payloads

creased leakage indicates differences in MSR PP0 ENERGY STATUS profile of two Fire-

fox versions. Third, we show the outcome of the anomaly detection block corresponding to

a MSR PP0 ENERGY STATUS trace of obfuscated binary in Figure 6.9(c). We observed

anomalies detected in the region of payload execution.

We evaluate the efficacy of detecting obfuscated payloads using F1score and FPR. We

obtained 0.768 F1score in detecting 700 MSR PP0 ENERGY STATUS traces of clean and

obfuscated Firefox browser. We obtained 0.52 as a false positive rate. A High FPR indi-

cates many false positives in detecting obfuscated payloads. A high FPR is observed due to

similar free energy scores, which increases difficulty to distinguish. We demonstrate effec-

tiveness of deploying anomaly detector for malware detection as shown in Figure 6.10. An

attacker sending a plain malicious payload cannot bypass conventional anti-virus engine.

But, an obfuscated and packaged payload increases chance of evading anti-virus detection.

We noticed 50% detection rate among 60 anti-virus engines on VirusTotal for obfuscated

generated payload. Since shakata ga nai is an existing popular encoder, few anti-

99

virus software are updated to detect the presence of this encoder. Moreover, it is even more

challenging to evade a low-level hardware-based detector. Although, we only evaluated

polymorphic techniques, but we envision similar behavior against metamorphic malware,

with increased complexity.

Effect of Payload size

The shellcode injections have smaller memory footprint. Moreover, it has shorter exe-

cutions time (in ms interval). These injections may alter MSR PP0 ENERGY STATUS

profile in amplitude as shown in Figure 6.6 or in time as shown in Figure 6.9 (a). There-

fore, larger payload sizes are easier to detect. We performed an experiment to test effect

of payload size on detection accuracy. We introduced delay function as code injection in

a CPU benchmark. In first case, delay function runs 100ms between two loops. In second

case, delay function runs 20ms within a loop. We first trained RBMs on original bench-

mark, and then evaluated on code-injected benchmark. We observe 95% accuracy in 100ms

delay injection and 83% accuracy in 20ms delay injection.

6.5 Comparison with HMD

Table 6.3 compares hardware-based anomaly detectors against various parameters. A. Tang

et.al. and F. Ding et.al. showed the detection of real world malware attacks similar to the

proposed work [9, 28]. We observe lower accuracy for detection of stage-1 shellcode ex-

ploits using RAPL interface and performance counters as shown in [9].Also, False positive

rate (FPR) is higher in comparison to [9, 11]. Also, there is no requirement for additional

feature selection in comparison to [9]. The action-based anomaly detection primarily fo-

cuses on detecting malware’s distinct atomic actions such as stealing information, DDOS,

ransomware as shown in [11, 15]. The proposed detector focuses on the initial stage-1

shellcode injection stage compared to atomic malware action as shown in [9, 28]. The con-

fidence of detection would improve by monitoring atomic actions. The RAPL interface is

100

accessible on-device compared to external power or electromagnetic emissions shown in

[28, 15]. RBM and RDA detection algorithms localizes and detects the regions of anoma-

lous executions in comparison to generalized oc-SVM [9, 11]. Finally, we showed for the

first time the detection of polymorphic malware payload using hardware-based signatures.

Table 6.3: Comparison with existing Hardware-Based Anomaly Detectors

Reference Platform Application Algorithm Detection Information Performance

[20]
Intel
i7 Ivy-
Bridge

Internet
Explorer,
Adobe
Flash Player

oc-SVM
Exploit-
based

4 HPC
AUC =
0.995

[21]
Android
Dev.
Board

Synthetic
Android
Malware

oc-SVM,
markov
model

Action-
based

4 HPC FPR = 20%

[48]
DCS-
834L IP
Camera

IoT Mal-
ware (Mirai
Botnet)

RDA +
LSTM

Exploit +
Action-
based

External
Power

TPR =
92.7% FPR
= 2.9%

[5]

Altera
FPGA
Nios II,
TS-7250,
OlimexA13

Synthetic
Benchmarks
+ DDOS,
ransomware

Hierarchical
DBSCAN

Action-
based

EM Sig-
nal

TPR >
0.99, FPR
< 0.1%

Proposed Intel i5
IceLake

Firefox
Browser RBM Exploit-

based
RAPL
Interface

FPR = 0.06;
F1score =
0.87

6.6 Summary

This chapter experimentally demonstrated detection of shellcode exploits and obfuscated

malware payloads by identifying anomalies in MSR PP0 ENERGY STATUS register val-

ues using free energy of an RBM model. The MSR PP0 ENERGY STATUS trace pro-

cessing methods remove systemic noise removal, filter periodic noise, and align traces.

