5 research outputs found

    Ergodic Interference Alignment

    Full text link
    This paper develops a new communication strategy, ergodic interference alignment, for the K-user interference channel with time-varying fading. At any particular time, each receiver will see a superposition of the transmitted signals plus noise. The standard approach to such a scenario results in each transmitter-receiver pair achieving a rate proportional to 1/K its interference-free ergodic capacity. However, given two well-chosen time indices, the channel coefficients from interfering users can be made to exactly cancel. By adding up these two observations, each receiver can obtain its desired signal without any interference. If the channel gains have independent, uniform phases, this technique allows each user to achieve at least 1/2 its interference-free ergodic capacity at any signal-to-noise ratio. Prior interference alignment techniques were only able to attain this performance as the signal-to-noise ratio tended to infinity. Extensions are given for the case where each receiver wants a message from more than one transmitter as well as the "X channel" case (with two receivers) where each transmitter has an independent message for each receiver. Finally, it is shown how to generalize this strategy beyond Gaussian channel models. For a class of finite field interference channels, this approach yields the ergodic capacity region.Comment: 16 pages, 6 figure, To appear in IEEE Transactions on Information Theor

    Quelques Aspects des RĂ©seaux Multi-Cellules Multi-Utilisateurs MIMO : DĂ©lai, Conception d'Emetteur-RĂ©cepteur, SĂ©lection d'Utilisateurs et Topologie

    Get PDF
    In order to meet ever-growing needs for capacity in wireless networks, transmission techniques and the system models used to study their performances have rapidly evolved. From single-user single-antenna point-to-point communications to modern multi-cell multi-antenna cellular networks there have been large advances in technology. Along the way, several assumptions are made in order to have either more realistic models, but also to allow simpler analysis. We analyze three aspects of actual networks and try to benefit from them when possible or conversely, to mitigate their negative impact. This sometimes corrects overly optimistic results, for instance when delay in the channel state information (CSI) acquisition is no longer neglected. However, this sometimes also corrects overly pessimistic results, for instance when in a broadcast channel (BC) the number of users is no longer limited to be equal to the number of transmit antennas or when partial connectivity is taken into account in cellular networks.We first focus on the delay in the CSI acquisition because it greatly impairs the channel multiplexing gain if nothing is done to use the dead time during which the transmitters are not transmitting and do not yet have the CSI. We review and propose different schemes to use this dead time to improve the multiplexing gain in both the BC and the interference channel (IC). We evaluate the more relevant net multiplexing gain, taking into account the training and feedback overheads. Results are surprising because potential schemes to fight delay reveal to be burdened by impractical overheads in the BC. In the IC, an optimal scheme is proposed. It allows avoiding any loss of multiplexing gain even for significant feedback delay. Concerning the number of users, we propose a new criterion for the greedy user selection in a BC to benefit of the multi-user diversity, and two interference alignment schemes for the IC to benefit of having multiple users in each cell. Finally, partially connected cellular networks are considered and schemes to benefit from said partial connectivity to increase the multiplexing gain are proposed.Afin de répondre au besoin sans cesse croissant de capacité dans les réseaux sans fil, les techniques de transmission, et les modèles utilisés pour les étudier, ont évolués rapidement. De simples communications point à point avec une seuleantenne nous sommes passé aux réseaux cellulaires de nos jours: de multiples cellules et de multiples antennes à l’émission et à la réception. Progressivement, plusieurs hypothèses ont été faites, soit afin d’avoir des modèles réalistes, mais aussi parfois pour permettre une analyse plus simple. Nous examinons et analysons l’impact de trois aspects des réseaux réels. Cela revient parfois à corriger des résultats trop optimistes, par exemple lorsque le délai dans l’acquisition des coefficients des canaux n’est plus négligé. Cela revient parfois à corriger des résultats trop pessimistes, par exemple, lorsque dans un canal de diffusion (BC) le nombre d’utilisateurs n’est plus limité au nombre d’antennes d’émission ou lorsque la connectivité partielle est prise en compte dans les réseaux cellulaires. Plus précisément, dans cette thèse, nous nous concentrons sur le délai dans l’acquisition des coefficients des canaux par l’émetteur puisque sa prise en comptedétériore grandement le gain de multiplexage du canal si rien n’est fait pour utiliser efficacement le temps mort au cours duquel les émetteurs ne transmettent pas et n’ont pas encore la connaissance du canal. Nous examinons et proposons des schémas de transmission pour utiliser efficacement ce temps mort afin d’améliorer le gain de multiplexage. Nous évaluons le gain de multiplexage net, plus pertinent, en tenant compte le temps passé à envoyer symboles d’apprentissage et à les renvoyer aux transmetteurs. Les résultats sont surprenant puisque les schémas contre le retard de connaissance de canal se révèle être impraticables à cause du cout du partage de la connaissance des canaux. Dans les réseaux multi-cellulaires, un schéma de transmission optimal est proposé et permet de n’avoir aucune perte de gain de multiplexage même en cas de retard important dans la connaissance de canal. En ce qui concerne le nombre d’utilisateurs, nous proposons un nouveau critère pour la sélection des utilisateurs de les configurations à une seule cellule afin de bénéficier de la diversité multi-utilisateurs, et nous proposons deux schémas d’alignement d’interférence pour systèmes multi-cellulaires afin de bénéficier du fait qu’il y a généralement plusieurs utilisateurs dans chaque cellule. Enfin, les réseaux cellulaires partiellement connectés sont étudiés et des schémas bénéficiant de la connectivité partielle pour augmenter le gain de multiplexage sont proposés
    corecore