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ABSTRACT 

This thesis presents an implementation of a method developed to readily convert Boolean 

designs into an ultra-low power asynchronous design methodology called MTNCL, which 

combines multi-threshold CMOS (MTCMOS) with NULL Convention Logic (NCL) systems.  

MTNCL provides the leakage power advantages of an all high-Vt implementation with a 

reasonable speed penalty compared to the all low-Vt implementation, and has negligible area 

overhead.  The proposed tool utilizes industry-standard CAD tools.  This research also presents 

an Automated Gate-Level Pipelining with Bit-Wise Completion (AGLPBW) method to 

maximize throughput of delay-insensitive full-word pipelined NCL circuits. These methods have 

been integrated into the Mentor Graphics and Synopsis CAD tools, using a C-program, which 

performs the majority of the computations, such that the method can be easily ported to other 

CAD tool suites. Both methods have been successfully tested on circuits, including a  

4-bit × 4-bit multiplier, an unsigned Booth2 multiplier, and a 4-bit/8-operation arithmetic logic 

unit (ALU) 
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Chapter 1. Introduction  

1.1 Objectives 

This thesis has 2 main sections. First, an automated method is developed to convert gate-

level Boolean designs into an equivalent gate-level MTNCL circuit. MTNCL is an ultra-low 

power design methodology for asynchronous circuits, which combines Multi-Threshold CMOS 

(MTCMOS) with NULL Convention Logic (NCL). Second, the thesis presents an Automated 

Gate-Level Pipelining method with Bit-Wise Completion (AGLPBW) to maximize throughput 

of delay insensitive NCL circuits. Analytical and simulation results are discussed to validate the 

proposed schemes. 

 

1.2 Need for asynchronous circuits 

Synchronous circuits are predominant in the semiconductor IC industry, in large part due 

to the synthesis CAD tools which create optimized synchronous circuits from high-level 

descriptions, with a shortened design cycle. However, as feature size diminishes, transistor count 

escalates into the billions, and clock frequency increases. This causes the clock distribution, 

process variation, and power dissipation to become severely problematic for synchronous 

circuits. On the other hand, delay-insensitive (DI) asynchronous circuits, such as NCL, utilize 

hand-shaking protocols with completion detection, thus removing clocks and the necessity for 

complex timing analysis. The result is more robust with lower power consumption, making these 

circuits an excellent choice in the long run. To support this, the International Technology 

Roadmap for Semiconductors (ITRS) predicts that asynchronous circuits will account for 49% of 

the multi-billion dollar industry by 2024 [1].  
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1.3 Thesis Overview 
  
 

This thesis is organized into 8 chapters. Chapter 2 introduces NULL Convention Logic 

(NCL). Chapter 3 introduces Multi-Threshold CMOS. Chapter 4 introduces MTNCL. These 

chapters provide the basis for the rest of the research. Chapter 5 discusses the 

implementation of a MTNCL CAD tool to convert synthesized Boolean designs 

into their MTNCL version. Chapter 6 presents an Automated Gate-Level Pipelining with 

Bit-Wise Completion (AGLPBW) method to maximize throughput of delay-insensitive NCL 

circuits.  Chapter 7 presents simulation results; and Chapter 8 concludes the research. 
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Chapter 2.  Introduction to NCL 

2.1 Delay-insensitivity 

Generally, asynchronous circuits fall into one of two categories: bounded-delay model or 

delay-insensitive model. NCL circuits belong to the delay-insensitive model, which means they 

can operate correctly with little timing analysis [2]. Symbolic completeness of expression is 

utilized in NCL to realize delay-insensitive behavior. Specifically, dual-rail and quad-rail logic 

are used in NCL design. Symbolically complete means that the outputs are only determined by 

the presence of the input signals, regardless of the timing relationship between the input signals 

[4].  

In NCL, both dual-rail and quad-rail signals use space optimal 1-hot encoding, requiring 

two wires per bit. A dual-rail signal, D, comprises two wires: D
0
 and D

1
. The value of D

0
 and D

1
 

is chosen from the set {DATA0, DATA1, NULL}. DATA0 corresponds to logic 0 in Boolean 

logic, with D
0
 =1 and D

1
=0, while DATA1 is the same as logic 1 in Boolean logic, with D

0
 =0 

and D
1
=1.  NULL means the dual-rail signal is not available, so D

0
 =0 and D

1
=0.  Just as logic 0 

and logic 1 are mutually exclusive in Boolean logic, DATA0 and DATA1 are also mutually 

exclusive. Therefore, D
0
 and D

1 
cannot be 1 simultaneously; this is an illegal state. Likewise, a 

quad-rail signal uses  

4 wires, D
0
, D

1
,D

2
, D

3
, which can have a value of { DATA0, DATA1, DATA2, DATA3, 

NULL}. A quad-rail signal corresponds to two Boolean logic signals, X and Y. DATA0 is 

represented with D
0
 =1 and D

1
 =0, D

2
 =0, D

3
 =0, which corresponds to X=0 and Y=0. DATA1 is 

represented with D
1
 =1 and the rest of the rails are 0, which corresponds to X=0 and Y=1. 

DATA2 is expressed as D
2
 =1 and the rest of the rails are 0, which corresponds to X=1 and Y=0. 

DATA3 is expressed as D
3
 =1 and the rest of the rails  
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are 0, which corresponds to X=1 and Y=1. NULL means the data is not available, so all the rails 

are 0. The four wires of a quad-rail signal are mutually exclusive, which means only one of them 

can be asserted at a time. If more than one rail is asserted, this state is defined as an illegal state 

[2], [5].   

 

 

 

 

 

 

 

 

Figure 1. Example of Boolean OR gate and NCL OR function 

We can see from  Figure1 above that regular Boolean OR gate has an incorrect output 

during the transition, while NCL OR function does not; the output is valid when DATA (non-

NULL). 

 

2.2 NCL logic gates 

NCL logic is comprised of 27 fundamental gates. Each rail in NCL logic, both dual-rail 

and quad-rail, counts as a separate variable. Each of the fundamental gates can have four or 

fewer variables as its inputs. NCL gates are an extension of the C-element. A C-element output 

assumes the value of the inputs when all inputs have the same value. Otherwise, the output stays 
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at its previous value [2]. The primary type of NCL gate is the THmn gate, where 1  m  n, as 

shown in Figure 2 [2].   

 

 

 

 

Figure 2. THmn NCL Gate [2], [7] 

The THmn gate has n inputs and threshold of m. The output of the gate will only be 

asserted when at least m inputs are asserted.  The inputs are connected to the round part of the 

gate. The output is connected from the pointed end of the gate [2]. 

Another type of NCL gate is called a weighted threshold gate, denoted as 

THmnWw1w2…wR. This type of gate has a threshold of m and weight integer values  

w1, w2, …wR applied to input1, input2, … inputR, where  m  wR > 1. Here 1  R < n, where n is 

the number of inputs [2], [8]. Take TH23W2 gate for example.  It has 3 inputs labeled as A, B, 

C, shown in Figure 3. The threshold for the gate is 2, and weight for input A, W(A), is 2. In order 

for the output to be asserted, either inputs B and C must be asserted or input A must be asserted. 

Therefore, the Boolean function of this gate is  

Z = A + BC. Some NCL gates have a reset input that is used to initialize the output.  An  

n inside an NCL gate means it is reset to 0, while a d means it is set to 1. 