The framework is evaluated by detecting shellcode injections in Firefox browser applica-

tion exploiting existing vulnerabilities. The experimental demonstration on Intel i5, 10th

101

Generation Core shows 87% F1 score in detecting shellcode injections. We further demon-

strated the detection of a reverse TCP shell payload obfuscated through shakata ga nai

polymorphic encoder. The detection framework shows 76% F1 score but with 50% FPR in

detecting obfuscated payloads in comparison to a 50% detection rate across 60 anti-virus

engines on VirusTotal.

102

CHAPTER 7

CONCLUSION AND FUTURE WORK

Modern processors have numerous hardware events such as power domains, voltage, fre-

quency, accessible through software interfaces for performance monitoring and debugging.

These hardware events are architecture-agnostic, platform independent and does not require

event selection in comparison to HPC. These events have not been explored for defenses

against malware threats. This thesis demonstrates an alternative approach towards malware

detection and analysis by leveraging low-level hardware signatures from on-chip power sig-

natures and electromagnetic emissions. The proposed research developed machine learning

methodology for detecting malware applications, classifying malware family and detecting

shellcode exploits from low-level power-based signatures and electromagnetic emissions.

The contributions of the thesis are summarized for each chapter in Section 7.1 and direc-

tions for future research in Section 7.2.

7.1 Dissertation Summary

Chapter 3 concludes the applications executing on processor can be identified by deriving

features from DVFS states of a processor’s core using supervised machine learning model.

The t-test analysis shows that DVFS signatures of different applications are distinguish-

able. The F1 score of application classification is > 0.7 evaluated across different machine

learning models and cpufreq governors. An unknown application can also be identified

using the learned model based on known applications. The results show > 0.79 AUC on

recall curves for known and unknown applications evaluated with RF model and all cpufreq

governors.

Chapter 4 concludes ML models can distinguish malware applications against benign

by deriving features from DVFS states of a CPU core. F1 score is > 0.88 using RF based

103

classification between benign and malware applications evaluated across all governors.

Power security awareness of selecting cpufreq governor shows less power is dissipated

on average with ondemand governor configuration and and higher detection accuracy is

obtained. A discussion on a practical framework for on-device malware detection on edge

devices with cloud-based software updates is presented.

Chapter 5 concludes that ML models can detect malware applications and classifies

detected malwares into characteristic malware families using EM emissions. The experi-

mental analysis on Snapdragon 820 and DREBIN dataset shows 0.99 F1 score in detecting

malwares and 0.88 F1 score in classifying detected malware into 8 respective families us-

ing SVM and RF models. The proposed feature extraction utilizing DWT on spectrogram

improves detection accuracy by 1.2x compared to spectrogram alone. The experimental

results shows 0.99 recall in detecting “unknown” benchmark applications and 0.87 recall

in detecting “unknown” malware family.

Chapter 6 concludes that shellcode exploits and obfuscated malware payloads can be

detected by identifying anomalies in MSR PP0 ENERGY STATUS register values using

free energy of an RBM model. The experimental evaluation of the framework on the Fire-

fox browser application shows 0.87 F1 score and 0.06 FPR in detecting shellcode injections

exploiting existing vulnerabilities of the browser application. A reverse TCP shell malware

payload obfuscated through shakata ga nai polymorphic encoder show 0.76 F1 score and

50% FPR.

7.2 Future Research Directions

7.2.1 Multiple Channel Fusion of Hardware Events For Malware Detection and Analysis

This thesis analyses hardware events individually on the proposed AI models. The future

work can extend to improve malware detection performance by fusing multiple channels

voltage, frequency, thermal monitors, power (core and memory). The frequency scaling

framework on modern systems extends beyond CPU to non-CPU devices. For instance,

104

CPU 0

(V,F)

CPU 3

(V, F)

CPU 2

(V, F)

CPU 1

(V,F)

L L Cache (V,F)

Memory (V,F)

Graphics BW

DSP BW

M
u

lt
i-

C
h

a
n

n
e
l

P
o
w

er
 T

el
em

et
ry

Malware Detection

& Analysis

Framework

Benign or

Malware ?

Unknown ?

Type of

Malware ?

