2,349 research outputs found

    Asynchronous Circuit Stacking for Simplified Power Management

    Get PDF
    As digital integrated circuits (ICs) continue to increase in complexity, new challenges arise for designers. Complex ICs are often designed by incorporating multiple power domains therefore requiring multiple voltage converters to produce the corresponding supply voltages. These converters not only take substantial on-chip layout area and/or off-chip space, but also aggregate the power loss during the voltage conversions that must occur fast enough to maintain the necessary power supplies. This dissertation work presents an asynchronous Multi-Threshold NULL Convention Logic (MTNCL) “stacked” circuit architecture that alleviates this problem by reducing the number of voltage converters needed to supply the voltage the ICs operate at. By stacking multiple MTNCL circuits between power and ground, supplying a multiple of VDD to the entire stack and incorporating simple control mechanisms, the dynamic range fluctuation problem can be mitigated. A 130nm Bulk CMOS process and a 32nm Silicon-on-Insulator (SOI) CMOS process are used to evaluate the theoretical effect of stacking different circuitry while running different workloads. Post parasitic physical implementations are then carried out in the 32nm SOI process for demonstrating the feasibility and analyzing the advantages of the proposed MTNCL stacking architecture

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    Delay test for diagnosis of power switches

    Get PDF
    Power switches are used as part of power-gating technique to reduce leakage power of a design. To the best of our knowledge, this is the first work in open-literature to show a systematic diagnosis method for accurately diagnosingpower switches. The proposed diagnosis method utilizes recently proposed DFT solution for efficient testing of power switches in the presence of PVT variation. It divides power switches into segments such that any faulty power switch is detectable thereby achieving high diagnosis accuracy. The proposed diagnosis method has been validated through SPICE simulation using a number of ISCAS benchmarks synthesized with a 90-nm gate library. Simulation results show that when considering the influence of process variation, the worst case loss of accuracy is less than 4.5%; and the worst case loss of accuracy is less than 12% when considering VT (Voltage and Temperature) variations

    CAD Tool Design for NCL and MTNCL Asynchronous Circuits

    Get PDF
    This thesis presents an implementation of a method developed to readily convert Boolean designs into an ultra-low power asynchronous design methodology called MTNCL, which combines multi-threshold CMOS (MTCMOS) with NULL Convention Logic (NCL) systems. MTNCL provides the leakage power advantages of an all high-Vt implementation with a reasonable speed penalty compared to the all low-Vt implementation, and has negligible area overhead. The proposed tool utilizes industry-standard CAD tools. This research also presents an Automated Gate-Level Pipelining with Bit-Wise Completion (AGLPBW) method to maximize throughput of delay-insensitive full-word pipelined NCL circuits. These methods have been integrated into the Mentor Graphics and Synopsis CAD tools, using a C-program, which performs the majority of the computations, such that the method can be easily ported to other CAD tool suites. Both methods have been successfully tested on circuits, including a 4-bit × 4-bit multiplier, an unsigned Booth2 multiplier, and a 4-bit/8-operation arithmetic logic unit (ALU

    Asynchronous Data Processing Platforms for Energy Efficiency, Performance, and Scalability

    Get PDF
    The global technology revolution is changing the integrated circuit industry from the one driven by performance to the one driven by energy, scalability and more-balanced design goals. Without clock-related issues, asynchronous circuits enable further design tradeoffs and in operation adaptive adjustments for energy efficiency. This dissertation work presents the design methodology of the asynchronous circuit using NULL Convention Logic (NCL) and multi-threshold CMOS techniques for energy efficiency and throughput optimization in digital signal processing circuits. Parallel homogeneous and heterogeneous platforms implementing adaptive dynamic voltage scaling (DVS) based on the observation of system fullness and workload prediction are developed for balanced control of the performance and energy efficiency. Datapath control logic with NULL Cycle Reduction (NCR) and arbitration network are incorporated in the heterogeneous platform for large scale cascading. The platforms have been integrated with the data processing units using the IBM 130 nm 8RF process and fabricated using the MITLL 90 nm FDSOI process. Simulation and physical testing results show the energy efficiency advantage of asynchronous designs and the effective of the adaptive DVS mechanism in balancing the energy and performance in both platforms

    FORCED STACK SLEEP TRANSISTOR (FORTRAN): A NEW LEAKAGE CURRENT REDUCTION APPROACH IN CMOS BASED CIRCUIT DESIGNING

    Get PDF
    Reduction in leakage current has become a significant concern in nanotechnology-based low-power, low-voltage, and high-performance VLSI applications. This research article discusses a new low-power circuit design the approach of FORTRAN (FORced stack sleep TRANsistor), which decreases the leakage power efficiency in the CMOS-based circuit outline in VLSI domain. FORTRAN approach reduces leakage current in both active as well as standby modes of operation. Furthermore, it is not time intensive when the circuit goes from active mode to standby mode and vice-versa. To validate the proposed design approach, experiments are conducted in the Tanner EDA tool of mentor graphics bundle on projected circuit designs for the full adder, a chain of 4-inverters, and 4-bit multiplier designs utilizing 180nm, 130nm, and 90nm TSMC technology node. The outcomes obtained show the result of a 95-98% vital reduction in leakage power as well as a 15-20% reduction in dynamic power with a minor increase in delay. The result outcomes are compared for accuracy with the notable design approaches that are accessible for both active and standby modes of operation

    Technology Mapping, Design for Testability, and Circuit Optimizations for NULL Convention Logic Based Architectures

    Get PDF
    Delay-insensitive asynchronous circuits have been the target of a renewed research effort because of the advantages they offer over traditional synchronous circuits. Minimal timing analysis, inherent robustness against power-supply, temperature, and process variations, reduced energy consumption, less noise and EMI emission, and easy design reuse are some of the benefits of these circuits. NULL Convention Logic (NCL) is one of the mainstream asynchronous logic design paradigms that has been shown to be a promising method for designing delay-insensitive asynchronous circuits. This dissertation investigates new areas in NCL design and test and is made of three sections. The first section discusses different CMOS implementations of NCL gates and proposes new circuit techniques to enhance their operation. The second section focuses on mapping multi-rail logic expressions to a standard NCL gate library, which is a form of technology mapping for a category of NCL design automation flows. Finally, the last section proposes design for testability techniques for a recently developed low-power variant of NCL called Sleep Convention Logic (SCL)
    corecore