 
 
 

 
 

 

Figure 3. TH23W2 gate [2] 
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NCL 

Macro 

Boolean Function Transistor 

Count 
TH12 A + B 6 

TH22 AB 12 

TH13 A + B + C 8 

TH23 AB + AC + BC 18 

TH33 ABC 16 

TH23w2 A + BC 14 

TH33w2 AB + AC 14 

TH14 A + B + C + D 10 

TH24 AB + AC + AD + BC + BD + CD 26 

TH34 ABC + ABD + ACD + BCD 24 

TH44 ABCD 20 

TH24w2 A + BC + BD + CD 20 

TH34w2 AB + AC + AD + BCD 22 

TH44w2 ABC + ABD + ACD 23 

TH34w3 A + BCD 18 

TH44w3 AB + AC + AD 16 

TH24w22 A + B + CD 16 

TH34w22 AB + AC + AD + BC + BD 22 

TH44w22 AB + ACD + BCD 22 

TH54w22 ABC + ABD 18 

TH34w32 A + BC + BD 17 

TH54w32 AB + ACD 20 

TH44w322 AB + AC + AD + BC 20 

TH54w322 AB + AC + BCD 21 

THxor0 AB + CD 20 

THand0 AB + BC + AD 19 

TH24comp AC + BC + AD + BD 18 

Table 1. Fundamental NCL Gates [2], [7] 

NCL threshold gates are designed with hysteresis state-holding ability. This means that 

once the output is asserted, all inputs must be de-asserted before the output will be de-asserted. 

Hysteresis ensures that all inputs transition back to NULL before the next DATA wavefront is 

presented to the gates. As a result, the function of a THnn gate is the same as an n-input C-

element. Similarly, the function of a TH1n gate is equivalent to an n-input OR gate [2]. NCL 

framework is constructed by Delay-Insensitive registers with combinational Delay-Insensitive 

components between these registers. NCL circuits achieve delay-insensitivity by feeding the 

circuit with DATA-NULL wavefronts. DATA wavefront means that all inputs are DATA, a 
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combination of DATA0 and DATA1; while NULL wavefront means all inputs are NULL. 

DATA wavefronts are separated by NULL wavefronts to make sure that current DATA 

wavefronts don’t overwrite previous DATA wavefronts, thus eliminating the race condition. 

When all inputs of a circuit become DATA, the output transitions to DATA. Then NULL 

wavefront is fed into the circuit to make the output change to NULL. After that, another DATA 

wavefront is fed into the circuit, to produce DATA at the output [2].   

 

 

 

 

 

 

Figure 4. a) DATA Wavefront [2] 

 

 

 

 

 

 

 

Figure 4. b) DATA Completion Detection [2] 
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Figure 4. c) NULL Wavefront [2] 

 

 

 

 

 

Figure 4. d) NULL Completion Detection [2] 

Handshaking signals, Ki and Ko, are used in DI registers to request and acknowledge 

DATA and NULL wavefronts between adjacent stages [2]. 

 

 

 

 

Figure 5. NCL System Framework [2]  

Similar to clock period in synchronous circuits, the DATA-to-DATA cycle, denoted as 

TDD, is used to measure the speed of a NCL circuit. TDD is considered to be maximum delay of 

any stage in a pipelined NCL circuit in the worst case scenario. To account for both the DATA 

NCL

 Register 0

In Out

Ko Ki

NCL

 Register 1

In Out

Ko Ki

NCL

 Combinational 

Circuit

Completion 

Detection

NULL NULL

n n m m

DATA DATA

mn

1 0 0 1

NCL

 Register 0

In Out

Ko Ki

NCL

 Register 1

In Out

Ko Ki

NCL

 Combinational 

Circuit

Completion 

Detection

NULL NULL

n n m m

NULL NULL

mn

1 0 1 0

n

n

NCL Reg

In Out

Ko Ki

NCL

 Combinational 

Circuit

Completion 

Detection

n n

n

In Out

Ko Ki

NCL

 Combinational 

Circuit

Completion 

Detection

n n

n

…….

NCL Reg

n

n

In Out

Ko Ki

n

NCL Reg



 

9 

 

and NULL wavefront, TDD is calculated as twice the sum of the worst case delay of 

combinational and completion delay [2], [8].  

 

 

 

 

Figure 6. DATA-NULL cycle [3] 

A single bit dual-rail register is shown in Figure 7. This dual-rail register consists of 

TH22 gates, with data inputs and Ki connected to inputs of TH22 gate. If Ki is request for data 

(rfd, logic1), it will allow DATA value at the input to pass through. Similarly, it will pass NULL 

at the input when Ki is request for null (rfn, logic0). The inverting TH12 gate (i.e., NOR gate) is 

used to generate acknowledge signal, Ko. Ko will be rfn if the register output is DATA; it will be 

rfd if the register output is NULL. The acknowledgement signals are combined in Completion 

Detection circuitry, in Figure 8, to produce the request signals for the previous register stage. 

 

 

  

 

 

 

 

Figure 7. Dual-Rail register [2] 
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Since the maximum number of inputs for a single gate is 4, we use TH44 gates in the 

Completion Detection. As a result, the gate delay of the Completion Detection component, 

combining N number of Ko signals from separate registers, is log4N [8]. 

 

 

 

 

 

 

   

 

 

 

 

Figure 8. N-bit Completion Detection Component [2], [8] 
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can transition before a complete set of inputs are present, on the condition that all outputs cannot 

transition before all inputs arrive. Consider a NCL half adder in Figure 9.  

 

 

 

 

 

 

 

 

 

Figure 9. NCL Half Adder [2] 

The output sum is input-complete with respect to X and Y, but Cout is not input-complete. 

However, the whole set of {sum, Cout } is input-complete, because when S transitions to DATA, 

both inputs must be DATA. On the other hand, the hysteresis property of NCL gates requires that 

all inputs must transition to NULL before the output can transition to NULL, thus guaranteeing 

the output is input-complete with respect to NULL. When deriving equations for a NCL circuit, 

by making sure every non-don’t care product term contains any rail of a particular input, we can 

make the NCL circuit input-complete with respect to that input.  

In order to achieve observability, there must be no orphans propagating through a gate 

[2]. The definition of an orphan is a wire not used to determine the output, that transitions during 

the current DATA wavefront. Observability ensures that any transition of an internal gate causes 

at least one of the circuit outputs to transition. That means if the output of one gate is connected 
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to inputs of other gates, it is imperative that the transition on this gate causes at least one output 

of the other gates to transition [5]. 

 

2.4 Dual-rail combinational NCL circuit design 

Designing dual-rail combinational NCL circuits using a K-map is very similar to the 

procedure used to design regular synchronous combinational circuits. The difference is that 

equations are needed for both rail1 and rail0. After equations are obtained, we need to see if they 

are input-complete. If not, the missing input terms need to be added to the product terms in the 

equations. In addition, it is necessary to carefully map the equations using the 27 NCL gates to 

ensure observability by not partitioning product terms [2].  

For example, consider the design of an NCL AND function with 2-inputs 

 

 0 1 

0 0 0 

1 0 1 

 

Minimized equation for AND2 can be found as : 

                                                  F
1
= A

1
 B

1
     (2.1) 

                                                  F
0
= A

0
 +B

0
     (2.2) 

Notably, rail1 is input-complete to A and B. However, rail0 is not input-complete. So, the 

missing input needs to be added to each of the terms. 

                                                   F
1 

= A
0
 +B

0 
     (2.3) 

                                                                                   
= A

0
(B

0
 +B

1
) + B

0 
(A

0
 +A

1
) 

B 

A 
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                                                       = A
0
 B

0
 + A

0
 B

1
 + A

1
 B

0
  

By multiplying redundant terms, rail0 is input-complete to both A and B.  