Figure 7.1: Multi-Channel Power Telemetry Fusion For Malware Detection and Analysis

devfreq modules in /sysfs subsystem of linux kernel comprises of frequency scaling gov-

ernors for CPU bandwidth, memory latency, last level cache bandwidth, dsp and graph-

ics. Similarly, power domains extents beyond core to on-core memory devices. The mal-

ware detection based on CPU DVFS can be extended to multi-channel fusion of Hardware

events. In addition, a new malware analysis unit can be introduced to classify peculiar

behaviors/activities. deep neural network (DNN) models for multi-channel fusion could

further improve performance. The detection and analysis framework should also recognize

out-of-distribution test examples, not seen by the model as unknown applications. The key

challenge in multi channel input space is determining correlation and causation between

events to reduce the high dimensional space.

105

7.2.2 Improving Prediction Likelihood of Detecting Out-of-Distribution Examples using

Model Uncertainty

The unknown applications are detected by comparing predicted probabilities derived from

classifier model with a pre-defined threshold. Suppose prediction probability of test sample

is less than decision threshold. In that case, ML model has lower confidence is classify-

ing the test sample as “known” sample and therefore, it is detected as unknown. The

probability estimates from the classifier’s output is obtained using Platt scaling method.

Platt scaling algorithm produces probability estimates by fitting classifier’s output, such as

scores of SVM model to a parametric model i.e., a sigmoid function. But, these proba-

bility estimates are frequentist and not bayesian. The prediction probability of detecting

unknown can be improved using model uncertainty. Bayesian approaches for uncertainty

estimation to detect “unknown” applications with higher confidence. In addition to detect-

ing unknown, estimating the likelihood of unknown belonging to benign or malware would

further improve the detection model.

7.2.3 Extending Low-Level Hardware Based Detection to Multi-Workload Environment

The data collection experiments conducted in this thesis profiled an application under anal-

ysis individually without considering the impact of noise on power / EM profile resulting

from concurrent background process execution. The proposed malware detection and anal-

ysis model applies to single workload behavior and its performance might drop in a multi

workload environment. The current detection models should integrate features from both

core and package level granularity. Voltage and frequency are updated are each core, which

forms local signatures and power consumption is updated at the package level, which forms

the global signature of an application. Including both local and global power-based feature

would improve the model performance in a multi-workload environment.

106

V
is

ib
le

 L
a
y
e
r

Anomaly Detector

Free Energy
(F)

{0,1}

sub-trace

1

0

t

RBM RBMRBM

Aligning Trace with a
Template

Segment Trace

S
ca

li
n

g

MSR
Traces

Figure 7.2: Real-time anomaly detection using RBMs

7.2.4 Real-time Anomaly Detection using RBMs

The proposed RBM model in Chapter 6 identifies deviation in MSR PP0 ENERGY STA-

TUS register values to detect anomaly resulting from shellcode exploits on Firefox browser.

The early detection of shellcode exploits prior to infecting the device requires a real-time

detection of an anomaly in MSR PP0 ENERGY STATUS register values. There are mul-

tiple challenges in extending the current RBM model to a real-time detector.

107

• Synchronization of Training and Real-time Traces : In the current approach,

the RBM is trained on MSR PP0 ENERGY STATUS traces corresponding to clean

states of browser operation. The real-time detection would require analyzing MSR -

PP0 ENERGY STATUS register values in a moving-window fashion. The traces

collected in real time during inference are not perfectly synced with start of browser

activity. The evaluation of non-synchronized traces on trained RBM would lead to

misleading results.

• Differentiating between background vs Target workload: The activity of a core

continuously varies in real-time. Multiple real-time processes such as interrupts, ker-

nel worker threads are triggered at random times. Also, users can open and interact

with multiple applications in real-time, which requires a detection model to iden-

tify the region of Firefox browser operation before detecting an anomaly in Firefox

browser states.

The background activity of core under no operation can be detected by simple correla-

tion between a MSR PP0 ENERGY STATUS template trace and real-time trace. Similarly,

one possible approach to synchronize between template and real-time traces is by using

alignment as shown in Figure 7.2. The future work would explore appropriate methods and

perform cost analysis to address real-time detection using hardware signatures.

108

Appendices

APPENDIX A

EM SIDE-CHANNEL DATA ACQUISITION SETUP

A.1 Platform

The EM Side-Channel Data Acquisition comprises of Intrinsyc Open-Q 820 Development

Kit [54]. The Open-Q 820 system on module (SOM) comprises of Snapdragon 820 quad-

core processor. The CPU is based on ARM big.LITTLE architecture. The development

kit has 32GB internal storage, 3GB RAM and LCD user interface. The processor hosts

Android 7.0 OS.

