10,495 research outputs found

    Decomposition tables for experiments I. A chain of randomizations

    Get PDF
    One aspect of evaluating the design for an experiment is the discovery of the relationships between subspaces of the data space. Initially we establish the notation and methods for evaluating an experiment with a single randomization. Starting with two structures, or orthogonal decompositions of the data space, we describe how to combine them to form the overall decomposition for a single-randomization experiment that is ``structure balanced.'' The relationships between the two structures are characterized using efficiency factors. The decomposition is encapsulated in a decomposition table. Then, for experiments that involve multiple randomizations forming a chain, we take several structures that pairwise are structure balanced and combine them to establish the form of the orthogonal decomposition for the experiment. In particular, it is proven that the properties of the design for such an experiment are derived in a straightforward manner from those of the individual designs. We show how to formulate an extended decomposition table giving the sources of variation, their relationships and their degrees of freedom, so that competing designs can be evaluated.Comment: Published in at http://dx.doi.org/10.1214/09-AOS717 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Decomposition tables for experiments. II. Two--one randomizations

    Get PDF
    We investigate structure for pairs of randomizations that do not follow each other in a chain. These are unrandomized-inclusive, independent, coincident or double randomizations. This involves taking several structures that satisfy particular relations and combining them to form the appropriate orthogonal decomposition of the data space for the experiment. We show how to establish the decomposition table giving the sources of variation, their relationships and their degrees of freedom, so that competing designs can be evaluated. This leads to recommendations for when the different types of multiple randomization should be used.Comment: Published in at http://dx.doi.org/10.1214/09-AOS785 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Tensor Networks for Big Data Analytics and Large-Scale Optimization Problems

    Full text link
    In this paper we review basic and emerging models and associated algorithms for large-scale tensor networks, especially Tensor Train (TT) decompositions using novel mathematical and graphical representations. We discus the concept of tensorization (i.e., creating very high-order tensors from lower-order original data) and super compression of data achieved via quantized tensor train (QTT) networks. The purpose of a tensorization and quantization is to achieve, via low-rank tensor approximations "super" compression, and meaningful, compact representation of structured data. The main objective of this paper is to show how tensor networks can be used to solve a wide class of big data optimization problems (that are far from tractable by classical numerical methods) by applying tensorization and performing all operations using relatively small size matrices and tensors and applying iteratively optimized and approximative tensor contractions. Keywords: Tensor networks, tensor train (TT) decompositions, matrix product states (MPS), matrix product operators (MPO), basic tensor operations, tensorization, distributed representation od data optimization problems for very large-scale problems: generalized eigenvalue decomposition (GEVD), PCA/SVD, canonical correlation analysis (CCA).Comment: arXiv admin note: text overlap with arXiv:1403.204

    Harmonic analysis on a finite homogeneous space

    Full text link
    In this paper, we study harmonic analysis on finite homogeneous spaces whose associated permutation representation decomposes with multiplicity. After a careful look at Frobenius reciprocity and transitivity of induction, and the introduction of three types of spherical functions, we develop a theory of Gelfand Tsetlin bases for permutation representations. Then we study several concrete examples on the symmetric groups, generalizing the Gelfand pair of the Johnson scheme; we also consider statistical and probabilistic applications. After that, we consider the composition of two permutation representations, giving a non commutative generalization of the Gelfand pair associated to the ultrametric space; actually, we study the more general notion of crested product. Finally, we consider the exponentiation action, generalizing the decomposition of the Gelfand pair of the Hamming scheme; actually, we study a more general construction that we call wreath product of permutation representations, suggested by the study of finite lamplighter random walks. We give several examples of concrete decompositions of permutation representations and several explicit 'rules' of decomposition.Comment: 69 page

    Tensor decompositions for learning latent variable models

    Get PDF
    This work considers a computationally and statistically efficient parameter estimation method for a wide class of latent variable models---including Gaussian mixture models, hidden Markov models, and latent Dirichlet allocation---which exploits a certain tensor structure in their low-order observable moments (typically, of second- and third-order). Specifically, parameter estimation is reduced to the problem of extracting a certain (orthogonal) decomposition of a symmetric tensor derived from the moments; this decomposition can be viewed as a natural generalization of the singular value decomposition for matrices. Although tensor decompositions are generally intractable to compute, the decomposition of these specially structured tensors can be efficiently obtained by a variety of approaches, including power iterations and maximization approaches (similar to the case of matrices). A detailed analysis of a robust tensor power method is provided, establishing an analogue of Wedin's perturbation theorem for the singular vectors of matrices. This implies a robust and computationally tractable estimation approach for several popular latent variable models
    corecore