 

2.5 NCL completion 

NCL can be divided into two completion categories. The first is full-word completion and 

the second is bit-wise completion. Full-word completion requires that the completion signals 

from each bit of the receiving stage be conjoined together by completion component and sent 

back to the sourcing stage. Bit-wise completion only returns completion signals from a specific 

bit back to the bits in a previous stage that are used to calculate this bit [2], [8]. 
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Chapter 3. Introduction to MTCMOS 

MTCMOS reduces leakage power by disconnecting the power supply from the circuit 

during idle (or sleep) mode while maintaining high performance in active mode by utilizing 

different transistor threshold voltages (Vt) [12]. Low-Vt transistors are faster but have high 

leakage, whereas high-Vt transistors are slower but have far less leakage current. MTCMOS 

combines these two types of transistors by utilizing low-Vt transistors for circuit switching to 

preserve performance and high-Vt transistors to gate the circuit power supply to significantly 

decrease sub-threshold leakage. 

One MTCMOS method uses low-Vt transistors for critical paths to maintain high 

performance, while using slower high-Vt transistors for the non-critical paths to reduce leakage. 

Besides this path replacement methodology, there are two other architectures for implementing 

MTCMOS. A course-grained technique investigated in [13] uses low-Vt logic for all circuit 

functions and gates the power to entire logic blocks with high-Vt sleep transistors, denoted by a 

dotted circle, as shown in Figure 10. The sleep transistors are controlled by a Sleep signal. 

During active mode, the Sleep signal is de-asserted, causing both high-Vt transistors to turn on 

and provide a virtual power and ground to the low-Vt logic. When the circuit is idle, the Sleep 

signal is asserted, forcing both high-Vt transistors to turn off and disconnect power from the low-

Vt logic, resulting in a very low sub-threshold leakage current. One major drawback of this 

method is that partitioning the circuit into appropriate logic blocks and sleep transistor sizing is 

difficult for large circuits. An alternative fine-grained architecture, shown in Figure 11, 

incorporates the MTCMOS technique within every gate [14], using low-Vt transistors for the 

Pull-Up Network (PUN) and Pull-Down Network (PDN) and a high-Vt transistor to gate the 

leakage current between the two networks. Two additional low-Vt transistors are included in 
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parallel with the PUN and PDN to maintain nearly equivalent voltage potential across these 

networks during sleep mode (i.e., X1 is approximately VDD and X2 is approximately GND). 

Implementing MTCMOS within each gate resolves the issue of logic block partitioning and sleep 

transistor sizing, since each gate within the gate library is sized separately. However, this results 

in a large area overhead. 

In general, three serious drawbacks hinder the widespread usage of MTCMOS in 

synchronous circuits [13]: 1) the generation of Sleep signals is timing critical, often requiring 

complex logic circuits; 2) synchronous storage elements lose data when the power transistors are 

turned off during sleep mode; and 3) logic block partitioning and transistor sizing is very 

difficult for the course-grained approach; and the fine-grain approach results in excessive area 

overhead. However, all three of these drawbacks are eliminated by utilizing NCL in conjunction 

with the MTCMOS technique. 
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Figure 10. General MTCMOS circuit architecture [13]. 

 

Figure 11. MTCMOS applied to a Boolean gate [14]. 
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Chapter 4. Introduction to MTNCL 

MTNCL was originally developed in [14-18], as summarized below. 

4.1 Early-Completion Input-Incomplete (ECII) MTNCL Architecture  

NCL threshold gates are larger and implement more complicated functions than basic 

Boolean gates, such that fewer threshold gates are needed to implement an arbitrary function 

compared to the number of Boolean gates. However, the NCL implementation often requires 

more transistors. Consequently, incorporating MTCMOS inside each threshold gate facilitates 

easy sleep transistor sizing without requiring as large of an area overhead. Since floating nodes 

may result in substantial short circuit power consumption at the following stage, an MTCMOS 

structure similar to the one shown in Figure 11 is used to pull the output node to ground during 

sleep mode. When all MTNCL gates in a pipeline stage are in sleep mode, all gate outputs are 

logic 0. At this point the pipeline stage is in the NULL state. Hence, after each DATA cycle, all 

MTNCL gates in a pipeline stage can be forced to output logic 0 by asserting the sleep control 

signal instead of propagating a NULL wavefront through the stage; hence, data is not lost during 

sleep mode.  

 Since the completion detection signal, Ko, indicates whether the corresponding pipeline 

stage is ready to undergo a DATA or NULL cycle, Ko can be naturally used as the sleep control 

signal without requiring any additional hardware. This is in contrast to the complex Sleep signal 

generation circuitry needed for synchronous MTCMOS circuits. Unfortunately, the direct 

implementation of this idea using regular NCL completion compromises delay-insensitivity [18]. 

To solve this problem, Early Completion [20] can be used in lieu of regular completion, as 

shown in Figure 12, where each completion signal is used as the sleep signal for all threshold 

gates in the subsequent pipeline stage. Early Completion utilizes the inputs of registeri-1 along 



 

18 

 

with the Ki request to registeri-1, instead of just the outputs of registeri-1 as in regular completion, 

to generate the request signal to registeri-2, Koi-1. The combinational logic will not be put in sleep 

mode until all inputs are NULL and the stage is requesting NULL. Therefore the NULL 

wavefront is ready to propagate through the stage, so the stage can instead be put to sleep 

without compromising delay-insensitivity. The stage will then remain in sleep mode until all 

inputs are DATA and the stage begins requesting DATA, and is therefore ready to evaluate. This 

Early Completion MTNCL architecture, denoted as ECII, ensures input-completeness and 

observability through the sleep mechanism (i.e., the circuit is only put to sleep after all inputs are 

NULL, when all gates are then simultaneously forced to  

logic 0, and only evaluates after all inputs are DATA), such that input-incomplete logic functions 

can be used to design the circuit, decreasing area and power and increasing speed.  
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Figure 12. MTNCL pipeline architecture using Early Completion. 

 

4.2 MTNCL Threshold Gate Design for ECII Architecture 

The MTCMOS structure is incorporated inside each NCL threshold gate, causing a 

number of the original transistors to become irrelevant. As shown in Figure 13a, the reset 

circuitry is no longer necessary, as the gate output will now be forced to NULL by the 

MTCMOS sleep mechanism. Hold1 is used to ensure that the gate remains asserted until all 

inputs are de-asserted, in order to guarantee input-completeness with respect to the NULL 
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wavefront. However, since the ECII architecture guarantees input-completeness through the 

sleep mechanism, as explained in Chapter 4.1, it follows that NCL gate hysteresis is no longer 

required. Hence, the hold1 circuitry and corresponding NMOS transistor are removed, and the 

PMOS transistor is removed to maintain the complementary nature of CMOS logic (i.e., set and 

hold0 are complements of each other), such that the gate is never floating.  

Improved from the direct MTCMOS NCL threshold gate implementation [15] similar to 

the structure shown in Figure 11, a modified Static MTNCL threshold gate structure, referred to 

as SMTNCL, is shown in Figure 13b. This modification eliminates the output wake-up glitch by 

moving the power gating high-Vt transistor to the PDN, and removing the two bypass transistors. 

All PMOS transistors except the output inverter are high-Vt, because they are only turned on 

when the gate enters sleep mode and the inputs become logic 0, and remain on when the gate 

exits sleep mode, until the gate’s set condition becomes true. In both cases, the gate output is 

already logic 0. Therefore, the speed of these PMOS transistors does not affect performance, so 

high-Vt transistors are used to reduce leakage current. During active mode, the Sleep signal is 

logic 0 and Sleep  is logic 1, such that the gate functions as normal. During sleep mode, Sleep is 

logic 1 and Sleep  is logic 0, such that the output low-Vt pull-down transistor is turned on quickly 

to pull the output to logic 0, while the high-Vt NMOS gating transistor is turned off to reduce 

leakage. Note that since the internal node, between set and hold0, is logic 1 during sleep mode 

and the output is logic 0, the NMOS transistor in the output inverter is no longer on the critical 

path and therefore can be a high-Vt transistor. As an example, this SMTNCL implementation of 

the static TH23 gate is shown in Figure 13c.  
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Figure 13. (a) Incorporating MTCMOS into NCL threshold gates, (b) SMTNCL gate structure, 

and (c) TH23 implementation. 