A.2 EM Probes

We selected 100 series EMC probes from beehive electronics. The EM side-channel sig-

natures are captured using passive probes. The probe has loop diameter 0.85, tip diameter

1.0, and 50Mz 3dB bandwidth [55].

A.3 Acquisition

The side-channel signatures are recorded on Tektronix DPO5204 oscilloscope (2GHz band-

width). Arduino Uno is used to generate trigger for oscilloscope for starting capture.

110

Tektronix DPO5204

Arduino

Trigger

LAN Save

Trace

Experimental Platform

EM Probe

Open-Q 820

12V Power

Supply

Figure A.1: EM side-channel data collection setup comprising Open-Q Snapdragon 820
Development Kit, EM probes, oscilloscope for acquisition and Arduino For Trigger

111

APPENDIX B

MALWARE CHARACTERISTICS

Y Zhou et al. have classified malware families based on installation, activation and pay-

load mechanisms[51]. The selected malwares are repackaged versions of benign counter-

part. Android specific malware installation methods include repackaging and updates as

described in [51]. Repackaging benign application to include malware payloads is among

the most common way malware gets installed by user. Among other methods include mal-

ware payload installation during an application update.

B.1 Triggering Malware

Once installed, these malwares may stay dormant or actively start executing in the back-

ground. A major proportion of malware applications observe system level broadcast events

for activating their payload [51]. The malware explored in this dataset observes broadcast

event “BOOT COMPLETED” for activation. These applications get triggered as soon as

system completes the boot process. In addition to this, there are multiple other broadcast

events either generated by android system or by other applications that malware registers

in its manifest to trigger its action. These list of events are described in [51]. Therefore, we

generated necessary trigger events as inputs to malware application. The broadcast receiver

mechanism is one of the common techniques for triggering malware APKs [60]. In the ex-

periments, we use android debug interface (adb) commands to send different broadcast

receiver events to targeted malware application for activating malware payload.

We tested the activation of malware by monitoring frequency of system calls, while

triggering the applications with user touches and broadcast events. Since, the malware

payload is packaged in benign application, we tested for malware action by comparing the

system call behavior of malware infected benign application and benign application itself.

112

B.2 Malware Payload

The malware executes its payload after activation. Y Zhou et al. have categorized malware

payloads into three broad categories; stealing personal information, broadcasting to remote

servers, subscribing users to premium services and escalating privileges by exploiting an-

droid system vulnerabilities to remotely control device [51].

113

REFERENCES

[1] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, “A survey on malware detection using
data mining techniques,” ACM Comput. Surv., vol. 50, no. 3, Jun. 2017.

[2] A. Souri and R. Hosseini, “A state-of-the-art survey of malware detection approaches
using data mining techniques,” vol. 8, pp. 1–22, Dec. 2018.

[3] M. Dimjašević, S. Atzeni, I. Ugrina, and Z. Rakamaric, “Evaluation of android mal-
ware detection based on system calls,” in Proceedings of the 2016 ACM on Inter-
national Workshop on Security And Privacy Analytics, ser. IWSPA ’16, New Or-
leans, Louisiana, USA: Association for Computing Machinery, 2016, pp. 1–8, ISBN:
9781450340779.

[4] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “Madam: Effective and effi-
cient behavior-based android malware detection and prevention,” IEEE Transactions
on Dependable and Secure Computing, vol. 15, no. 1, pp. 83–97, 2018.

[5] T. Chakraborty, F. Pierazzi, and V. S. Subrahmanian, “Ec2: Ensemble clustering
and classification for predicting android malware families,” IEEE Transactions on
Dependable and Secure Computing, vol. 17, no. 2, pp. 262–277, 2020.

[6] J. Demme et al., “On the feasibility of online malware detection with performance
counters,” in Proceedings of the 40th Annual International Symposium on Computer
Architecture, ser. ISCA ’13, Tel-Aviv, Israel: ACM, 2013, pp. 559–570, ISBN: 978-
1-4503-2079-5.

[7] T. Eisenbarth, C. Paar, and B. Weghenkel, “Building a side channel based disas-
sembler,” in Transactions on Computational Science X: Special Issue on Security in
Computing, Part I, M. L. Gavrilova, C. J. K. Tan, and E. D. Moreno, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 78–99, ISBN: 978-3-642-17499-
5.

[8] M. Rahmatian, H. Kooti, I. G. Harris, and E. Bozorgzadeh, “Hardware-assisted de-
tection of malicious software in embedded systems,” IEEE Embedded Systems Let-
ters, vol. 4, no. 4, pp. 94–97, 2012.

