4 research outputs found

    On the Subexponential Time Complexity of CSP

    Full text link
    A CSP with n variables ranging over a domain of d values can be solved by brute-force in d^n steps (omitting a polynomial factor). With a more careful approach, this trivial upper bound can be improved for certain natural restrictions of the CSP. In this paper we establish theoretical limits to such improvements, and draw a detailed landscape of the subexponential-time complexity of CSP. We first establish relations between the subexponential-time complexity of CSP and that of other problems, including CNF-Sat. We exploit this connection to provide tight characterizations of the subexponential-time complexity of CSP under common assumptions in complexity theory. For several natural CSP parameters, we obtain threshold functions that precisely dictate the subexponential-time complexity of CSP with respect to the parameters under consideration. Our analysis provides fundamental results indicating whether and when one can significantly improve on the brute-force search approach for solving CSP

    Most Classic Problems Remain NP-hard on Relative Neighborhood Graphs and their Relatives

    Get PDF
    Proximity graphs have been studied for several decades, motivated by applications in computational geometry, geography, data mining, and many other fields. However, the computational complexity of classic graph problems on proximity graphs mostly remained open. We now study 3-Colorability, Dominating Set, Feedback Vertex Set, Hamiltonian Cycle, and Independent Set on the proximity graph classes relative neighborhood graphs, Gabriel graphs, and relatively closest graphs. We prove that all of the problems remain NP-hard on these graphs, except for 3-Colorability and Hamiltonian Cycle on relatively closest graphs, where the former is trivial and the latter is left open. Moreover, for every NP-hard case we additionally show that no 2o(n1/4)2^{o(n^{1/4})}-time algorithm exists unless the ETH fails, where n denotes the number of vertices
    corecore