4.3 Delay-Insensitivity Analysis  

Combining the ECII architecture with the SMTNCL gate structure, results in a delay-

sensitivity problem, as shown in Figure 14. After a DATA cycle, if most, but not all, inputs 

become NULL, this Partial NULL (PN) wavefront can pass through the stage’s input register, 

because the subsequent stage is requesting NULL, and cause all stage outputs to become NULL, 
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before all inputs are NULL and the stage is put to sleep, because the hold1 logic has been 

removed from the SMTNCL gates. This violates the input-completeness criteria, discussed in 

Chapter 2, and can cause the subsequent stage to request the next DATA while the previous 

stage input is still a partial NULL, such that the preceding wavefront bits that are still DATA will 

be retained and utilized in the subsequent operation, thereby compromising delay-insensitivity, 

similar to the problem when using regular completion instead of Early Completion for MTNCL 

[18].  

There are two solutions to this problem, one at the architecture level and the other at the 

gate level. Since the problem is caused by a partial NULL passing through the register, this can 

be fixed at the architecture-level by ensuring that the NULL wavefront is only allowed to pass 

through the register after all register inputs are NULL, which is easily achievable by using the 

stage’s inverted sleep signal as its input register’s Ki signal. This Fixed Early Completion Input-

Incomplete (FECII) architecture is shown in Figure 15. Compared to ECII, FECII is slower 

because the registers must wait until all inputs become DATA/NULL before they are latched. 

Note that a partial DATA wavefront passing through the register does not pose a problem, 

because the stage will remain in sleep mode until all inputs are DATA, thereby ensuring that all 

stage outputs will remain NULL until all inputs are DATA. 

This problem can also be solved at the gate level by using the new SMTNCL1 gate 

shown in Figure 16, to ensure input-completeness with respect to NULL, such that a partial 

NULL wavefront cannot cause all outputs to become NULL. Note that the feedback NMOS 

transistor holds the output at logic1, which ensures that once the output of the gate has been 

asserted due to current DATA wavefront, it will only get de-asserted when the sleep signal is 
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activated for the gate (i.e., when all circuit inputs are NULL), and will block a partial NULL 

wavefront from de-asserting the gate output.  

To summarize, the ECII architecture only works with new SMTNCL1 gates. However, 

FECII works better with the SMTNCL gates since they require fewer transistors. Additionally, 

the ECII architecture is faster than FECII, when both use the same MTNCL gates. 
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Figure 14. Delay-sensitivity problem combining ECII architecture with SMTNCL gates. 

 

DI 

Register

Ki

MTNCL 

Logic

DI 

Register

Ki

Early 

Completion

MTNCL 

Logic

DI 

Register

Ki

Early 

Completion

Sleep
Sleep

Early 

Completion

Sleep

 

Figure 15. Fixed Early Completion Input-Incomplete (FECII) architecture. 
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Figure 16. (a) New SMTNCL1 gate structure, and (b) TH23 implementation. 
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Chapter 5. MTNCL CAD Tool 

This thesis develops an automated tool to convert combinational Boolean circuits into 

their equivalent MTNCL circuits. The process flow for this conversion is shown in Figure 17. 

The conversion process starts with combinational Boolean design like a full adder circuit, which 

is then synthesized into hierarchical gate level design using the industry standard Synopsys 

synthesis tool. The MTNCL CAD Tool (MCT) accepts the hierarchical design as input, along 

with the Synopsys log file and outputs the MTNCL equivalent circuit for the Boolean design.  

Synopsys 
Synthesis tool

MTNCL CAD tool

Gate level 
boolean

design file 
Synthesis Log File

MTNCL design 

Combinational 
boolean design 

 

Figure 17. Process Flow for MTNCL conversion 

               The Synopsys CAD tool, Design Vision, is used for initial synthesis and could be run in 

GUI or batch mode.  The standard GTECH library is used as the target library for the purpose of 
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synthesis. The “SET_DONT_USE” command is used such that only the gates mentioned in Table 

2 are employed. 

 

 

 

 

 

 

 

 

  

 

 

Table 2. GTECH Library – Gates used for synthesis 

A sample batch script for synthesis is shown in Figure 18.  

 

 

 

 

Figure 18. Sample script for Synopsys Design Vision. 

On successful completion of synthesis, we get a gate-level hierarchical circuit, which is 

used as an input for the MTNCL CAD tool. Thereafter, the MTNCL CAD tool translates the 

GTECH Library – Gates 

GTECH_NOT 

GTECH_AND2 

GTECH_AND3 

GTECH_AND4 

GTECH_NAND2 

GTECH_NAND3 

GTECH_NAND4 

GTECH_OR2 

GTECH_OR3 

GTECH_OR4 

GTECH_NOR2 

GTECH_NOR3 

GTECH_NOR4 

GTECH_XOR2 

GTECH_XNOR2 

GTECH_ADD_AB 

GTECH_ADD_ABC 

GTECH_MUX2 

GTECH_MUX4 

read_file /opt/ELEG_Software/Synopsys/synthesis/libraries/syn/gtech.db 

read_file -format vhdl {full_add.vhd} 

set_dont_use gtech/GTECH_LIST 

compile -exact_map 

write -hierarchy -format vhdl -output Boolean_design.vhd 
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design into its equivalent MTNCL circuit. The flowchart for the MTNCL CAD tool is shown in 

Figure 19. This tool is comprised of several steps, described in the following subsections. 

Process Input boolean 
circuit 

Hierarchical gate-level 
boolean combinational 

circuit 

Place all corresponding 
MTNCL components in the 

design

Insertion of Sleep Logic, 
Registration and 
Completion logic

Optimization of design

Equivalent MTNCL circuit

Place  component 
definitions and  libraries 

Look-Up Table 
(LUT)

MTNCL Gate 
Definitions

 

Figure 19. MTNCL CAD tool flowchart 

5.1 Process Input Boolean Circuit Design 

MCT first reads the Synopsys log file named “command.log”. MCT searches for the main 

design entity name in file. The last instance of the pattern: “read_file -format vhdl” has the 
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main design name specified at the end of the corresponding line. For example, in the log file 

snippet shown below design name is full_add.   

 

 

MCT assumes the file name to be the same as the entity name for standardization. This name 

is stored in a variable named main_entity. MCT then reads the Boolean circuit’s VHDL 

description, which is the output from the synthesis tool (i.e., Design Vision of the Synopsys 

CAD tool suite) so as to be in a standardized format. The output VHDL file from the synthesis 

tool is named “Boolean_design.vhd” for uniformity. MCT reads and stores the input and output 

signals of the main entity in two separate arrays. Each array element is a data structure as defined 

below.  

Struct Signals 

 char name[] 

 char type[] 

 int size 

Information related to input signals is stored in main_inputs[], and that pertaining to output 

signals is stored in main_outputs[]. For demonstration, we will consider the example of a full 

adder circuit that needs to be converted to its MTNCL equivalent. The full adder circuit, shown 

in Figure 20, is the output from the synthesis tool, a VHDL hierarchical model. 