[9] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Unsupervised anomaly-based mal-
ware detection using hardware features,” in Research in Attacks, Intrusions and De-
fenses, A. Stavrou, H. Bos, and G. Portokalidis, Eds., Cham: Springer International
Publishing, 2014, pp. 109–129, ISBN: 978-3-319-11379-1.

[10] K. N. Khasawneh, M. Ozsoy, C. Donovick, N. Abu-Ghazaleh, and D. Ponomarev,
“Ensemble learning for low-level hardware-supported malware detection,” in Pro-

114

ceedings of the 18th International Symposium on Research in Attacks, Intrusions,
and Defenses - Volume 9404, ser. RAID 2015, Kyoto, Japan: Springer-Verlag, 2015,
pp. 3–25, ISBN: 9783319263618.

[11] M. Kazdagli, V. J. Reddi, and M. Tiwari, “Quantifying and improving the efficiency
of hardware-based mobile malware detectors,” in The 49th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, ser. MICRO-49, Taipei, Taiwan: IEEE
Press, 2016.

[12] M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D. Ponomarev, “Malware-
aware processors: A framework for efficient online malware detection,” in 2015
IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA), 2015, pp. 651–661.

[13] N. Patel, A. Sasan, and H. Homayoun, “Analyzing hardware based malware de-
tectors,” in Proceedings of the 54th Annual Design Automation Conference 2017,
ser. DAC ’17, Austin, TX, USA: Association for Computing Machinery, 2017, ISBN:
9781450349277.

[14] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic, “Eddie: Em-based
detection of deviations in program execution,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, ser. ISCA ’17, Toronto, ON,
Canada, 2017, pp. 333–346, ISBN: 978-1-4503-4892-8.

[15] N. Sehatbakhsh et al., “Remote: Robust external malware detection framework by
using electromagnetic signals,” IEEE Transactions on Computers, vol. 69, no. 3,
pp. 312–326, 2020.

[16] S. S. Clark et al., “Wattsupdoc: Power side channels to nonintrusively discover untar-
geted malware on embedded medical devices,” in Proceedings of the 2013 USENIX
Conference on Safety, Security, Privacy and Interoperability of Health Information
Technologies, ser. HealthTech’13, Washington, DC: USENIX Association, 2013,
pp. 9–9.

[17] Y. Liu, L. Wei, Z. Zhou, K. Zhang, W. Xu, and Q. Xu, “On code execution tracking
via power side-channel,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’16, Vienna, Austria: Association
for Computing Machinery, 2016, pp. 1019–1031, ISBN: 9781450341394.

[18] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose, “Sok: The
challenges, pitfalls, and perils of using hardware performance counters for security,”
in 2019 IEEE Symposium on Security and Privacy (SP), 2019, pp. 20–38.

[19] A. Tang, S. Sethumadhavan, and S. Stolfo, “Clkscrew: Exposing the perils of security-
oblivious energy management,” in Proceedings of the 26th USENIX Conference on

115

Security Symposium, ser. SEC’17, Vancouver, BC, Canada, 2017, pp. 1057–1074,
ISBN: 978-1-931971-40-9.

[20] A. Singh, M. Kar, S. K. Mathew, A. Rajan, V. De, and S. Mukhopadhyay, “Improved
power/em side-channel attack resistance of 128-bit aes engines with random fast
voltage dithering,” IEEE Journal of Solid-State Circuits, vol. 54, no. 2, pp. 569–583,
2019.

[21] S. Yang, W. Wolf, N. Vijaykrishnan, D. N. Serpanos, and Y. Xie, “Power attack re-
sistant cryptosystem design: A dynamic voltage and frequency switching approach,”
in Design, Automation and Test in Europe, Mar. 2005, 64–69 Vol. 3.

[22] D. Strobel, F. Bache, D. Oswald, F. Schellenberg, and C. Paar, “Scandalee: A side-
channel-based disassembler using local electromagnetic emanations,” in 2015 De-
sign, Automation Test in Europe Conference Exhibition (DATE), 2015, pp. 139–144.

[23] J. Park, X. Xu, Y. Jin, D. Forte, and M. Tehranipoor, “Power-based side-channel
instruction-level disassembler,” in 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), 2018, pp. 1–6.

[24] D. Genkin, L. Pachmanov, I. Pipman, and E. Tromer, “Stealing keys from pcs using
a radio: Cheap electromagnetic attacks on windowed exponentiation,” in Crypto-
graphic Hardware and Embedded Systems – CHES 2015, T. Güneysu and H. Hand-
schuh, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 207–228,
ISBN: 978-3-662-48324-4.