 

 

 

 

read_file -format vhdl {/home/vpillai/DV/full_add.vhd}    
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Figure 20. Full Adder Circuit (Output from Synthesis tool) 

In the full adder example,  

main_inputs[0].name=’A’; main_inputs[0].type=’std_logic’; main_inputs[0].size=1 

main_inputs[1].name=’B’; main_inputs[1].type=’std_logic’; main_inputs[1].size=1 

main_inputs[2].name=’Cin’; main_inputs[2].type=’std_logic’; main_inputs[2].size=1 

main_outputs[0].name=’Sum’; main_outputs[0].type=’std_logic’;main_outputs[0].size=1 

main_outputs[1].name=’Cout’; main_outputs[1].type=’std_logic’;main_outputs[1].size=1 

This data structure is used for remapping of input and output ports while adding the register and 

completion logic to the circuit design. 

5.2 Place all the corresponding MTNCL Components in the Design 

After extracting the circuit inputs and outputs from the main design’s VHDL description, the 

next step is to parse through the input design file called “Boolean_design.vhd” and make gate 

replacements as per the lookup table (LUT) shown in Table 3 below. The lookup table is 

programmable and hence could be easily adapted for a different target library or for a different 

technology. MCT programs the lookup table before every run. In its initialization routine, the 

program reads a file named “program_LUT.txt” and updates its internal lookup data structure 

accordingly.  The LUT has two columns of data. The values in the first column of table array are 
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the values searched by a key (lookup value). These values can only be names of the GTECH 

library gates. 

When the MCT parser encounters any of the GTECH library gates in the input design file, it 

uses the corresponding gate as the lookup value (key) to search the first column of the LUT and 

returns the equivalent MTNCL component in the same row from the second column of the LUT. 

MCT then uses the returned MTNCL component as a replacement for the GTECH library gate in 

the input circuit.  

BOOLEAN GATE (Key) MTNCL COMPONENT 

GTECH_NOT INV 

GTECH_AND2 AND2M 

GTECH_AND3 AND3M 

GTECH_AND4 AND4M 

GTECH_NAND2 NAND2M 

GTECH_NAND3 NAND3M 

GTECH_NAND4 NAND4M 

GTECH_OR2 OR2M 

GTECH_OR3 OR3M 

 GTECH_OR4 OR4M 

GTECH_NOR2 NOR2M 

GTECH_NOR3 NOR3M 

GTECH_NOR4 NOR4M 

GTECH_XOR2 XOR2M 

GTECH_XNOR2 NXOR2M 

GTECH_MUX2 MUX21M 

GTECH_MUX4 MUX41M 

GTECH_ADD_AB HAM 

GTECH_ADD_ABC FAM 

Table 3. Programmable Lookup Table 

After all the Boolean gates have been replaced, MCT then converts all the inputs, outputs, and 

internal signal definitions from std_logic and std_logic_vector to dual_rail_logic and 
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dual_rail_logic_vector, respectively.  Considering the full adder circuit as an example, Figure 21 

shows the result of the LUT operation.  
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Figure 21. Full Adder MTNCL Circuit 

In Figure 21, inputs A, B, Cin, and outputs Sum, Cout are dual_rail_logic. The program also 

maintains a separate array named gate_array for the MTNCL gates fetched from the LUT. For 

example, if the values {gtech_not, gtech_and2, gtech_or2} were found in the input design file, 

then gate_array should have corresponding replacement values {inv, and2m, or2m}. The 

elements of this array are unique, i.e., no duplicates are allowed. Please refer to Section 5.5 of 

this thesis to learn how this array is used in the placing of component definitions. 

5.3 Insertion of Registration, Completion and Sleep Logic 

For the purpose of this thesis, we chose to implement the Fixed Early Completion Input 

Incomplete (FECII) architecture of MTNCL [2]. This architecture avoids delay-insensitivity 

issues by ensuring that the NULL wavefront is only allowed to pass through the register after all 

register inputs are NULL, which is achieved by using the stage’s inverted sleep signal as its input 

register’s Ki signal as shown in Figure 22.  
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Figure 22. FECII architecture – registration, completion, and sleep logic [2] 

In order to implement the registration, completion and sleep logic, MCT makes changes in 

the architecture description of the circuit by implementing a top level wrapper that includes two 

pairs of register and early_completion components that sit at the input and output of the MTNCL 

logic. First off, MCT re-names the input and output ports of the MTNCL logic created in Section 

5.2. This re-naming is essential as the wrapper will be using the original input and output port 

names. MCT defines a set of internal signals for renaming. 

For input ports- 

for (k = 1; k <= ni ; k++) 

{ 

signal main_inputs[k-1].name_ k-1 : main_inputs[k-1].type;   

} 

where ni = number of input ports found in the Boolean design 

For output ports- 

for (k = 1; k <= no ; k++) 

{ 

signal main_outputs[k-1].name_ k-1 : main_outputs[k-1].type;   

} 

where no = number of output ports found in the Boolean design 
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For the full adder example, the input ports would be renamed as A_0, B_1, and Cin_2; while 

output ports would be renamed as Sum_0 and Cout_1. Thus, the full adder MTNCL circuit 

depicted in Figure 21 would now look like Figure 23 shown below. 
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Figure 23. Full Adder MTNCL Circuit with Renamed Ports 

For the top-level wrapper, the size of the input register is named REGIN_size and calculated as  

REGIN_size = 0 

for  (k = 0; k < ni; k++) 

{ 

        REGIN_size = REGIN_size + main_inputs[k].size   

} 

where ni = number of input ports found in the Boolean design 

Two internal signals are defined to carry the data in and out of the input_register  

signal temp0_in, temp0_out: dual_rail_logic_vector( REGIN_size-1 downto 0); 

The data from all the input ports of the design gets combined to form a single bus named 

“temp0_in”, which acts as the input for the input_register and input_early_completion 

component. The output of the input_register is mapped to the signal “temp0_out”. For the full 

adder example, temp0_in <= A & B & Cin. 

The signal “temp0_out” is used to drive the inputs of the MTNCL logic created in Section 5.2.  

For the full adder example, “temp0_out” gets used as 



 

33 

 

A_0 <= temp0_out(2) 

B_1 <= temp0_out(1) 

Cin_2 <= temp0_out(0) 

The size of the output register is named REGOUT_size and is calculated as  

REGOUT_size = 0 

for  (k = 0; k < no; k++) 

{ 

        REGOUT_size = REGOUT_size + main_outputs[k].size   

} 

where no = number of output ports in the Boolean design 

Two additional signals are defined to carry the data in and out of the output_register  

signal temp1_in, temp1_out: dual_rail_logic_vector( REGOUT_size-1 downto 0); 

All the outputs from the MTNCL logic are concatenated into a single bus named “temp1_in” 

which is connected to the input of the output_register and output_early_completion component. 

For the full adder example, the re-named outputs Sum_0, Cout_1 would be mapped as temp1_in 

<= Sum_0 & Cout_1. The output of the output_register is mapped to “temp1_out”. Finally, 

temp1_out is decoded and separated to drive the output ports of the wrapper to complete the data 

flow. For the full adder example, temp1_out would be uncombined as 

Sum <= temp1_out(1); 

Cout <= temp1_out(0);  

 

As shown in Figure 22, the Ko signal from the input_early_completion component is used to 

sleep the MTNCL logic. This master sleep signal is propagated through to every MTNCL gate in 

the design to ensure simultaneous sleeping of all the gates. MCT adds two input ports named ki, 

reset and an output port ko to the top level wrapper, which is now the main entity. 
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5.4 Optimization of Design by Minimization 

After implementing the registration, completion, and sleep logic, we have the MTNCL 

equivalent of the Boolean design. However, some gates and components may be redundant or 

could be replaced by simpler gates or components and therefore removing or replacing them 

will help reduce the area and power. MCT removes all the buffers in the design by replacing 

every GTECH_BUF instance with a simple wire. For example  

“B_0 : GTECH_BUF port map( A => u, Z => N0);” gets replaced by “N0 <= u;” 

MCT handles the signals mapped to VDD or GND, based on how they are used in the design. 

MCT maintains two array structures, zeros_mapped_arr for all signals mapped to GND and 

ones_mapped_arr for all signals mapped to VDD.  For every element of zeros_mapped_arr, 

MCT parses the design for every port map instance of that particular element and performs the 

following operations 

 If the signal is mapped to one of the inputs of a full adder component, then MCT 

replaces the full adder component with a half adder.  

 If the signal is mapped to one of the inputs of a 2-input OR gate, then MCT replaces the 

gate with a simple wire i.e., directly mapping the other input to the output.  

 If the signal is mapped to the ‘select’ input port of a 2:1 Mux, then MCT replaces the 

2:1 Mux with a simple wire connecting the output of the Mux directly to the first data 

input of the Mux.  

 If the signal is mapped to a port that is unused within a component, then MCT 

permanently removes that port from the component and all its mappings.   



 

35 

 

Once all the signals in zeros_mapped_arr are handled, MCT deletes them from the design. Next, 

for every element of ones_mapped_arr, MCT parses the design for every port map instance of 

that particular element and performs the following operations 

 If the signal is mapped to one of the inputs of a 2-input AND gate, then MCT replaces 

the gate with a simple wire i.e directly mapping the other input to the output.  

 If the signal is mapped to the ‘select’ input port of a 2:1 Mux, then MCT replaces the 

2:1 Mux with a simple wire connecting the output of the Mux directly to the second 

data input of the Mux. 

After handling all the signals in ones_mapped_arr, MCT deletes them from the design.  

5.5 Place Component Definitions and Libraries 

MCT accesses the VHDL definitions for all the MTNCL gates and components used in the 

LUT, by parsing through a file named “Comp_Definitions.txt”. The motive is to make MCT 

programmable so that it could be easily adapted for future libraries of MTNCL or a different 

technology. The file “Comp_Definitions.txt” has component definitions in a standard format as 

shown below. 

Component Name = inv 

Definition Begins 

--mtncl inverter 

library ieee; 

use ieee.std_logic_1164.all; 

use work.ncl_signals.all; 

 

entity inv is 

 port(a: in dual_rail_logic; 

      f: out dual_rail_logic); 

end inv; 

 

architecture arch of inv is 
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 signal ft:dual_rail_logic; 

begin 

 ft.rail0<=a.rail1; 

 ft.rail1<=a.rail0; 

 

 f.rail0<=ft.rail0; 

 f.rail1<=ft.rail1; 

end arch; 

Definition Ends 

The component name is preceded by the tag “Component Name =” and the VHDL definition for 

the component resides between the tags “Definition Begins” and “Definitions Ends”. MCT reads 

the component name along with its definition and stores it in an internal data structure.  

The gate_array structure (created in Section 5.2) has a list of MTNCL components that have 

been employed in the equivalent MTNCL design. MCT also adds register and early_completion 

components to the gate_array structure.  MCT then fetches the definitions for every element in 

the gate_array structure for the creation of the MTNCL VHDL design.  

5.6 Creating the Equivalent MTNCL VHDL Design 

After sourcing the definitions for MTNCL components, the equivalent MTNCL design is 

ready for implementation. The main_entity, main_inputs, main_outputs, gate_array data 

structures and the top-level wrapper are used to create the structural VHDL model. First, all the 

definitions for the elements in gate_array structure are written into the output VHDL file. 

Second, main_entity, main_inputs[] and main_outputs[] are used to generate the main design’s 

entity statement. The algorithm then writes the main design architecture, starting with 

component declarations. Internal signals are copied from the original VHDL file into the output 

VHDL file and their type is changed to the corresponding dual_rail_logic or 

dual_rail_logic_vector, followed by internal signal declarations for the top-level wrapper and its 

mapping. Following this, in the architecture description, main entity inputs are mapped to the 
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input_register and input_early_completion component. The output of input_early_completion 

component drives the Ko output of the main entity. The output of input_register gets mapped to 

the MTNCL logic. The MTNCL logic is an exact replica of the original design, with MTNCL 

components used instead of Boolean gates and signal types changed to dual_rail_logic and 

dual_rail_logic_vector, followed by logic minimization. The output of the MTNCL logic is then 

mapped to the input of output_register and output_early_completion component. The Ki of the 

main entity is mapped to the Ki of the output_early_completion component. The output Ko of the 

output_early_completion component drives the Ki signal of the input_early_completion 

component. After creating port mappings for the output_register and output_early_completion 

component, MCT maps the outputs of the output_register to the entity description outputs. 

5.7 MCT Implementation 

The MCT tool has been merged into the Synopsys CAD tools, using a script that calls a 

master C-program, which is executed from within Design Vision interface. The idea is to follow 

a design methodology that is similar to the synchronous circuits, thereby reducing the need for 

an entirely different environment for asynchronous circuits. MCT is intended to help designers 

automatically convert existing synchronous circuits into their MTNCL equivalents. Also, MCT 

creates an ‘include-all’ VHDL file for easy compilation. MCT has been designed such that it 

could be adapted for other CAD tool suites or a technology other than MTNCL, requiring slight 

modifications.     
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Chapter 6. Automated Gate-Level Pipelining with Bit-Wise Completion. 

6.1 Previous Work 

An Automated Gate-Level Pipelining (AGLP) method was proposed to maximize 

throughput of delay-insensitive NCL circuits [10]. This AGLP algorithm starts with a 

hierarchical non-pipelined or partially pipelined NCL system and optimally partitions the circuit 

and inserts the minimal number of generic registration and completion components that 

maximize throughput. The AGLP method created pipelined designs in minutes as opposed to the 

hand-optimized designs that took days.  The AGLP algorithm was incorporated into the industry 

standard Mentor Graphics CAD tool using a Tcl script that calls a C-program, which is executed 

from within Leonardo Spectrum, such that NCL synthesis and optimization will utilize the same 

CAD tools and follow a similar design methodology as synchronous circuits. This helps in 

making asynchronous circuit design accessible to most designers, just like synchronous circuit 

design. This approach aids in the wider adoption of asynchronous design within the 

semiconductor industry.  

AGLP starts by creating a bi-directional linked-list tree structure of the entire circuit, and 

then partitions the tree into stages of primary components, where a primary component is defined 

as a component whose inputs only consist of the circuit’s inputs or outputs of components that 

have already been added to a previous stage, starting from both top-down and bottom-up. Next, it 

moves non-critical components to further maximize throughput, then merges stages to minimize 

latency and area without decreasing throughput, before outputting the optimally pipelined design 

as a VHDL model. AGLP also allows for an initial lower bound on throughput to be specified, 

such that the resulting circuit is not overly pipelined when only a finite increase in throughput is 

required.  
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The AGLP method [10] produced only full-word completion designs. This means there is 

only one completion component employed per pipeline stage. As AGLP uses partitioning to 

maximize throughput, further increase in performance could be achieved by applying bit-wise 

completion detection logic to the design. Since the wavefronts flow through the circuit 

independent of global clock control, additional registers can be inserted in the design to increase 

performance without changing the functionality of the original design, unlike synchronous 

circuits where inserting registers changes the overall function of the circuit. Subsequent 

partitioning may or may not increase performance, because if partitioning causes registers of 

significantly larger width to be inserted then the decrease in combinational delay per stage could 

be offset by an increase in completion delay, such that the throughput of the system may not 

necessarily increase, since throughput is based on both combinational and completion delays, as 

explained in Section 2.2.  Therefore, there is a need to modify the AGLP method to 

accommodate bit-wise completion detection logic for further increase in throughput of the 

design.  