[25] D. Genkin, I. Pipman, and E. Tromer, “Get your hands off my laptop: Physical
side-channel key-extraction attacks on pcs,” in Cryptographic Hardware and Em-
bedded Systems – CHES 2014, L. Batina and M. Robshaw, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 242–260, ISBN: 978-3-662-44709-3.

[26] Y. Han, S. Etigowni, H. Liu, S. Zonouz, and A. Petropulu, “Watch me, but don’t
touch me! contactless control flow monitoring via electromagnetic emanations,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, ser. CCS ’17, Dallas, Texas, USA: ACM, 2017, pp. 1095–1108, ISBN:
978-1-4503-4946-8.

[27] H. A. Khan et al., “Idea: Intrusion detection through electromagnetic-signal analysis
for critical embedded and cyber-physical systems,” IEEE Transactions on Depend-
able and Secure Computing, pp. 1–1, 2019.

[28] F. Ding et al., “Deeppower: Non-intrusive and deep learning-based detection of iot
malware using power side channels,” in Proceedings of the 15th ACM Asia Confer-
ence on Computer and Communications Security, ser. ASIA CCS ’20, Taipei, Tai-
wan: Association for Computing Machinery, 2020, pp. 33–46, ISBN: 9781450367509.

116

[29] L. Liu, G. Yan, X. Zhang, and S. Chen, “Virusmeter: Preventing your cellphone from
spies,” in Recent Advances in Intrusion Detection, E. Kirda, S. Jha, and D. Balzarotti,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 244–264, ISBN: 978-
3-642-04342-0.

[30] A. Merlo, M. Migliardi, and P. Fontanelli, “Measuring and estimating power con-
sumption in android to support energy-based intrusion detection,” J. Comput. Secur.,
vol. 23, pp. 611–637, 2015.

[31] L. Caviglione, M. Gaggero, J. Lalande, W. Mazurczyk, and M. Urbański, “Seeing the
unseen: Revealing mobile malware hidden communications via energy consumption
and artificial intelligence,” IEEE Transactions on Information Forensics and Secu-
rity, vol. 11, no. 4, pp. 799–810, 2016.

[32] N. Debande, Y. Souissi, M. A. E. Aabid, S. Guilley, and J.-L. Danger, “Wavelet
transform based pre-processing for side channel analysis,” in Proceedings of the
2012 45th Annual IEEE/ACM International Symposium on Microarchitecture Work-
shops, ser. MICROW ’12, USA: IEEE Computer Society, 2012, pp. 32–38, ISBN:
9780769549200.

[33] J. Longo, E. De Mulder, D. Page, and M. Tunstall, “Soc it to em: Electromagnetic
side-channel attacks on a complex system-on-chip,” in Cryptographic Hardware and
Embedded Systems – CHES 2015, T. Güneysu and H. Handschuh, Eds., Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2015, pp. 620–640, ISBN: 978-3-662-48324-4.

[34] J. Ai, Z. Wang, X. Zhou, and C. Ou, “Improved wavelet transform for noise reduction
in power analysis attacks,” in 2016 IEEE International Conference on Signal and
Image Processing (ICSIP), 2016, pp. 602–606.

[35] N. Sehatbakhsh, M. Alam, A. Nazari, A. Zajic, and M. Prvulovic, “Syndrome: Spec-
tral analysis for anomaly detection on medical iot and embedded devices,” in 2018
IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
2018, pp. 1–8.

[36] N. Chawla, A. Singh, M. Kar, and S. Mukhopadhyay, “Application inference using
machine learning based side channel analysis,” in 2019 International Joint Confer-
ence on Neural Networks (IJCNN), Jul. 2019, pp. 1–8.

[37] D. Strobel, F. Bache, D. Oswald, F. Schellenberg, and C. Paar, “Scandalee: A side-
channel-based disassembler using local electromagnetic emanations,” in 2015 De-
sign, Automation Test in Europe Conference Exhibition (DATE), 2015, pp. 139–144.

[38] Y. Cheng et al., “Magattack: Guessing application launching and operation via smart-
phone,” in Proceedings of the 2019 ACM Asia Conference on Computer and Com-

117

munications Security, ser. Asia CCS ’19, Auckland, New Zealand: Association for
Computing Machinery, 2019, pp. 283–294, ISBN: 9781450367523.