6.2 Bit-Wise Completion Strategy 

 In bit-wise completion [9], the completion signal is generated from bit x in stagej’s 

register back to the bits in stagej-1’s register that were used for calculating bit x.  In other words, 

the Ki signal for every instance of 1-bit NCL register of stagej-1 is driven by the output of the 

completion component that conjoins all the bits of stagej that use that particular bit from stagej-1 

for their calculation, as shown in Figure 24. On the other hand, in case of full-word completion 

the completion component conjoins each bit in stagej’s register to generate a completion signal 

that drives all Ki lines for stagej-1’s register. The throughput for bit-wise completion will always 

be equal to or less than the throughput for full-word completion, since the worst case for bit-wise 
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completion is that all bits of stagej-1’s register are used to calculate any bit in stagej’s register. 

Bit-wise completion may or may not employ more logic gates than full-word completion. This 

means that bit-wise completion should be used instead of full-word completion either when it 

increases throughput or when it uses fewer transistors for an identical throughput. 

NCL Completion NCL Completion NCL Completion NCL Completion

NCL Register

NCL Register

NCL Register NCL Register NCL Register NCL Register NCL Register

NCL Register NCL Register NCL Register
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Figure 24. Bit-wise completion strategy [9] 

 

6.3 Automated Gate-Level Pipelining with Bit-Wise Completion Tool 

 In this section an Automated Gate-Level Pipelining of NCL circuits with Bit-Wise 

Completion, called AGLPBW, is developed.  This method is based on the AGLP method 
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presented in [10]. The source code for the C-Program used in AGLP was modified to implement 

this tool.  The flowchart for AGLPBW is shown in Figure 25.                                                                                                                

Hierarchical full-word 

pipelined NCL circuit 

Throughput optimal Bit-Wise 

pipelined NCL circuit

Process circuit components 

Process main design and create tree 

structure

Calculate ki/ko vector indices using recursive 

depth-first-search (DFS) algorithm

Implement bit-wise completion by adding 

completion components based on the ki/ko 

vectors per stage 

Area optimization – remove redundant completion 

logic by re-using completion components with identical 

ki/ko index vectors

Loop until all pipeline Stages are 

accounted for 

 

Figure 25. AGLPBW Flowchart 

The output VHDL file from AGLP, which is a full-word pipelined design, is first 

synthesized using the Leonardo Spectrum tool. The structural pipelined NCL netlist obtained 

from Leonardo is submitted as an input to the AGLPBW algorithm. AGLPBW is comprised of 

several steps, which modify the completion strategy of the full-word pipelined design to generate 
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a bit-wise pipelined design. As shown in the AGLPBW flowchart, Steps 1 and 2 initially process 

the main design to understand the stages of the pipeline and generate a node-tree structure. In 

Step 3 and 4, the recursive depth-first-search algorithm is utilized to find all bits of registeri-1 that 

are used to calculate each bit of registeri. In Step 5, completion logic optimization is achieved by 

removing redundant completion components, thereby improving area. Finally, in Step 6 the bit-

wise pipelined VHDL design is written by utilizing the node-tree structure to recreate original 

pipeline with the newly computed bit-wise completion logic.   

 The algorithm starts with Stage1 and works its way down to StageN, where N is the 

number of stages found while processing the design. Stagei resides between  

registeri-1and registeri. AGLPBW forms a node-tree structure from the structural architecture 

description, where each node represents a primary component. Starting with the first register 

node in the tree, for each output the algorithm does a recursive depth-first-search (DFS) of the 

design node tree structure to find all inputs of the subsequent register affected by this output. The 

algorithm keeps track of the number of input bits of the registeri affected by each output bit of 

registeri-1 and updates a separate ki/ko index vector used to create a completion component with 

corresponding ki/ko signal mappings to satisfy the bit-wise requirement for each bit in registeri-1. 

This is repeated till the last register in the hierarchy has been accounted for.  

 It is possible to reduce the number of completion components, and therefore area, by 

eliminating some redundant completion components without affecting the bit-wise strategy. 

AGLPBW algorithm identifies the group of bits of the registeri that use the same bits of registeri-

1 for their calculation. For such instances the duplicate completion components are deleted and a 

single completion component is used to drive the Ki for each bit in the group from registeri. The 
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number of completion components is reduced by first analyzing Stage 1, and then all subsequent 

stages. 

 After area optimization for redundant completion components, the bit-wise pipelined 

design is ready for implementation. First, all component entities and architectures are copied 

from the input VHDL file into the output VHDL file. Second, the reconstructed dual-rail and 

quad-rail inputs and outputs are used to generate the main design’s entity statement. Next, the 

main design architecture is started by writing component declarations for generic NCL register 

and generic completion component, followed by signal declarations for all register inputs and 

outputs, and all completion component inputs and outputs according to the bit-wise 

requirements.  

 Following this, the NCL registers and their corresponding completion components are 

mapped for all stages based on the Ki/Ko index vectors that were created during recursive DFS.  

For each stage, the Ki signal for every instance of 1-bit NCL register is driven by the output of 

the completion component which conjoins all the bits of the subsequent register that use that 

particular input bit for its calculation. The main entity inputs are mapped to the input register and 

the outputs of the output register are mapped to the entity. AGLPBW then creates port mappings 

for all components in each pipeline stage and makes connections to the inputs of the next register 

in sequence. The main design tree structure is used to generate the mappings of all components.  

 Like AGLP, AGLPBW is integrated into Leonardo Spectrum using a TCL script that 

calls a master C program. This is done so that NCL synthesis and optimization will utilize the 

same CAD tools and follow a similar design methodology as synchronous circuits. AGLPBW 

could be easily ported to other CAD tool suites with slight modifications to the script and C 

code.  
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Chapter 7. Simulation Results 

7.1 MTNCL CAD Tool (MCT) 

 The MCT was applied on two Boolean designs, a 4-bit x 4-bit Multiplier and an 8-bit 

Arithmetic Logic Unit (ALU). First, a 4-bit x 4-bit Multiplier was converted into its MTNCL 

equivalent by applying MCT to the synthesized design.  The MTNCL VHDL file for the 

multiplier was successfully checked for compilation. A self-checking VHDL testbench was 

written for functional testing of the MTNCL version. The testbench controller was made to pump 

in data patterns exhaustively. The output was auto-checked for correctness within the testbench. 

The simulation results were found to be accurate.  The inputs to the multiplier are in a dual_rail 

format [2] where each bit consists of two wires {D
1
 D

0
}. Boolean logic 0 and logic 1 are 

represented as {0 1} and {1 0} respectively, while {0 0} represents the NULL state. A snippet of 

the 4-bit x 4-bit multiplier simulation is shown below in Figure 26.  

 

Figure 26. Simulation snapshot for 4-bit x 4-bit MTNCL multiplier  

The initial state is assumed to be NULL. When Ko is rfd (i.e. logic 1, request for data), 

the inputs are applied to the design. As seen in the waveform, for the first DATA cycle the input 

A = “1010” (Boolean) or “{10}{01}{10}{01}” (NCL) and input B = “1011” (Boolean) or 

“{10}{01}{10}{10}” (NCL). The asserted Ko signal switches the MTNCL multiplier logic to 

sleep mode. Ko is de-asserted with detection of input completeness, the multiplier logic gets 
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activated and begins computation. The correct output is observed at the subsequent falling edge 

of Ki. The result is “01101110” (Boolean) or {01}{10}{10}{01}{10}{10}{10}{01} (NCL). 

MCT was then tested on an 8-operation Arithmetic Logic Unit (ALU) design. The ALU 

design was converted into its MTNCL equivalent by applying MCT to its synthesized design.  

The MTNCL VHDL file for the ALU was successfully checked for compilation. Another VHDL 

testbench was written for the functional testing of ALU’s MTNCL version. The testbench 

controller was made to pump in data patterns exhaustively for all 8 operations. The interface 

protocol is: when Ko is rfd/rfn, pump in DATA/NULL. The output was checked manually for 

correctness. The simulation results were found to be accurate. The inputs to the ALU are also in 

a dual_rail format [2] where each bit consists of two wires {D
1
 D

0
}. Boolean logic 0 and logic 1 

are represented as {0 1} and {1 0} respectively, while {0 0} represents the NULL state. A 

snippet of the ALU simulation is shown below in Figure 27.  

 

Figure 27. Simulation snapshot for 8-operation MTNCL ALU 

The initial state is assumed to be NULL. When Ko is rfd (i.e. logic 1, request for data), 

the inputs are applied to the design. As seen in the waveform, for the first DATA cycle the input 
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A = “1110” (Boolean) or “{10}{10}{10}{01}” (NCL) and input B = “1111” (Boolean) or 

“{10}{10}{10}{10}” (NCL). The selected operation is AND, which has a operation value of 

“010” (Boolean) or “{01}{10}{01}” (NCL).  The asserted Ko signal switches the MTNCL ALU 

logic to sleep mode. Ko is de-asserted with detection of input completeness, the multiplier logic 

gets activated and begins computation. The correct output is observed at the subsequent falling 

edge of Ki. The result is computed as “1110” (Boolean) or {10}{10}{10}{01} (NCL). 

Both the MTNCL designs, generated by using MCT, were exhaustively simulated using a 

gate-level MTNCL VHDL library with gate delays generated from physical level simulation of 

1.8V, 0.18µm TSMC CMOS process [21].     

 

7.2 Automated Gate-Level Pipelining with Bit-Wise Completion Tool 

 The AGLPBW tool was first applied to a 4-bit x 4-bit multiplier. The simulation was 

found to be valid and the design was found to have accurate waveforms. Secondly, an unsigned 

Booth2 multiplier design was used for testing the AGLPBW tool. When bit-wise completion 

strategy is utilized with input-incomplete components, such as the Booth2 partial product 

generation stage, the resulting design is not delay-insensitive, as it is not completion-complete 

[9]. The Booth2 design was made delay-insensitive by modifying the completion strategy for this 

particular stage (Stage 1) to full-word completion. Therefore, bit-wise completion was utilized 

for all stages except Stage 1. The simulation for this partially bit-wise pipelined Booth2 

multiplier was verified to be functionally correct. Both the bit-wise pipelined designs, generated 

by AGLPBW, were thoroughly simulated using a gate-level NCL VHDL library with gate delays 

generated from physical level simulation of 1.8V, 0.18µm TSMC CMOS process [21].     
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Table 4 shows a comparison for bit-wise (BW) pipelined design and the full-word (FW) 

pipelined design.  

 4 x 4 Multiplier Booth2 Multiplier 

  
FW 

pipelined 

BW 

pipelined 

FW 

pipelined 

BW 

pipelined 

TDD 3.640 ns 3.071 ns 3.906 ns 3.816 ns 

# of Registers 7 7 6 6 

# of Completion 

components 7 17 6 15 

# of completion 

gates 24 23 23 23 

Completion 

transistor count 460 364 432 384 

Table 4. Comparison - FW Pipelining vs. BW Pipelining 

The bit-wise pipelined versions were found to have a higher throughput compared to the full-

word pipelined versions. The TDD for bit-wise pipelined 4-bit x 4-bit multiplier was calculated to 

be 3.071 ns, while the TDD for Booth2 multiplier was found to be 3.816 ns. Also, bit-wise 

completion resulted in less area for the both designs. In case of 4-bit x 4-bit multiplier, bit-wise 

strategy led to the use of 364 transistors in completion logic which is 96 transistors less than the 

full-word completion. For the Booth2 multiplier circuit, it was noticed that 384 transistors are 

required for partial bit-wise completion verses 432 transistors for full-word completion. 

Therefore, bit-wise completion offers throughput improvements coupled with decrease in area. 

 4x4 Multiplier Booth Multiplier 

Speed Up (FW pipelined to BW 
pipelined) 

1.185 1.024 

Table 5. Pipeline Speedup Ratio 
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The speedup ratios shown in Table 5 indicate that bit-wise pipelined designs are faster than their 

full-word pipelined versions, 1.185 times faster in case of 4 x 4 multiplier and 1.024 times faster 

for Booth2 multiplier. 
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Chapter 8 Conclusion and Future Work 

8.1 MTNCL CAD tool  

An MTNCL CAD Tool (MCT) for converting Boolean circuits into their MTNCL 

version was developed. It starts by processing the synthesized Boolean circuit, and then employs 

equivalent MTNCL components instead of the standard Boolean gates. Next, it implements the 

registration, completion, and sleep logic by applying FECII architecture. The algorithm then 

performs logic minimization by eliminating signals/ports mapped to VDD and GND as required, 

thereby reducing area. Then the MCT outputs the MTNCL version of the design as a hierarchical 

VHDL model. MCT also has a programmable LUT and component declarations module to make 

it easily adaptable to future MTNCL libraries, or different CAD tool suites.  

MCT’s functionality was tested on a 4-bit x 4-bit multiplier circuit. The simulation results 

proved the correctness of the algorithm. Further, MCT was tested on a larger circuit, 8-bit 

Arithmetic Logic Unit (ALU) with eight operations, producing its MTNCL version in seconds. 

The ALU’s simulation was accurate. This automated process for converting existing Boolean 

circuits into its MTNCL equivalent will aid in reducing design time. Also, MCT has been 

incorporated into the Synopsys CAD suite through a TCL script that calls a C-program. This 

script is executed from within Design Vision’s user interface. As a design methodology similar 

to that of synchronous circuits is utilized, it helps shorten the learning period for asynchronous 

circuit design. The tool will assist and support wider adoption of asynchronous technologies like 

MTNCL within the industry.  

Currently, MCT supports only combinational circuits and is limited to handling specific number 

of gates from the standard GTECH library. Future work includes expanding the scope of MCT so 

that it supports the entire GTECH library and sequential circuits. This will enable MCT to tackle 
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more complex synchronous circuits and convert them into an equivalent MTNCL design with 

ease. This will drastically help the asynchronous design landscape, as it will change the design-

from-scratch approach generally adopted for MTNCL asynchronous circuits. The designers 

could easily convert synchronous circuits into MTNCL circuits, and employ them as modules for 

quickly designing larger, more complex asynchronous circuits.    

 

8.2 Automated Gate-Level Pipelining with Bit-Wise Completion Tool 

 An automated gate-level pipelining method for NULL Convention Logic (NCL) circuits 

that implements bit-wise completion to achieve higher throughput was developed.  AGLPBW’s 

functionality was tested on a 4-bit x 4-bit NCL multiplier and an unsigned Booth2 multiplier. 

The simulation results proved the correctness of the algorithm. The bit-wise pipelined designs 

were found to be faster than their full-word pipelined versions. Additionally, bit-wise completion 

offered comparatively less area. 

 Future work includes implementing an optimal AGLPBW by calculating completion and 

combinational delays as per the bit-wise completion strategy and utilizing these delays to 

partition and merge stages in the pipeline. It is also possible to merge the AGLP and AGLPBW 

methods into a single tool that outputs the most optimized design, whether it is a bit-wise 

pipelined or full-word pipelined design, for given user constraints on minimum throughput, area, 

and latency. Further, AGLPBW could be expanded to include a process to apply NULL Cycle 

Reduction (NCR) [11], to slower stages of the pipeline to further increase throughput for the 

entire pipeline.  
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