[39] G. A. Jacoby, R. Marchany, and N. J. Davis, “Using battery constraints within mo-
bile hosts to improve network security,” IEEE Security Privacy, vol. 4, no. 5, pp. 40–
49, 2006.

[40] F.-X. Standaert, T. G. Malkin, and M. Yung, “A unified framework for the analysis
of side-channel key recovery attacks,” in Advances in Cryptology - EUROCRYPT
2009, A. Joux, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 443–
461, ISBN: 978-3-642-01001-9.

[41] T. Schneider and A. Moradi, “Leakage assessment methodology,” in Cryptographic
Hardware and Embedded Systems – CHES 2015, T. Güneysu and H. Handschuh,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 495–513, ISBN: 978-
3-662-48324-4.

[42] R. Longbottom, Updated android benchmarks for 32 bit and 64 bit cpus from arm
and intel contents, Mar. 2018.

[43] MS Windows NT kernel description, https://www.kernel.org/doc/html/v4.15/admin-
guide/pm/cpufreq.html, Accessed: 2010-09-30.

[44] Linux cpufreq governors, https: / /www.kernel .org/doc/Documentation/cpu- freq/
governors.txt, Accessed: 2019-11-21.

[45] V. Pallipadi and A. Starikovskiy, “The ondemand governor: Past, present and future,”
in Proceedings of Linux Symposium, vol. 2, pp. 223-238, 2006.

[46] Ui/application exerciser monkey, https://developer.android.com/studio/test/monkey,
Accessed: 2019-11-21.

[47] Scheduler extensions, https:/ /android.googlesource.com/kernel/msm/+/android-
msm-marlin-3.18-nougat-dr1/Documentation/scheduler/sched-zone.txt.

[48] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown,
“Mibench: A free, commercially representative embedded benchmark suite,” in Pro-
ceedings of the Fourth Annual IEEE International Workshop on Workload Charac-
terization. WWC-4 (Cat. No.01EX538), Dec. 2001, pp. 3–14.

[49] S. M. Pudukotai Dinakarrao, H. Sayadi, H. M. Makrani, C. Nowzari, S. Rafatirad,
and H. Homayoun, “Lightweight node-level malware detection and network-level
malware confinement in iot networks,” in 2019 Design, Automation Test in Europe
Conference Exhibition (DATE), Mar. 2019, pp. 776–781.

118

https://www.kernel.org/doc/html/v4.15/admin-guide/pm/cpufreq.html
https://www.kernel.org/doc/html/v4.15/admin-guide/pm/cpufreq.html
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://developer.android.com/studio/test/monkey
https://android.googlesource.com/kernel/msm/+/android-msm-marlin-3.18-nougat-dr1/Documentation/scheduler/sched-zone.txt
https://android.googlesource.com/kernel/msm/+/android-msm-marlin-3.18-nougat-dr1/Documentation/scheduler/sched-zone.txt

[50] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck, “Drebin: Effective
and explainable detection of android malware in your pocket,” in NDSS, 2014.

[51] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and evolution,”
in 2012 IEEE Symposium on Security and Privacy, May 2012, pp. 95–109.

[52] Iot developer survey 2019, https : / / outreach . eclipse . foundation / download - the -
eclipse-iot-developer-survey-results.

[53] M. Sun, X. Li, J. C. S. Lui, R. T. B. Ma, and Z. Liang, “Monet: A user-oriented
behavior-based malware variants detection system for android,” IEEE Transactions
on Information Forensics and Security, vol. 12, no. 5, pp. 1103–1112, 2017.

[54] Open-q 820 development kit, https://www.intrinsyc.com/snapdragon-embedded-
development - kits / snapdragon - 820 - development - kitsnapdragon - 820 - apq8096/,
(Accessed February 9, 2021).

[55] Emc probe set, https://beehive-electronics.com/probes.html, Accessed: 2020-09-03.

[56] Contagio malware dump, http://contagiodump.blogspot.com/, (Accessed February
9, 2021).

[57] Virusshare.com - because sharing is caring, https : / / virusshare . com/, (Accessed
February 9, 2021).

[58] L. Massarelli, L. Aniello, C. Ciccotelli, L. Querzoni, D. Ucci, and R. Baldoni, “An-
droid malware family classification based on resource consumption over time,” in
2017 12th International Conference on Malicious and Unwanted Software (MAL-
WARE), 2017, pp. 31–38.

[59] S. K. Dash et al., “Droidscribe: Classifying android malware based on runtime be-
havior,” in 2016 IEEE Security and Privacy Workshops (SPW), 2016, pp. 252–261.

[60] J. Yu, Q. Huang, and C. Yian, “Droidscreening: A practical framework for real-world
android malware analysis,” Sec. and Commun. Netw., vol. 9, no. 11, pp. 1435–1449,
Jul. 2016.

[61] A. Azmoodeh, A. Dehghantanha, M. Conti, and K.-K. R. Choo, “Detecting crypto-
ransomware in iot networks based on energy consumption footprint,” Journal of
Ambient Intelligence and Humanized Computing, vol. 9, no. 4, pp. 1141–1152, 2017.

[62] Intel 64 and ia-32 architectures software developer’s manual combined, https : / /
software.intel.com/, (Accessed October 4, 2021).

119

https://outreach.eclipse.foundation/download-the-eclipse-iot-developer-survey-results
https://outreach.eclipse.foundation/download-the-eclipse-iot-developer-survey-results
https://www.intrinsyc.com/snapdragon-embedded-development-kits/snapdragon-820-development-kitsnapdragon-820-apq8096/
https://www.intrinsyc.com/snapdragon-embedded-development-kits/snapdragon-820-development-kitsnapdragon-820-apq8096/
https://beehive-electronics.com/probes.html
http://contagiodump.blogspot.com/
https://virusshare.com/
https://software.intel.com/
https://software.intel.com/

[63] Shikata ga nai encoder still going strong, https:/ /www.mandiant.com/resources/
shikata-ga-nai-encoder-still-going-strong, (Accessed February 9, 2021).

[64] R7-2015-04 disclosure: Mozilla firefox proxy prototype rce, https : / /www.rapid7 .
com / blog / post / 2015 / 03 / 23 / r7 - 2015 - 04 - disclosure - mozilla - firefox - proxy -
prototype-rce-cve-2014-8636/, (Accessed November 15, 2021).

[65] Firefox proxy prototype exploit module, https : / / github . com / rapid7 / metasploit -
framework/blob/master/modules/exploits/multi/browser/firefox proxy prototype.rb,
(Accessed November 15, 2021).

120

https://www.mandiant.com/resources/shikata-ga-nai-encoder-still-going-strong
https://www.mandiant.com/resources/shikata-ga-nai-encoder-still-going-strong
https://www.rapid7.com/blog/post/2015/03/23/r7-2015-04-disclosure-mozilla-firefox-proxy-prototype-rce-cve-2014-8636/
https://www.rapid7.com/blog/post/2015/03/23/r7-2015-04-disclosure-mozilla-firefox-proxy-prototype-rce-cve-2014-8636/
https://www.rapid7.com/blog/post/2015/03/23/r7-2015-04-disclosure-mozilla-firefox-proxy-prototype-rce-cve-2014-8636/
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/multi/browser/firefox_proxy_prototype.rb
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/multi/browser/firefox_proxy_prototype.rb

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Research Statement
	Key Contributions of this Thesis
	Organization of this Thesis

	2 | Background
	Dynamic Voltage and Frequency Scaling (DVFS) and Security
	Leveraging Electromagnetic Emissions For Malware Detection
	Power Based Malware Detectors
	Feature Extraction Techniques
	Evaluation Metrics For ML Model

	3 | Differentiating Applications Using Dynamic Voltage Frequency Scaling Signatures
	DVFS Governors in Linux Kernel
	Characterization of DVFS Signatures
	Application Inference Using DVFS Signatures
	Summary

	4 | Signature-based Malware Detection Using Dynamic Voltage Frequency Scaling Signatures
	Malware Detection
	Secure Detector Design
	Implementation Challenges
	Comparison with HMD
	Summary

	5 | Remote Signature-Based Malware Detection and Family Classification Using Electromagnetic Emissions
	Threat Model
	Malware Detection and Analysis Framework
	EM Side-Channel Trace Collection
	Distinguishing Malware Against Benign Applications
	Distinguishing Malware Family
	Unknown Application Detection and Machine Learning Model Updates
	Comparison with EM Side-Channel based Detector
	Summary

	6 | Anomaly-based Shellcode Exploit Detection using Restricted Boltzmann Machine
	Characterization of MSR_PP0_ENERGY_STATUS Register Trace
	Anomaly Detection Framework
	Detecting Shellcode Injections in Browser Exploits
	Obfuscated Payload Detection
	Comparison with HMD
	Summary

	7 | Conclusion and Future Work
	Dissertation Summary
	Future Research Directions

	Appendices
	A | EM Side-Channel Data Acquisition Setup
	B | Malware Characteristics

	References

